Tutorial 1-2 Design

Tutorial 1

		We will show you how to complete an assignment as described on the test.	
		Build this part in SolidWorks.	Your assignment is to build a part in SolidWorks.
		Unit system: MMGS (millimeter, gram, second).	Although inches are often used in the United States, we will work in millimeters and grams, using the metric system, which is the default unit system in Europe, except for in England.
		Decimal places: 2.	We will work with two decimals. This is a default setting too.
		Part Origin: Arbitrary.	The origin is at a random position, although in some assignments the position of the origin is determined.
		$A=63 \mathrm{~mm}, B=50 \mathrm{~mm}, C=100 \mathrm{~mm}$.	Some dimensions are indicated in the model with the letters A, B, or C. You will replace them with the values as given on the left.

| All holes through all, unless other-
 wise specified.
 All holes will go through the whole
 model, unless otherwise specified
 (this is often not visible in the
 drawing or illustration). |
| :--- | :--- |
| Part material: Copper. |
| Density $=0.0089 \mathrm{~g} / \mathrm{mm}^{\prime} 3$ |

$\mathbf{1} |$| Start SolidWorks and open |
| :--- |
| a new part. |

4	Draw the arc now: 1. Click on Arc in the CommandManager. 2. Click on Tangent Arc in the PropertyManager. 3. Click on the lower end of the vertical line as shown on the right. 4. Click on the upper end of the vertical line as shown on the right.	
5	Put the midpoint of the arc you have just drawn exactly on the left vertical line. By doing so, you are sure the arc is always 90°. 1. Select the midpoint of the arc. 2. Select (holding the <Ctrl> key) the left vertical line. 3. Click on 'Coincident' in the CommandManager.	

6	Make a fillet at the bottom of the sketch: 1. Click on Sketch Fillet in the CommandManager. 2. Check to make sure you have set a radius of ' 10 mm ' in the PropertyManager (this is the default value). 3. Click on the corner you want to fillet in the sketch.	
7	Set the dimensions in the sketch as shown on the right.	

8	Extrude the sketch to '50mm'.	
9	Next, make a sketch, as shown on the right. 1. Select the front surface of the model to draw a new sketch on it. 2. Click on the point where the line converts into the arc. Draw the circle and set the dimension in the sketch.	
10	Make an Extruded Cut from the sketch, setting the depth to ' 13 mm '.	

11	Make a sketch as shown on the right. Can you do it yourself? Proceed to Step 15. If this does not work out, watch the following steps, which tell you how to handle this.	
12	1. Select the deeper plane first. On this surface we will make a new sketch. 2. Draw a circle and make sure the midpoint is exactly at the point where the straight line converts in to an arc. 3. Set the size of the circle to ' $\varnothing 20 \mathrm{~mm}$ '.	
13	Push the <Esc> key on your keyboard to end the 'Smart Dimension’ command. 1,2 Select the line and the arc as shown on the right. 3. Click on 'Convert Entities' in the CommandManager.	

14	1. Click on 'Trim Entities' in the CommandManager. 2. Click on 'Trim to closest' in the PropertyManager. 3. Click on the three parts of the sketch that need to be removed.	
15	Extrude this sketch to a depth of ' 5 mm '.	

$\mathbf{1 6}$| Make the sketch as in the |
| :--- |
| illustration on the right. |
| 1. |
| Select the plane to |
| draw a sketch on. |
| 2. |
| Draw a circle. Make |
| sure the midpoint is ex- |
| actly on the point |
| where the straight line |
| converts into an arc. |
| 3. |
| Set the size of the circle |
| to ' 10 mm '. |

18	Make the sketch as drawn on the right. Can you manage it yourself? If you can, proceed to Step 24. If you cannot do it all by yourself, follow the next steps.	
19	1. Select the plane you want to make a sketch on. 2. Click on 'Sketch' in the CommandManager to open the sketch.	
	Tip!	In most cases when we want to make a sketch, we select a plane and start drawing a line or circle. SolidWorks will automatically open the sketch then. In the last step you opened the sketch explicitly. Why? Because we will use the Convert Entities command first and the sketch must be open to use this command. That is the reason for this action.

22	1. Click on 'Trim Entities' in the CommandManager. 2. Select the option 'Corner' in the PropertyManager. 3-6 Make the upper corners by clicking as indicated in the illustration.	
23	Next, make the bottom corner points by clicking as shown on the right.	
24	Extrude this sketch over ' 8 mm '. Use the Reverse Direction key to make sure the extrusion extends in the right direction.	

27	1. Click on Tangent Arc in the CommandManager. 2. Click at the bottom end of the left vertical line. 3. Click on the bottom end of the right vertical line.	
28	1. Select the midpoint of the arc. 2. Hold the <Ctrl>-key and select the right vertical line too. 3. Click on 'Coincident' in the PropertyManager.	
29	Add the two dimensions as shown.	

30 | Make an Extruded Cut from |
| :--- |
| this sketch with a depth of |
| '9mm'. |

33	1. Select the midpoint from the circle. 2. Hold the <Ctrl>-key and click on the point as shown on the right. 3. Click on 'Horizontal' in the PropertyManager.	
34	Set the sizes as shown in the illustration.	

35 | Make an Extruded Cut from |
| :--- |
| this sketch. |
| Select the option 'Through |
| All'. |

39 Set the two sizes as shown.

42 | Make an Extruded Cut from |
| :--- |
| this sketch and set the |
| depth to 'Through All'. |

47	We want to know the weight of this part: 1. Click on the tab 'Evaluate' in the CommandManager. 2. Click on 'Mass Properties'.	
48	In the pop-up menu you can read the weight: '1280.33 grams'.	Mass Properties Print... Copy Close Options... Recalculate Include hidden bodies/components Show gutput coordinate system in corner of window Assigned mass properties Mass properties of Part1 (Part Configuration - Default) Output coordinate System: -- default -- Density $=0.01$ grams per cubic millimeter $\text { Mass }=1280.33 \text { grams }$ Volume $=143857.58$ cubic millimeters Surface area $=26112.48$ millimeters $^{\wedge}$ 2 Center of mass: (millimeters) $\begin{aligned} & X=26.81 \\ & Y=25.80 \\ & Z=-56.06 \end{aligned}$ Principal axes of inertia and principal moments of inertia: (grams* square millimeters) Taken at the center of mass. $\mathrm{I} x=(-0.13,-0.14,0.98) \quad \mathrm{Px}=554808.12$

Tutorial 2

	Work plan	Again, you have to think about the way you are going to build this model. Below are the steps you should take. Every step is a feature.
49	Open a new part and make the sketch as shown on the right on the Right Plane.	
50	Extrude the sketch to ' 100 mm '.	

53	Make the sketch as shown in the illustration on the right and continue to Step 58. If you cannot make this sketch by yourself, then follow the next few steps.	
54	1. Select the auxiliary plane you have just created. 2. Click on Line in the CommandManager. 3. Click as shown to get the beginning of the line. 4. Click as shown to get the second point from the line. 5. Move the cursor away from the last point but do NOT click!	
55	1. Return to the end point of the line with the cursor (do NOT click!) 2. SolidWorks starts drawing an arc now. 3. Click as shown to get the second point of the arc. Make sure to draw half a circle.	

56 | SolidWorks will automati- |
| :--- |
| cally draw lines again. |
| Draw the two last lines. |

59	Make the sketch as shown in the illustration on the right and continue to Step 63. If you cannot make this sketch by yourself, then follow the next few steps.	
60	1. Select the plane to make a sketch on. 2. Click on Arc in the CommandManager. 3. Click on 3 Point Arc in the PropertyManager. 4. Set the first arc point at the corner as shown. 5. Set the second point on the edge. 6. Set the third point at a random position.	
61	Insert the two dimensions as shown.	

62	Draw two small lines above	
63	Make an Extruded Cut from this sketch. 1. Select the option 'Up To Surface' to set the depth. 2. Click on the plane which indicates the end of the Extruded Cut.	

64 | Make the sketch on the |
| :--- |
| slopen plane as shown in |
| the illustration on the right |
| and continue to Step 58. |
| If you cannot make this |
| sketch by yourself, then |
| follow the next few steps. |

66 \begin{tabular}{l}
Draw the circle and set the

dimension.

67

Draw two centerlines as
shown on the right.
Push the < Esc> key after
you have drawn the first
centerline, and then draw
the second centerline.

\hline
\end{tabular}

68	1,2 Select both centerlines (use the <Ctrl> key). 3. Click on 'Offset Entities' in the CommandManager. 4. The distance is ' 5 mm '. 5. Select the option 'Bidirectional'. 6. Select the option 'Cap ends'. 7. Select the option 'Lines'. 8. Click on OK.	
69	1. Click on 'Trim Entities' in the CommandManager. 2. Click on the option 'Trim away inside' in the PropertyManager. 3. Click on the circle. 4. Click on all four lines that run through the circle. The pieces at the inside of the circle will be removed.	

$\mathbf{7 0}$| 1. Click on Trim to clos- | |
| :--- | :--- | :--- | :--- | :--- |
| est' in the PropertyMa- | |
| nager. | |
| 2. | Click on the parts of |
| the circle that you | |
| want to be removed. | |

73 Make an Extruded Cut

75 | 1. Set the angle of the |
| :--- |
| new plane to '20' in |
| the PropertyManager. |
| 2. Click on Reverse direc- |
| tion, so the plane ex- |
| tends in the right di- |
| rection. |
| 3. Click on OK. |

77	Make an extrusion from the sketch. 1. First click on Reverse Direction in the PropertyManager to extend the extrusion downwards. 2. Select the option Up To Next'. 3. Click on OK.	
78	Make the sketch as shown on the right.	
79	Extrude the sketch with a height of ' 15 mm '.	

80	Make the sketch as shown on the right.	
81	Make an Extruded Cut 'Through All' from this sketch.	
82	The model is now finished. We will select the kind of material now. 1. Right-click on 'Material' in the FeatureManager. 2. Click on 'Edit Material'.	

83	1. Open the list of 'Aluminum Alloys' in the PropertyManager. 2. Select '6061 Alloy'. 3. Verify that the density is the same as the one in the assignment. 4. Click on OK.	
84	Finally, we want to know the total mass from this part. Click on the tab 'Evaluate' in the CommandManager and next on 'Mass Properties'. In the pop-up menu you can read a weight of 2040.57 grams. So this is answer \mathbf{A} from the assignment. You can also see the Center of mass. This value is displayed in an X-, Y - and Z-coordinate in relation to the origin. The center of mass in the model itself is also indicated.	Output coordinate system: -- default -- Part2.5LDPRT Selected items: \square Include hidden bodies/components \checkmark Show qutput coordinate system in corner of window \square Assigned mass properties Mass properties of Part2 (Part Configuration - Default) Output coordinate System: -- default -- $\begin{aligned} & \text { Density }=0.00 \text { grams per cubic millimeter } \\ & \text { Mass }=2040.57 \text { grams } \\ & \text { Volume }=755765.04 \text { cubic millimeters } \\ & \text { Surface area }=75833.18 \text { millimeters^2 } \\ & \text { Center of mass: (millimeters }) \\ & \begin{array}{l} X=49.29 \\ Y=16.66 \\ Z=-109.31 \end{array} \end{aligned}$ Principal axes of inertia and principal moments of inertia: (grams * square millimeters) Taken at the center of mass. $\mathrm{Ix}=(0.03,-0.07,1.00) \quad \mathrm{PX}=2007302.47$

