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ILP is not enough

ILP is not enough in a high performance CPU

• ILP is local. Due to the limited instruction window size, only 
instructions from a small region are examined for parallelism

• Cache misses (to L2, L3 and mainly to main memory), imperfect 
branch predictions and large functional latencies (e.g. DIV.D) 
have significant latency 

• In a lot of programs, ILP is inherently small (e.g. SPECint 
benchmarks)
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Where do cycles go?

Based on Alpha 21164 (8 issue peak rate)
SPEC92 benchmarks

Only 19% useful cycles 
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Coarse-grain level parallelism

Frequently, abundant parallelism at higher level of the 
application

Mainly due to the nature of the algorithm

Transaction processing systems (web-servers, DB servers, storage 
servers)

Video compression
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Coarse-grain level parallelism

Different levels of coarse-grain parallelism

Processes are the “heaviest” unit of granularity

Processes own resources allocated by the O/S

Resources include memory, file handles, sockets, device handles, and windows

Normally, no sharing of resources among processes

Processes are typically pre-emptively multitasked by the O/S

E.g. Writing a word document, listening to an MP3, web browsing at the same 
time

Only one process runs at any time in a single-threaded core
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Coarse-grain level parallelism

Threads are in the same process and share the address space

ILP is implicit, the programmer knows nothing about it

Thread Level Parallelism (TLP) is explicitly represented by the 
programmer

POSIX thread programming : 

int iret1 = pthread_create( &thread1, NULL, &function_name, (void*) message1);

Previous example with video compression

Automatic TLP extraction by the compiler, is a hot research topic. 

With very limited results….

ILP and TLP are complementary

Exploit different sources of parallelism in the program
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Coarse-grain level parallelism

Questions
Can a superscalar single-core processor exploit both ILP and 
TLP?

Can the TLP be used to employ idle resources when 
insufficient ILP exists?

If yes, what changes are needed in the architecture?

What are the performance gains versus the extra complexity 
and power dissipation?
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Superscalar – single thread

Issue width

Time
Completely idle cycle 
(vertical waste)

Instruction 
issue

Partially filled cycle, 
i.e., IPC < 4
(horizontal waste)

Constrained by lack of ILP
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Coarse-grain multithreading

Threads run for more than a cycle. Only one thread every cycle. 

Removes vertical waste, but leaves some horizontal waste

Thread switch only in case of costly stalls (memory stalls) and have to pay 
the cost of refilling the pipeline

Issue width

Time
Second thread executes alone

Instruction 
issue Partially filled cycle, 

i.e., IPC < 4
(horizontal waste)
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Fine-grain multithreading 

Issue width

Time

Threads run for a single cycle. Only one thread every cycle. 

Removes vertical waste, but leaves some horizontal waste

• GPUs 

• Sun’s Niagara processor 

One thread each cycle
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Simultaneous multithreading  (SMT)

Interleave multiple threads to multiple issue slots with no restrictions

Issue width

Time
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SMT issues

Higher throughput than single thread superscalar

BUT, higher latency per thread

Tradeoffs between throughput and latency are 
possible

“Preferred” threads are given higher priority
Instruction prefetch, resources are given mainly to the 

preferred thread

If it stalls, other threads are considered
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Out of Order SMT

Add multiple contexts and fetch engines and allow 
instructions fetched from different threads to issue 
simultaneously

Utilize wide out-of-order superscalar processor issue queue 
to find instructions to issue from multiple threads

OoO instruction window already has most of the circuitry 
required to schedule from multiple threads

Any single thread can utilize whole machine

In all SMTs, instruction issue from a single thread in each 
cycle

However, execution can combine instructions from 
multiple thread in each cycle
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SMT Costs

Each thread requires its own user state
PC

Fetch Units

Control Registers

Also, needs its own system state
virtual memory page table base register

exception handling registers

Design challenges

Larger register file

Larger fetch units

Clock cycle may be affected 
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Simple SMT pipeline

• Have to carry thread select down pipeline to ensure correct state bits 
read/written at each pipe stage

• Appears to software (including OS) as multiple, albeit slower, CPUs
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SMT performance
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SMT does not always offer performance improvements

 AVS Video decoding example : performance (in fps) drops for #of threads > 

#cores

 Core i7 with 4 cores and Hyperthreading enabled 
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Power 4

Power 5

2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)
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Power5 data flow ...

Why only 2 threads? With 4, one of the shared resources 
(physical registers, cache, memory bandwidth) would be 
prone to bottleneck
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Changes in  Power5 to support SMT

Increased associativity of L1 instruction cache and 
the instruction address translation buffers 

Added per thread load and store queues 

Increased size of the L2 (1.92 vs. 1.44 MB) and L3 
caches

Added separate instruction prefetch and buffering per 
thread

Increased the number of virtual registers from 152 to 
240

Increased the size of several issue queues

The Power5 core is about 24% larger than the 
Power4 core because of the addition of SMT support


