
Parallel Computer Architecture 1

Parallel Computer Architecture
Spring 2019

Thread Level Parallelism
Simultaneous Multithreading

(SMT)

Nikos Bellas

Electrical and Computer Engineering Department
University of Thessaly

Parallel Computer Architecture 2

ILP is not enough

ILP is not enough in a high performance CPU

• ILP is local. Due to the limited instruction window size, only
instructions from a small region are examined for parallelism

• Cache misses (to L2, L3 and mainly to main memory), imperfect
branch predictions and large functional latencies (e.g. DIV.D)
have significant latency

• In a lot of programs, ILP is inherently small (e.g. SPECint
benchmarks)

Parallel Computer Architecture 3

Where do cycles go?

Based on Alpha 21164 (8 issue peak rate)
SPEC92 benchmarks

Only 19% useful cycles

Parallel Computer Architecture 4

Coarse-grain level parallelism

Frequently, abundant parallelism at higher level of the
application

Mainly due to the nature of the algorithm

Transaction processing systems (web-servers, DB servers, storage
servers)

Video compression

Parallel Computer Architecture 5

Coarse-grain level parallelism

Different levels of coarse-grain parallelism

Processes are the “heaviest” unit of granularity

Processes own resources allocated by the O/S

Resources include memory, file handles, sockets, device handles, and windows

Normally, no sharing of resources among processes

Processes are typically pre-emptively multitasked by the O/S

E.g. Writing a word document, listening to an MP3, web browsing at the same
time

Only one process runs at any time in a single-threaded core

Parallel Computer Architecture 6

Coarse-grain level parallelism

Threads are in the same process and share the address space

ILP is implicit, the programmer knows nothing about it

Thread Level Parallelism (TLP) is explicitly represented by the
programmer

POSIX thread programming :

int iret1 = pthread_create(&thread1, NULL, &function_name, (void*) message1);

Previous example with video compression

Automatic TLP extraction by the compiler, is a hot research topic.

With very limited results….

ILP and TLP are complementary

Exploit different sources of parallelism in the program

Parallel Computer Architecture 7

Coarse-grain level parallelism

Questions
Can a superscalar single-core processor exploit both ILP and
TLP?

Can the TLP be used to employ idle resources when
insufficient ILP exists?

If yes, what changes are needed in the architecture?

What are the performance gains versus the extra complexity
and power dissipation?

Parallel Computer Architecture 8

Superscalar – single thread

Issue width

Time
Completely idle cycle
(vertical waste)

Instruction
issue

Partially filled cycle,
i.e., IPC < 4
(horizontal waste)

Constrained by lack of ILP

Parallel Computer Architecture 9

Coarse-grain multithreading

Threads run for more than a cycle. Only one thread every cycle.

Removes vertical waste, but leaves some horizontal waste

Thread switch only in case of costly stalls (memory stalls) and have to pay
the cost of refilling the pipeline

Issue width

Time
Second thread executes alone

Instruction
issue Partially filled cycle,

i.e., IPC < 4
(horizontal waste)

Parallel Computer Architecture 10

Fine-grain multithreading

Issue width

Time

Threads run for a single cycle. Only one thread every cycle.

Removes vertical waste, but leaves some horizontal waste

• GPUs

• Sun’s Niagara processor

One thread each cycle

Parallel Computer Architecture 11

Simultaneous multithreading (SMT)

Interleave multiple threads to multiple issue slots with no restrictions

Issue width

Time

Parallel Computer Architecture 12

SMT issues

Higher throughput than single thread superscalar

BUT, higher latency per thread

Tradeoffs between throughput and latency are
possible

“Preferred” threads are given higher priority
Instruction prefetch, resources are given mainly to the

preferred thread

If it stalls, other threads are considered

Parallel Computer Architecture 13

Out of Order SMT

Add multiple contexts and fetch engines and allow
instructions fetched from different threads to issue
simultaneously

Utilize wide out-of-order superscalar processor issue queue
to find instructions to issue from multiple threads

OoO instruction window already has most of the circuitry
required to schedule from multiple threads

Any single thread can utilize whole machine

In all SMTs, instruction issue from a single thread in each
cycle

However, execution can combine instructions from
multiple thread in each cycle

Parallel Computer Architecture 14

SMT Costs

Each thread requires its own user state
PC

Fetch Units

Control Registers

Also, needs its own system state
virtual memory page table base register

exception handling registers

Design challenges

Larger register file

Larger fetch units

Clock cycle may be affected

Parallel Computer Architecture 15

Simple SMT pipeline

• Have to carry thread select down pipeline to ensure correct state bits
read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs

+1

2
Thread
select

PC
1PC

1PC
1PC

1

I$ IR
GPR1GPR1GPR1GPR1

X

Y

2

D$

SMT performance

Parallel Computer Architecture 16

0

5

10

15

20

25

30

35

40

45

15 Mbps 20 Mbps 25 Mbps 30 Mbps 15 Mbps 20 Mbps 25 Mbps 30 Mbps 15 Mbps 20 Mbps 25 Mbps 30 Mbps

Fr
am

es
/S

ec

Pedestrian Area (1080p) Rush Hour (1080p) station2 (1080p)

1T Reference Code

1T+SIMD+TB

2T+SIMD+TB

4T+SIMD+TB

6T+SIMD+TB

8T+SIMD+TB

SMT does not always offer performance improvements

 AVS Video decoding example : performance (in fps) drops for #of threads >

#cores

 Core i7 with 4 cores and Hyperthreading enabled

Parallel Computer Architecture 17

Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

Parallel Computer Architecture 18

Power5 data flow ...

Why only 2 threads? With 4, one of the shared resources
(physical registers, cache, memory bandwidth) would be
prone to bottleneck

Parallel Computer Architecture 19

Changes in Power5 to support SMT

Increased associativity of L1 instruction cache and
the instruction address translation buffers

Added per thread load and store queues

Increased size of the L2 (1.92 vs. 1.44 MB) and L3
caches

Added separate instruction prefetch and buffering per
thread

Increased the number of virtual registers from 152 to
240

Increased the size of several issue queues

The Power5 core is about 24% larger than the
Power4 core because of the addition of SMT support

