
CHAPTER 18

ERNA YACKEL AND CHRIS RASMUSSEN

BELIEFS AND NORMS IN THE MATHEMATICS
CLASSROOM

Abstract: The central purpose of this chapter is to demonstrate that by coordinating sociological and
psychological perspectives we can explain how changes in beliefs might be initiated and fostered in
mathematics classrooms. In particular, we examine: 1) the coordination of students' beliefs about
mathematical activity and classroom social norms and 2) the coordination of specifically mathematical
beliefs and classroom sociomathematical norms. Examples from a university level differential equations
class are used for purposes of clarification and illustration.

1. INTRODUCTION

For more than a decade we and our colleagues1 have collaborated to study students’
mathematical learning in the context of the classroom. In the process of doing so, we
have developed an interpretive framework (see Table 1) for analyzing classrooms
that coordinates both individual (psychological) and collective (sociological)
perspectives. In this work we were strongly influenced by Bauersfeld, Krummheuer,
and Voigt’s (Bauersfeld, 1988; Bauersfeld, Krummheuer, & Voigt, 1988) long
standing work in advancing symbolic interactionism2 as a theoretical framework for
investigating mathematics teaching and learning. The central thesis of this chapter is
that by coordinating sociological and psychological perspectives it is possible to
develop ways to explain how changes in beliefs might be initiated and fostered in
mathematics classrooms. The purpose of this chapter is to develop this thesis. In
particular, we discuss those aspects of the interpretive framework that relate to
student beliefs and the corresponding classroom norms. The beliefs we consider in
this chapter are beliefs about one’s role, others’ roles, and the general nature of
mathematical activity in school and specifically mathematical beliefs and values.
We use a university level differential equations class as an example to clarify and
illustrate these constructs within the framework. The example demonstrates both the
normative aspects of the classroom and the corresponding student beliefs. In each of
the classrooms we have studied over the past years, from elementary school
mathematics to university level differential equations, student mathematical beliefs
changed dramatically over the course of the teaching experiment. In this chapter we
demonstrate how the theoretical constructs of the interpretive framework can be
used to explain this change. The significance of this work is that it begins to address
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2. BACKGROUND

Following on the seminal work of Erlwanger3 (1973), a number of mathematics
educators have argued for the need to consider students' beliefs about mathematics
when attempting to make sense of their mathematical behavior. For example, Cobb
(1985) demonstrated that the mathematical activity of the young children who
participated in an extended teaching experiment could not be accounted for solely in
terms of their mathematical conceptions. However, by complementing a conceptual
analysis with an analysis of the children’s beliefs it was possible to explain the
radically different behavior of children to whom similar concepts were attributed. At
the same time, Schoenfeld’s work with university level students led to similar
conclusions (Schoenfeld, 1983).

As early as 1986, Cobb conjectured that mathematics instruction, as a
socialization process, influences student beliefs (see also Greer, Verschaffel, & De
Corte, this volume). This conjecture, which was based on working with children in
one-on-one settings, was confirmed in a classroom teaching experiment4 we
conducted in 1986-87 in one second-grade classroom. As we have reported
elsewhere (Cobb, Yackel, & Wood, 1989), student beliefs at the beginning of the
school year were compatible with a “school mathematics tradition,” but as the year
progressed their beliefs became compatible with an “inquiry mathematics
tradition”5. Initially,

[T]he teacher’s expectations that the children should [attempt to construct their own
solutions to problems and] verbalize how they actually interpreted and attempted to
solve the instructional activities ran counter to their prior experiences of mathematics
instruction in school (Wood, Cobb, & Yackel, 1988). The teacher, therefore, had to
exert her authority in order to help the children reconceptualize their beliefs about both
their own roles as students and her role as the teacher during mathematics instruction.
She and the children initially negotiated obligations and expectations at the beginning of
the school year which made possible the subsequent smooth functioning of the
classroom. Once established, this mutually constructed network of obligations and
expectations constrained classroom social interactions in the course of which the
children constructed mathematical meanings (Blumer, 1969). The patterns of discourse
served not to transmit knowledge (Mehan, 1979; Voigt, 1985) but to provide
opportunities for children to articulate and reflect on their own and others’ mathematical
activities. (Cobb et al., 1989, p. 126)

As we will explain below, in order to investigate how it was that student beliefs
were influenced by the socialization process, we sought to analyze the social
(participation) structure of the classroom. The sociological perspective we followed
was that of symbolic interactionism because of its compatibility with psychological
constructivism (Voigt, 1996; Yackel & Cobb, 1996)6. In the same way that attention
to student beliefs is not a logical necessity but proves pragmatically useful because it
helps to account for aspects of students’ mathematical activity that otherwise are not
explainable, taking a sociological perspective is not a logical necessity. However,

a major challenge in working with beliefs, namely, the initiation of changes in
students’ beliefs about mathematics and mathematics instruction (also see Greer,
Verschaffel, & De Corte, this volume; Tsamir & Tirosh, this volume).
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taking such a perspective proves pragmatically useful because doing so provides
means to analyze and ultimately explicate aspects of the teaching and learning of
mathematics in the classroom setting that otherwise defy explanation.

3. THE INTERPRETIVE FRAMEWORK

In this section we give a brief overview of the constructs in the interpretive
framework that are relevant to this chapter. A more extensive discussion of the
framework together with clarifying examples can be found in Cobb and Yackel
(1996). First, we wish to emphasize that the interpretive framework is not the result
of an a priori theoretical analysis but rather grew out of extensive classroom-based
research. It evolved from our attempts to make sense of students’ learning in the
classroom across several yearlong classroom teaching experiments in elementary
school mathematics classes. Our initial efforts included considerable attention to
unraveling the complexity of the classroom by focusing on the classroom social
norms and later on the sociomathematical norms (Cobb et al., 1989; Yackel, Cobb,
& Wood, 1991; Yackel & Cobb, 1996). We use the label social norms to refer to
regularities in the interaction patterns that regulate social interactions in the
classroom. As such, social norms are expressions of the normative expectancies in
the classroom. For example, in a classroom the interaction patterns might be
indicative of the expectation that students are to explain their thinking to each other.
By contrast, sociomathematical norms refer to regularities in the interaction patterns
that are specific to mathematics. For example, in our analyses we have noted that
classrooms differ with respect to what becomes normative regarding acceptable
mathematical explanations. In this case, the relevant expectations are specifically
related to the fact that the subject matter is mathematics, as opposed to history, or
literature, or some other subject. Consequently, we have chosen to use the label
sociomathematical norms to distinguish these norms from general classroom social
norms.

These constructs are sociological in that they refer to the classroom community as a
collective group rather than to the individual members of the community.
Nevertheless, in attempting to analyze norms, we took the position that there is a
reflexive relationship between the individual and the collective7. Therefore, our
analyses of norms necessarily involved taking account of the corresponding
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psychological components. As we have noted elsewhere (Cobb, Yackel, & Wood,
1993) we take beliefs to be the psychological correlates of norms. In doing so, we
are taking beliefs to be basically cognitive. They are the understandings that an
individual uses in appraising a situation. Thus, discussions of norms and discussions
of beliefs are intimately intertwined. This interrelationship between beliefs and
norms is critical because it provides a means for talking about changes in beliefs.
That is, in saying that norms and beliefs are reflexively related we imply that they
evolve together as a dynamic system.

Methodologically, both general social norms and sociomathematical norms are
inferred by identifying regularities in patterns of social interaction. Thus social
norms are identified from the perspective of the observer and indicate an aspect of
the social reality of the classroom. However, what becomes normative in a
classroom is constrained by the current goals, beliefs, suppositions, and assumptions
of the classroom participants. For example, a student‘s inferred beliefs about his or
her own role in the classroom, others' roles, and the general nature of mathematical
activity can be thought of as a summarization of the obligations and expectations
attributed to the student across a variety of situations. In this sense beliefs can be
thought of as an individual’s understandings of normative expectancies. Social
norms can be thought of as taken-as-shared beliefs that constitute a basis for
communication and make possible the smooth flow of classroom interactions (Cobb
et al., 1993).

4. AN ILLUSTRATIVE EXAMPLE

To illustrate the reflexive relationship between student beliefs and classroom social
and sociomathematical norms, we draw on data from a semester-long classroom
teaching experiment conducted in a university level differential equations class. The
overall goal of this teaching experiment was to investigate university level students’
learning of differential equations in the context of the classroom. We wish to stress
that the interpretive framework and the theoretical relationships discussed above
were not developed from data taken from this classroom. These theoretical
developments resulted from extensive analysis of several yearlong classroom
teaching experiments at the elementary school level. However, the differential
equations instructor was knowledgeable about research from which the interpretive
framework arose and was committed to the goal of developing an inquiry form of
instruction8. To this end, he gave explicit attention to the constitution of classroom
norms that characterize an inquiry mathematics tradition. In particular, the instructor
sought to foster the social norms that students are expected to develop personally
meaningful solutions, to explain and justify their thinking, to listen to and attempt to
make sense of the thinking of others, and to raise questions and challenges when
they disagree or do not understand. Within this context, he also sought to promote
the sociomathematical norm that explanations should be descriptions of actions on
taken-as-shared mathematical objects that are experientially real for the students.

A question of interest to the project research team was the extent to which these
social and sociomathematical norms, which had grown out of analysis of elementary
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school mathematics classrooms, would be equally beneficial at the university level.
For this reason, specific attention was given, on a daily basis, to the norms that were
operative in the classroom and to their evolution as the semester progressed.
Through classroom observations, it was apparent that the norms described above
were constituted in the class over the course of the semester. Further, it was apparent
that the individual students altered their beliefs about their role, the teacher’s role
and the nature of mathematical activity. In the following discussion we document
these claims. In keeping with the position that beliefs are the cognitive basis that
individuals use to interpret situations that arise in the course of social interaction,
our methodological approach is to demonstrate an evolution of students’ beliefs
across the semester by considering the reflexive relationship between beliefs and
norms. This approach stands in contrast to approaches that codify student beliefs
before and after the instructional period and compare the results.

4.1. The Project Classroom

The project took place in a differential equations class in an American university.
The majority of the twelve students in the class9 were engineering students; the
remainder were mathematics majors. The class met for two-hour class sessions twice
a week for fifteen weeks. As noted above, the instructor used an inquiry approach to
instruction. Further, as part of the overall project, he developed a majority of the
instructional activities used in the class10. In addition, the class used a reform-
oriented textbook11 for homework problems. Students used a TI-92 graphing
calculator with programs specifically designed by members of the project research
team to foster their development of a conceptual basis for slope fields and phase
portraits.

In addition to regular homework assignments, students submitted weekly
electronic journals in which they reflected on their mathematical activity during the
prior week. In some instances specific journal prompts were given. For example, the
first journal prompt was to “describe at least one idea from the previous week that
was most confusing to you and one idea that was clearest to you”. Each student also
prepared a course portfolio, which was handed in on two occasions, the day of the
first exam and at the final exam. The purpose of the portfolio was for students to
synthesize their learning across a number of weeks. To prepare a portfolio a student
needed to select entries that reflected important instances of learning and, for each
entry, write a rationale explaining the insights gained through the instructional
activity represented by the entry. An unanticipated benefit of the electronic journals
and portfolios was that they provided additional information about students’
evolving beliefs.

The data that form the basis for this chapter come from video recordings that
were made of every class session and from the students’ electronic journals and
portfolios. Throughout the teaching experiment the project team met on an ongoing
basis to discuss a variety of issues, including classroom norms and students’ beliefs.
However, no analyses were conduced until after the semester was completed. At that
time two members of the research team set out to document the classroom norms
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and how they were constituted. For this purpose, our field notes and the video
recordings were scrutinized for evidence relating specifically to norms and beliefs,
with special attention to the first several weeks of class when the negotiation of
norms was initiated. We then identified exemplary episodes from our field notes and
videotape review notes. Examples were selected on the basis of their clarity for
presentation using verbal material only. These examples were then transcribed. As
noted above, an unanticipated benefit of the electronic journals and portfolios was
that they provided information about students’ beliefs. Consequently, these materials
were scrutinized to identify evidence related to the students’ initial or evolving
beliefs. Again, illustrative examples were selected for use in this chapter based on
their clarity. This chapter presents the results of our analysis using the selected
episodes and examples as the basis for discussion.

4.2. Coordinating Classroom Social Norms and Beliefs about the Nature of
Mathematical Activity

4.2.1. Beliefs
Encountering an inquiry approach to mathematics instruction was a novel
experience for the students in the differential equations class since all of them had
presumably experienced only the school mathematics tradition in their prior grade
K-12 and university mathematics instruction. Thus, at the beginning of the semester
their classroom mathematical beliefs were based on expectations that the students’
role in class is to follow instructions and to solve problems in the way the instructor
and/or textbook demonstrate. Similarly, the instructor’s role is to explain and
demonstrate procedures for the students to follow. These expectations
simultaneously clarify the beliefs students held about the nature of mathematical
activity in the classroom. Evidence for these claims about initial student beliefs
comes primarily from two sources. First, the interaction patterns in the classroom
and second, student comments in their electronic journals. In the paragraphs below
we give examples of comments from student journals as a means of documenting
their beliefs.

To provide a background for making sense of the students’ electronic journals
we briefly describe the initial class activity of the first class session. The students’
task was to attempt to make sense of the spread of an infectious disease. After a
brief discussion of the scenario, the students were to sketch graphs of the susceptible
population, the infected population, and the recovered populations over time. They
had no quantitative information available to them and no procedural solution method
to follow. Thus, the initial classroom activity confronted the students’ beliefs about
what constitutes mathematical activity, about their role, and about the teacher’s role.
Subsequent activities were of a similar nature. In fact, all instructional activities
throughout the semester were designed to focus on sense making and required
explaining and justifying one’s thinking and mathematical activity.

In the early weeks of the semester a number of students made explicit comments
in their electronic journals about the discrepancy between their (prior) beliefs and
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the expectations in this class and/or their attempts to cope with the shift in
expectations. For example, in the first week’s journal one student remarked:

The only thing that I find sort of confusing is the fact that there may not be an exact
answer or answers to a specific problem. There are so many variables in some of these
problems that the answers that are obtained (if obtained) can only be used to make
educated guesses. I’m used to thinking of math as an “exact science” where there is
always an exact answer or answers to a problem.

We interpret this comment to mean that the student's belief that mathematics should
always yield one exact answer was being challenged. Another student articulated his
earlier belief about the teacher’s and the students' roles by saying,

I’m still getting used to the format. I’m more used to the teacher saying everything and
not letting the students really have a “voice”.

That he is struggling with these new roles is evident from his later remark in the
same journal entry,

You never said exactly how you wanted the homework done.

Another student commented explicitly about the expectations regarding explanation.
He wrote in the journal that accompanied his second homework assignment that he
was disappointed in his homework score. He had spent many hours completing the
assignment yet he earned only half of the possible points. He wrote the following:

[M]ost of the points lost were due to my failure to explain how I reached my answers. I
thought a clear, systematic approach to the math calculations would be sufficient to
explain my thought process. I now have a better understanding of the expectations.

This student is articulating that he formerly believed that in mathematics explanation
is not required.

Yet another student was clearly struggling with the dissonance between his
beliefs about what mathematics instruction should be and his experiences in the first
few class sessions. In his second journal entry, he wrote,

... the class is interesting, but the problem is that I’m not learning much. ... I won’t deny
that I enjoy the open discussion that our class has, but let’s face it, we aren’t learning
much. It would be more practical for us to do some examples using the concepts in
class.

Some weeks later, in the portfolio he handed in at the first exam, this same student
included the following rationale statement for one of his portfolio entries.

This handout was chosen because it was one of the initial problems that made me think
in a way that I was only exposed to in classes based on philosophy. The open discussion
in class at this time was foreign to me, especially in a math class. As you may have
guessed, we were not sure what to write or what to answer because we were never asked
these types of things before. So basicly [sic], I think that this piece was important
because it was the introduction of obscure thinking used in this class.

We take this to mean that while the student had, by this time, gained some
understanding of the expectations in this class, they were still counter to what he
believed mathematics instruction should be. For him, this class was like philosophy.
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Yet another student who had taken the same course previously on another of the
university’s campuses, with unsuccessful results, was able to clearly articulate the
differences in the expectations between the two classes. Although he did not indicate
what his beliefs are, he linked his instructional preference to these expectations.

I like the way the class and the book concentrate on practical applications and
explanations for differential equations. As you may have noticed from my info
[information] card, I have taken this class before at [another campus of the same
university] and it was much different. We spent a lot of time trying to memorize all the
techniques to solve the equations and learned very few practical ideas. I was lost and
disinterested 15 minutes into the first class session. I can honestly say I think I’ve
learned more about differential equations in the first two weeks here than I did in the
whole semester there.

This student explicitly linked expectations of memorizing techniques to not learning
much about differential equations and expectations of explanation to substantive
learning. Other students were in the position of making comparisons of this class to
other mathematics classes in their prior experience. This student had the advantage
of being able to compare two versions of the “same” class. As a result, he could be
much more explicit in stating his views.

The above selections, which are only samples from the entire class, demonstrate
that, in general, students’ beliefs upon entering the class were consistent with the
expectations that mathematics consists of using prescribed rules and procedures to
find exact answers to problems (cf. Kloosterman, this volume; Tsamir & Tirosh, this
volume). Further, the students’ comments indicate that these beliefs were being
confronted by the instructional approach they were experiencing in the differential
equations class. As we have shown elsewhere (Yackel, 1995a), it is the situation as
it is interactively constituted as a social event rather than the social setting per se
that is critical in influencing the nature of students’ mathematical activity and
beliefs.

4.2.2. Classroom Social Norms
The differing expectations of the students and the instructor led to situations of
explicit negotiation. For example, on the second day of class the instructor began
with a brief statement of the expectations regarding classroom participation. He
concluded his remarks by saying, “We had some nice examples of that from Shawn
and Natasha last time”. We know from prior analysis that one of the ways a teacher
can initiate the renegotiation of expectations and obligations is through explicit
discussions such as this (Cobb et al., 1989). However, such discussions by
themselves are insufficient for establishing a classroom in which routines are
regulated by those expectations. The students and instructor must come to act in
accordance with the expectations. In this case, the next twenty minutes of the class
was devoted to a dual agenda. On one hand, the class was engaged in a
mathematical discussion about the rationale behind the rate of change equations they
had used in the prior class session to model the spread of an infectious disease. On
the other hand, the instructor gave explicit attention throughout to the negotiation of
social norms compatible with the expectations for inquiry mathematics listed above.
In fact, the majority of the instructor’s remarks throughout the episode were
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(explicitly or implicitly) directed toward the expectations. Only a few of his remarks
were explanations related to the mathematical content.

Episode 1
Excerpts from the twenty-minute episode are included here.

Instructor: Just to sort of recap, last time we were dealing with the spread of a virus. We had [the]
elementary school population in Chicago where we had students who were either
susceptible to the disease, who were recovered, or who were infected. And we talked
about one differential equation. That [was] dR/dt = (1/14)I. Anyone remember why it
was one fourteenth? How many people remember? Shawn, why was it 1/14?
Fourteen days from the time you got cured, from the time you got it to the time its over.Shawn:

In keeping with traditional instruction, Shawn might expect the instructor to evaluate
his response as correct or incorrect and then initiate a different question. However,
the instructor pursues the same question further. He calls for additional explanation,
in particular, he asks how it “makes sense”. In doing so, he indicates that students’
responses should explain their individual thinking and further, that mathematical
thinking is about sense making.

Instructor: Okay, can you explain to us then why it was 1/14 times I? How did that sort of make
sense as a way to express the change in the recovered population?
That it's constant.
Say that again.
That it's constant. The same amount of number of people for each stage.
What do the rest of the people think about that?

Shawn:
Instructor:
Shawn:
Instructor:

With this question the instructor initiates another shift. His question indicates that he
expects others to be actively engaged in the discussion. They are to listen to the
exchange he and Shawn are having and are to develop their own interpretations
about Shawn’s response. An implicit expectation is that each student is developing
his or her own response to the question even though it was specifically addressed to
Shawn initially. Another student offers his thinking.

Jerry:

Instructor:

Each day, there’s from day zero to day one (inaudible) from day 14 to day 15, you
would see 1/14 of that population recover. And every day thereafter.
(To Shawn.) Is that similar to what you were thinking?

Here again, the instructor does not follow the traditional initiation-response-evaluate
pattern (Mehan, 1979). Instead of evaluating Jerry’s remark, the instructor indicates
that he expects students to listen to and attempt to make sense of each other’s
contributions. The instructor is attempting to initiate a genuine dialogue between the
students. His intention is that they communicate with each other, not only with and
through him.

Shawn:
Instructor:

Kinda. Yeah
Kinda. What about the explanation here? Did everyone understand what was said?
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Our analysis to this point shows that the instructor is attempting to influence the
interpretations the students make of how to engage in the discussion. From this
perspective, it might seem that the instructor is the only one in the classroom who
contributes to the renegotiation of social norms. However, norms for social
interaction are interactively constituted as individuals participate in interaction
(Yackel & Cobb, 1996). In this case, as the episode continues students contribute
their part to the negotiation of the social norms by increasingly acting in accordance
with the expectations. As the discussion progressed, students not only responded to
the instructor’s questions, they initiated comments of their own that showed that
they were beginning to change their understandings of the classroom participation
structure. Greg’s remarks, as the dialogue continues, are an illustration.

Greg:
Instructor:
Greg:
Instructor:

Jerry:

Instructor:

I didn’t quite understand what he said.
What was that?
I didn’t quite understand what he said.
So maybe you could rephrase it or say it a little bit louder so people can hear how
you’re thinking about it.
If every day, we took all the days, we say—, day zero to day one, day one to two,
through day 13 to 14, you had population infected, when you got to day 15 we made the
assumption that 1/14 of the population was recovered and my understanding is that on
day 16 its another 1/14 recovered. It’s an assumption that we made.
Anyone want to add to that explanation? Expand on it a little bit? Maybe you still have
questions about it.

With these remarks, the instructor continues to emphasize the expectations regarding
sense making and explanation. Apparently, if you don’t understand, even after
extended discussion, you are expected to ask for further elaboration. By asking for
further clarification, Greg contributes to the constitution of this expectation as
normative in this class.

Greg:

Instructor:

Jerry:

Well, how I understand it is that ... what I don’t understand, what I was asking about,
whether the—because, initially we said it was a fixed population, whether the fixed
population will have some part to play in the formula because that’s what I don’t
understand—if we said (1/14)I, or what, the fixed population or—
A good question, I think I understood what you were saying. Earlier I heard you saying
1/14 of the population. And you kind of said the same thing here. Well, this (points to
the differential equation on the chalkboard) is referring to 1/14 of what population?
The infected population.

After further discussion involving Jerry, Shawn, and the instructor, another student
initiates a question about the assumptions underlying the use of 1/14 as the scalar
multiple of I.

Alicia: Could you have [just as] easily assumed that dR/dt is 1/15 or 1/16? Is it just the
assumption that there is a correlation between the number of days that the disease will
run to [sic] the denominator?

An extended discussion ensued in which Alicia, the instructor, Jerry and Shawn
continued to make sense of the relevance of 1/14 in the differential equation of
interest.
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In the above dialogue we see Greg and Alicia acting in accordance with the
expectation that classroom activity is about making sense—making sense of the
questions posed by the instructor and others, making sense of the explanations
offered as part of the discussion, and making sense of the problem scenario. We also
see Jerry and Alicia (in the extended discussion not included here) acting in
accordance with the expectation of explaining one’s thinking to others. We find it
encouraging that as early as this point in the second class session students were
beginning to act in accordance with the expectations that the instructor was
attempting to initiate just a few moments earlier . We maintain that such actions on
the part of students are not simply mindless reactions to the instructor’s initiations.
Rather, these actions indicate the students' interpretations of the instructor’s
intentions. Smith (1978) has said, “a willingness to act and ... the assumption of
some risk and responsibility for action in relation to a belief represent essential
indices of actual believing” (p. 24). Accordingly, we would say that as Greg, Alicia,
and Jerry act in accordance with these “new” expectations, their beliefs about their
role, the instructor's role, and the nature of classroom mathematical activity are
evolving. In this case, not only did these students play a critical role in the
interactive constitution of the expectations for the classroom, in doing so, they
initiated a shift in their individual beliefs about the classroom participation structure.
For his part, by maintaining a focus on the negotiation of expectations, the instructor
made it possible for the students to reorganize their beliefs in a way that was
compatible with the expectations he was attempting to foster.

The effectiveness of the renegotiation of social norms is indicated by considering
classroom interactions that became typical later in the semester. As an example,
consider the following episode, which occurred toward the end of the semester.

Episode 2
After two students in the class explained how they determined that a particular phase
portrait would not have two saddles next to each other, Dave spontaneously added to
the discussion with this remark.

Dave: The way I thought about it at first, to make me think that all the points weren’t saddles,
is that if the next one was a saddle—see how [Bill] has got the one line coming in
towards [referring to the phase portrait that Bill had drawn on the blackboard]. Well, if
the next one was like that, then you would have to have another point in between those
two equilibrium points, like separating, like a source or something. So that’s how I
started thinking about it. So then might be a source or maybe a saddle point with
opposite directions.

Dave’s remark elicits the following response from Bill.

Bill: So it’s like, you’re saying that if there is a saddle, there has to be a source. If there is a
sink or a saddle you have to have a, like in this case right here, you would have to have
a source in between the saddles in order for it to really make sense.

Shortly thereafter, Bill relates Dave’s explanation to their earlier study of
autonomous first order differential equations.

12
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Bill: If you draw the phase line with, like, two sinks, one on top of the other, then you would
have to have a source between them.

These spontaneous remarks made by Dave and Bill indicate that they have taken
seriously the obligations of developing personally-meaningful solutions, of listening
to and attempting to make sense of the thinking of others, and of offering
explanations and justifications of their mathematical thinking. In the process of
acting in accordance with these expectations they are demonstrating their beliefs
about their roles and about the nature of classroom mathematical activity.
Furthermore, in acting in accordance with the expectations they are simultaneously
contributing to their ongoing constitution. In this way, the normative patterns of
interaction serve to sustain the expectations and obligations on which they are based
and thus to sustain individual participants’ beliefs about their role and about what
constitutes mathematical activity in this classroom.

4.3. Coordinating Sociomathematical Norms and Specifically Mathematical Beliefs

Earlier we distinguished between classroom social norms and sociomathematical
norms as follows. Social norms are regularities in interaction patterns that regulate
the social interactions in the classroom. By contrast, sociomathematical norms refer
to regularities in the interaction patterns that relate specifically to the fact that the
class is a mathematics class. To the extent that interactions involve interpretations or
appraisals of a situation, what becomes normative is constrained by the current
beliefs of the classroom participants. In the previous section we discussed the beliefs
and norms that relate to the participation structure in the class. In this section, we
discuss those beliefs that constrain the mathematical aspects of interactions, called
specifically mathematical beliefs, and sociomathematical norms13.

In contrast to social norms, it took much longer to achieve stability with respect
to the sociomathematical norms that characterize inquiry mathematics. In this
section, we limit the discussion to the sociomathematical norm of what constitutes
an acceptable mathematical explanation and related beliefs. In particular, we discuss
two aspects of acceptability with respect to mathematical explanation. The first
relates to the communication aspect of explanation and the second to the specific
expectations that had been established within the classroom in question. In general,
an explanation is an individual’s attempt to clarify for others aspects of one’s
thinking that one judges might not be clear (Cobb, Wood, Yackel, & McNeal, 1992).
That is, explanation is a form of communication. As such, an explanation is
acceptable when it serves a clarifying function. This is one aspect regarding
acceptability of explanation. Acceptability, however, cannot be judged apart from
those who are attempting to make sense of the explanation. This means that the
notion of what constitutes an acceptable mathematical explanation is confounded by
the students’ developing understanding of the mathematical concepts in the course
and the instructor's understanding of students' mathematics. This is where the second
aspect of acceptability comes to the fore. For an explanation to be acceptable it has
to meet the requirements that have been established through interaction by the
participants in the classroom. In general, in mathematics classrooms that follow the
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inquiry tradition, explanations have to be about actions on mathematical objects that
are experientially real for the students. By this we mean that explanations have to be
about students’ mathematical activity with entities that are part of their mathematical
worlds. Descriptions of procedures are typically not acceptable. This is the second
aspect of acceptability.

In the following paragraphs we first discuss the general clarifying function of
explanation. Next, we discuss the specifically mathematical aspects regarding the
acceptability of an explanation. The interactive constitution of what constitutes an
acceptable mathematical explanation is closely linked to that of the social norm that
explanations are to be given. In this regard, we point to one of the instructor’s
comments in Episode 1. In response to Greg’s remark, “I didn’t quite understand
what he said,” the instructor replied, “So maybe you could rephrase it or say it a
little bit louder so people can hear how you’re thinking about it”. Here the
instructor’s suggestion to rephrase hints at the communicative function of
explanation. If the earlier remark was simply not heard, say it louder. However, if
the earlier remark did not serve a clarifying function for the listeners, rephrase it.

There is considerable evidence that by the fourth electronic journal assignment
the students were beginning to understand the clarifying function of explanation. In
this journal students were asked to explain their understanding of the Existence and
Uniqueness Theorem for solutions to differential equations. Many students wrote
comments to the effect that their explanations were inadequate. For example, one
student ended his journal with this comment, “This is the best way I know to explain
it which I know is very lacking”. Another wrote, “I am not completely sure I
understand this point so I wouldn’t try to explain it to someone unless they had some
feedback as to what they think it is”. We take these comments as indications of the
students’ belief that the purpose of explanations is to communicate; explanations
should clarify one’s thinking for others.

The second aspect of adequacy of explanation is specifically mathematical. At
the beginning of the semester at least some of the students believed that procedures
in the form of calculations were acceptable as explanations. One of the student
journal entries we included earlier exemplifies this belief. This was the second
journal of the semester.

[M]ost of the [homework] points lost were due to my failure to explain how I reached
my answers. I thought a clear, systematic approach to the math calculations would be
sufficient to explain my thought process. I now have a better understanding of the
expectations.

Previously we argued that this journal entry shows that the student initially believed
that in mathematics explanation is not required. In making that statement, we were
using explanation in the sense of providing some insights into one’s thinking. From
that perspective, the student was not giving an explanation at all. However, from the
student’s perspective he was giving what he thought counted as an explanation. In
terms of what constitutes acceptability, we can say that the student initially believed
that systematic calculations constituted acceptable explanations. From the
instructor's perspective systematic calculations do not necessarily signify actions on
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mathematical objects that are meaningful to the student. They may simply be
manipulations of symbols.

Earlier we wrote that in mathematics classrooms that follow an inquiry
mathematics tradition explanations should describe actions on mathematical objects
that are experientially real for the students. We refer the reader back to Episode 2 in
an earlier part of this chapter as evidence that this sociomathematical norm was
constituted in the differential equations class. In that episode both Dave and Bill talk
about sinks, saddles, and sources as entities within their mathematical realities that
they can identify and locate. In doing so, they not only act in accordance with this
sociomathematical norm, they also demonstrate that their underlying beliefs about
mathematical explanations are compatible with that norm.

In this differential equations class a more specific sociomathematical norm
regarding acceptable explanation was constituted in the case of first order
differential equations. In this case, to be acceptable, explanations had to be grounded
in an interpretation of the rates of change as expressed by the differential
equation(s). To clarify what we mean by this and to illustrate the constitution of
sociomathematical norms, we include the following episode that occurred during the
fourth week of the semester.

4.3.1. Episode 3
The dialogue is taken from a whole class discussion of the differential equation
dP/dt = 0.5P(1-P/8)(P/3 - 1) which models the rate of change in the population of
fox squirrels in the Rocky Mountains. The task posed to the students was to figure
out what interpretations might be given to the numerical values 0.5, 8, and 3.
Students had discussed the problem in their small groups prior to the whole class
discussion.

Instructor:

Jerry:

Okay, so Jerry says that if the population gets above 8 they [the fox squirrels] are going
to start dying. Tell us why you made that conclusion.
Because some number greater than 8 over 8 is going to yield some number greater than
one, which 1 minus something greater than 1 is going to give you a negative number
and so something times a negative number is going to give you a negative number, so
your slope is going to be negative.

Jerry’s explanation is completely calculational in nature. At no time does he refer to
what the quantities represent or to how they might be interpreted in the underlying
scenario. We take this as evidence that Jerry believes descriptions of procedures
such as this constitute adequate explanations. The instructor uses this as an
opportunity to initiate a shift in the orientation of the discussion—away from a
calculational orientation and towards a conceptual orientation (Thompson, Philipp,
Thompson, & Boyd, 1994).

Instructor:

Jerry:
Instructor:

Jerry:

So if P is bigger than 8, like you said, maybe 8 million or 8 thousand fox squirrels, then
this term here is negative, like you said, right?
Mmm hmm.
And so what does that mean for us? That means what? If this term is negative, that
doesn't tell us anything in itself in relation to the differential equation.
The change is negative.
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Instructor:
Sylvia:
Instructor:

Okay, so this part here is negative, is this part negative or positive?
Positive.
All right, if P is bigger than 8, certainly 8/3 - 1 is positive and so this is positive, and
this [0.5P] is positive, so the rate of change, dP/dt, is negative. So that means dP/dt is
negative, which means what?
The population [is] reducing.
They're reducing, good. So the rate of change is negative that means the population, the
number of fox squirrels is getting smaller. The population is decreasing. So the number
of squirrels (i.e., P(t)) is decreasing.

Greg:
Instructor:

In the preceding dialogue the instructor repeatedly asks for the meaning of the
quantities involved, suggesting that none of the explanations given thus far have
been adequate in addressing that issue. Eventually he explicitly tells the class his
own interpretation when he says, “So the rate of change is negative means (emphasis
added) the number of fox squirrels is getting smaller. The population is decreasing”.
In doing so, the instructor not only confirms Greg’s response but also gives the
students an opportunity to reorganize their beliefs about the criteria for meaningful
explanations. As the discussion progressed, the instructor asked Dave how his group
thought about the problem.

Dave: Well, pretty much, kind of, the same as what Jerry was saying but just the opposite. In
this case, it says the fertile adults have to be able to find other fertile adults to be able to
increase. Well, if they don't, then the rate of change of that is going to be negative
which makes everything else negative, so it's decreasing.

Dave’s response indicates the effectiveness of the instructor’s intervention.
Although his response is not at all calculational (as Jerry’s initial explanation was),
Dave prefaces his response with, “pretty much the same as what Jerry was saying”.
In saying this, he indicates that he now understands that explanations are to be about
rates of change and their significance within the scenario.

The above example illustrates what we mean by the sociomathematical norm that
explanations had to be grounded in an interpretation of rates of change as expressed
by first order differential equations. It also demonstrates that sociomathematical
norms such as this are constituted in interaction. As with social norms, while the
instructor typically initiates the negotiation of sociomathematical norms, other
participants contribute to their constitution. In the above example, Dave’s comment
not only exemplified the norm, it contributed to its ongoing constitution. Further, we
maintain that as students’ actions are increasingly in accordance with the
expectations for explanation, they demonstrate their evolving beliefs about what
constitutes an acceptable mathematical explanation in this class.

5. CONCLUSION

The chapters in this book show that there are many different ways to investigate
student beliefs about mathematics. Our purpose in this chapter has been to
demonstrate that by coordinating sociological and psychological perspectives it is
possible to explain how changes in beliefs might be initiated and fostered in
mathematics classrooms. In particular, we have attempted to demonstrate how
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classroom social and sociomathematical norms and individual beliefs evolve
together as a dynamic system. We have demonstrated that students’ beliefs about
their role and others’ roles in the classroom and about the general nature of
mathematical activity evolve in tandem with the social norms that students are
expected to develop personally-meaningful solutions, to explain and justify their
thinking, to listen to and attempt to make sense of the thinking of others, and to raise
questions and challenges when they disagree or do not understand. Similarly, we
have demonstrated that students’ beliefs about what constitutes mathematical
explanation evolved in tandem with the sociomathematical norm that, in general,
explanations should signify actions on mathematical objects that are meaningful to
the students and, in particular, in the differential equations class explanations had to
be grounded in an interpretation of the rates of change as expressed by the
differential equation(s). In doing so, we have shown that changes in beliefs and
negotiation of classroom norms are inextricably linked.

By coordinating perspectives, we give primacy neither to the social nor the
psychological. Rather, we maintain that each provides a backdrop against which to
consider the other. Our purpose has been to clarify that as classroom norms are
renegotiated, there is a concomitant evolution of individual beliefs. Verschaffel,
Greer, and De Corte (1999) have noted that it is generally assumed that students’
beliefs about mathematical activity develop “implicitly, gradually, and tacitly
through being immersed in the culture of the mathematics classroom” (p. 142). We
agree but would argue that one way to give explicit attention to student beliefs in the
mathematics classroom is to be deliberate about initiating the negotiation of
classroom norms.
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7. NOTES
1 The colleagues with whom we have worked over the past decade or more include Paul Cobb, Koeno
Gravemeijer, Terry Wood, Grayson Wheatley and Diana Underwood. Paul Cobb and Erna Yackel
developed the interpretive framework that forms the basis for this chapter.
2 A detailed discussion of the nature of symbolic interactionism and its methodological position can be
found in Blumer (1969).
3 In 1973 Erlwanger published a study in which he investigated the beliefs of sixth-grade student, Benny.
Benny was making good progress in mathematics using an approach to instruction that was based on
individualized instructional technology. Erlwanger found upon talking with Benny that, despite his good
progress, he had understood incorrectly some aspects of his work. In particular, he had many
misconceptions about decimals and fractions and how to operate with them. In addition, Erlwanger found
that Benny had developed learning habits and views about mathematics that would impede his progress in
the future. Erlwanger concluded that the type of instruction Benny received “tends to develop in the pupil
an inflexible rule-oriented attitude toward mathematics, in which rules that conflict with intuition are
considered ‘magical’ and the quest for answers ‘a wild goose chase’”  (p.25).
4 The classroom teaching experiment methodology referred to in this chapter was developed by Cobb,
Wood, and Yackel (1991) to extend to the classroom setting the type of one-on-one teaching experiment
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that has been used extensively by Steffe and colleagues to investigate children’s mathematical activity
and learning (Cobb & Steffe, 1983). For a detailed discussion of the classroom teaching experiment
methodology see Cobb (1999) and Yackel (1995b).
5 In using the labels “school mathematics tradition” and “inquiry tradition” we are following Richards
(1991) who characterizes the “school mathematics tradition” as one in which students are treated as
passive recipients of information and the “inquiry mathematics tradition” as one designed to teach
students the language of mathematical literacy. Richards likens the discourse in the school mathematics
tradition to “a type of ‘number talk’ that is driven by computation” (p. 16). By contrast, discourse in the
inquiry tradition involves discussions in which individuals interact to attempt to explain and justify their
mathematical activity to one another (cf. Thompson, Philipp, Thompson, & Boyd’s discussion of
calculational versus conceptual orientation, 1994).
6 Voigt (1996) argues that of the various theoretical approaches to social interaction, the symbolic
interactionist approach is particularly useful when studying children’s learning in inquiry mathematics
classrooms because it emphasizes the individual's sense-making processes as well as the social processes.
Rather than attempting to deduce an individual's learning from social and cultural processes or vice versa,
symbolic interactionism sees individuals as developing their personal understandings as they participate
in negotiating classroom norms, including those that are specific to mathematics.
7 Such a position is open to empirical verification. Our results from prior analyses confirmed that this is a
viable position.
8 Chris Rasmussen was the course instructor. Erna Yackel attended every class session. They, together
with mathematics educator Karen King, formed the project team for the classroom teaching experiment.
9 This small class size, which is much smaller than the typical differential equations class in an American
University, made the class ideal for conducting a teaching experiment. It was possible for the members of
the research team to have a rather intimate knowledge of each class member’s conceptual understandings
as the semester progressed. This information contributed significantly to the instructor’s ability to develop
appropriate instructional activities and strategies. Subsequently, Rasmussen has successfully used the
instructional approach and activities first developed in this class with class sizes of thirty or more
students.
10 Realistic Mathematics Education instructional design theory, developed at the Freudenthal Institute,
The Netherlands (Gravemeijer, 1994) informed the instructional design.
11 The textbook emphasized graphical and other qualitative approaches along with the use of technology
as means to solve problems involving differential equations. By contrast, traditional textbooks emphasize
a variety of analytic methods to solve various types of differential equations.
12 One of the ways we can judge the usefulness of theoretical ideas is the extent to which they are
applicable in practice. In this case, we have repeatedly experienced in our own mathematics classrooms
the rapidity with which we can initiate the renegotiation of social norms for classroom participation
within the first one or two class sessions.
13 In contrast to the previous section where we first documented students’ beliefs and then analyzed the
constitution of the corresponding social norms, in this section we discuss how students’ specifically
mathematical beliefs and the corresponding sociomathematical norms evolved together as a dynamic
system. Therefore we will not separate the documentation of students’ mathematical beliefs from the
analysis of sociomathematical norms.
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