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Εισαγωγή…



3rd Law of thermodynamics

The third law of thermodynamics is sometimes stated as follows, regarding the
properties of systems in equilibrium at absolute zero temperature:

❑ “The entropy of a perfect crystal at absolute zero is exactly equal to zero”

The Nernst–Simon statement of the third law of thermodynamics concerns
thermodynamic processes at a fixed, low temperature:

❑ “The entropy change associated with any condensed system undergoing a
reversible isothermal process approaches zero as the temperature at
which it is performed approaches 0 K”

Here a condensed system refers to liquids and solids

A classical formulation by Nernst (actually a consequence of the Third Law) is:

❑ “It is impossible for any process, no matter how idealized, to reduce the
entropy of a system to its absolute-zero value in a finite number of
operations”

Physically, the Nernst–Simon statement implies that it is impossible for any procedure to 

bring a system to the absolute zero of temperature in a finite number of steps

Εισαγωγή…
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3rd Law of thermodynamics

❑ At absolute zero (zero Kelvin), the system must be in a state with the
minimum possible energy, and the above statement of the third law holds
true provided that the perfect crystal has only one minimum energy state

❑ Entropy is related to the number of accessible microstates, and for a
system consisting of many particles, quantum mechanics indicates that
there is only one unique state (called the ground state) with minimum
energy

❑ If the system does not have a well-defined order (if its order is glassy, for
example), then in practice there will remain some finite entropy as the
system is brought to very low temperatures as the system becomes
locked into a configuration with non-minimal energy

❑ The constant value is called the residual entropy

Εισαγωγή…
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Ιστορία…



3rd Law of thermodynamics

❑ The 3rd law was developed by the chemist Warther Nernst during the
years 1906–12, and is therefore often referred to as Nernst's theorem
or Nernst's postulate

❑ The third law of thermodynamics states that the entropy of a system at
absolute zero is a well-defined constant

❑ This is because a system at zero temperature exists in its ground state,
so that its entropy is determined only by the degeneracy of the ground
state

❑ In 1912 Nernst stated the law thus: "It is impossible for any procedure to
lead to the isotherm T = 0 in a finite number of steps"

Ιστορία…
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3rd Law of thermodynamics

An alternative version of the third law of thermodynamics as stated by
Gilbert N. Lewis and Merle Randall in 1923:

❑ “If the entropy of each element in some (perfect) crystalline state be
taken as zero at the absolute zero of temperature, every substance has a
finite positive entropy; but at the absolute zero of temperature the
entropy may become zero, and does so become in the case of perfect
crystalline substances”

❑ This version states not only ΔS will reach zero at 0 K, but S itself will also
reach zero as long as the crystal has a ground state with only one
configuration

❑ Some crystals form defects which causes a residual entropy

❑ This residual entropy disappears when the kinetic barriers to transitioning
to one ground state are overcome

Ιστορία…
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3rd Law of thermodynamics

❑ With the development of statistical mechanics, the third law of
thermodynamics (like the other laws) changed from a fundamental law
(justified by experiments) to a derived law (derived from even more
basic laws)

❑ The basic law from which it is primarily derived is the statistical-
mechanics definition of entropy for a large system:

❑ where S is entropy, kB is the Boltzman constant, and Ω is the number of
microstates consistent with the macroscopic configuration

❑ The counting of states is from the reference state of absolute zero,
which corresponds to the entropy of S0

Ιστορία…
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Ερμηνεία…



❑ In simple terms, the third law states that the entropy of a perfect
crystal of a pure substance approaches zero as the temperature
approaches zero

❑ The alignment of a perfect crystal leaves no ambiguity as to the location
and orientation of each part of the crystal

❑ As the energy of the crystal is reduced, the vibrations of the individual
atoms are reduced to nothing, and the crystal becomes the same
everywhere

❑ The third law provides an absolute reference point for the
determination of entropy at any other temperature

❑ The entropy of a system, determined relative to this zero point, is then
the absolute entropy of that system

❑ Mathematically, the absolute entropy of any system at zero temperature
is the natural log of the number of ground states times Boltzmann’s
constant kB=1,38x10−23 JK−1

Ερμηνεία…
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❑ The entropy of a perfect crystal lattice as defined by Nernst's theorem is
zero provided that its ground state is unique, because ln(1) = 0

❑ If the system is composed of one-billion atoms, all alike, and lie within
the matrix of a perfect crystal, the number of permutations of one-
billion identical things taken one-billion at a time is Ω = 1

❑ Hence:

❑ The difference is zero, hence the initial entropy S0 can be any selected
value so long as all other such calculations include that as the initial
entropy. As a result the initial entropy value of zero is selected S0 = 0 is
used for convenience

Ερμηνεία…
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❑ By way of example, suppose a system consists of 1 cm3 of matter with
a mass of 1 g and 20 g/mol. The system consists of 3x1022 identical
atoms at 0 K. If one atom should absorb a photon of wavelength of
1 cm that atom is then unique and the permutations of one unique
atom among the 3x1022 is N=3x1022. The entropy, energy, and
temperature of the system rises and can be calculated. The entropy
change is:

❑ From the second law of thermodynamics:

❑ Hence:

Ερμηνεία…
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❑ Calculating entropy change:

❑ The energy change of the system as a result of absorbing the single
photon whose energy is ε:

❑ The temperature of the system rises by:

❑ This can be interpreted as the average temperature of the system over
the range from 0 < S < 70x10−23 J/K

❑ A single atom was assumed to absorb the photon but the temperature
and entropy change characterizes the entire system

Ερμηνεία…
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❑ An example of a system which does not have a unique ground state is
one whose net spin is a half-integer, for which time-reversal symmetry
gives two degenerate ground states

❑ For such systems, the entropy at zero temperature is at least kB*ln(2)
(which is negligible on a macroscopic scale). Some crystalline systems
exhibit geometrical frustration, where the structure of the crystal lattice
prevents the emergence of a unique ground state

❑ Ground-state helium (unless under pressure) remains liquid

Ερμηνεία…
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❑ In addition, glasses and solid solutions
retain large entropy at 0 K, because they
are large collections of nearly degenerate
states, in which they become trapped out
of equilibrium. Another example of a solid
with many nearly-degenerate ground
states, trapped out of equilibrium, is ice Ih,
which has “proton disorder”
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❑ For the entropy at absolute zero to be zero, the magnetic moments of a
perfectly ordered crystal must themselves be perfectly ordered; from an
entropic perspective, this can be considered to be part of the definition
of a “perfect crystal”

❑ Only ferromagnetic, antiferromagnetic, and diamagnetic materials can
satisfy this condition

❑ However, ferromagnetic materials do not in fact have zero entropy at
zero temperature, because the spins of the unpaired electrons are all
aligned and this gives a ground-state spin degeneracy

❑ Materials that remain paramagnetic at 0 K, by contrast, may have many
nearly-degenerate ground states (for example, in a spin glass), or may
retain dynamic disorder (a quantum spin liquid)

Ερμηνεία…
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Μαθηματική διατύπωση…



❑ Consider a closed system in internal equilibrium; as the system is in
equilibrium, there are no irreversible processes so the entropy
production is zero

❑ During slow heating, small temperature gradients are generated in the
material, but the associated entropy production can be kept arbitrarily
low if the heat is supplied slowly enough

❑ The increase in entropy due to the added heat δQ is then given by the
second part of the 2nd law of thermodynamics which states that the
entropy change of a system ΔS is given by

Μαθηματική διατύπωση…
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❑ The parameter X is a symbolic notation for all parameters (such as pressure, magnetic field,
liquid/solid fraction, etc.) which are kept constant during the heat supply. E.g. if the volume
is constant we get the heat capacity at constant volume CV. In the case of a phase transition
from liquid to solid, or from gas to liquid the parameter X can be one of the two components
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❑ The mathematical formulation of the third law includes three steps:

1: in the limit T0→0 the integral in Eq.(4) is finite. So that we may take 

T0=0 and write

2. the value of S(0,X) is independent of X. In mathematical form

❑ So the equation above can be further simplified to

❑ In words: at absolute zero all isothermal processes are isentropic.
Equation is the mathematical formulation of the third law.
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3: Classically, one is free to choose the zero of the entropy, and it is 

convenient to take

❑ However, reinterpreting S(0) = 0) in view of the quantized nature of the
lowest-lying energy states, the physical meaning of the equation goes
deeper than just a convenient selection of the zero of the entropy. It is
due to the perfect order at zero kelvin as explained above
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Συνέπειες του 3ου

Θερμοδυναμικού 
αξιώματος…



Συνέπειες του 3ου Θερμοδυναμικού 
αξιώματος…

❑ Το 3ο Θερμοδυναμικό αξίωμα
είναι ισοδύναμο με την
διατύπωση

"Είναι αδύνατο με οποιαδήποτε
διεργασία, ιδανική ή μη, να
μειωθεί η θερμοκρασία ενός
συστήματος στο απόλυτο μηδέν
με πεπερασμένο αριθμό
πεπερασμένων διεργασιών

The reason that T = 0 cannot be reached according to the 3rd law is explained as :

❑ Suppose that the temperature of a substance can be reduced in an isentropic
process by changing the parameter X from X2 to X1

❑ One can think of a multistage nuclear demagnetization setup where a magnetic
field is switched on and off in a controlled way

❑ If there were an entropy difference at absolute zero, T=0 could be reached in a
finite number of steps

❑ However, at T = 0 there is no entropy difference so an infinite number of steps
would be needed (the process is illustrated in Figure)

Απόλυτο μηδέν (Absolute zero)
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Ειδική θερμότητα (Specific heat)

❑ A non-quantitative description of his third law that Nernst gave at the very
beginning was simply that the specific heat can always be made zero by cooling the
material down far enough. A modern, quantitative analysis follows

❑ Suppose that the heat capacity of a sample in the low temperature region has the
form of a power law C(T, X) = C0 Tα asymptotically as T → 0, and we wish to find
which values of α are compatible with the third law. We have

❑ By the discussion of third law (above), this integral must be bounded as T0→0,
which is only possible if α>0. So the heat capacity must go to zero at absolute zero

if it has the form of a power law

❑ The same argument shows that it cannot be bounded below by a positive constant,
even if we drop the power-law assumption
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❑ On the other hand, the molar specific heat at constant volume of a monatomic
classical ideal gas, such as helium at room temperature, is given by CV=(3/2)R with
R the molar ideal gas constant. But clearly a constant heat capacity does not satisfy
Eq. (12). That is, a gas with a constant heat capacity all the way to absolute zero
violates the third law of thermodynamics. We can verify this more fundamentally by
substituting CV, receiving:

❑ In the limit T0→0 this expression diverges, again contradicting the third law of
thermodynamics
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Ειδική θερμότητα (Specific heat)



The conflict is resolved as follows:

❑ At a certain temperature the quantum nature of matter starts to dominate the
behavior

❑ Fermi particles follow Fermi-Dirac statistics and Bose particles follow Bose-Einstein
statistics

❑ In both cases the heat capacity at low temperatures is no longer temperature
independent, even for ideal gases. For Fermi gases

with Fermi temperature TF given by:

Here NA is Avogadro number, Vm the molar volume, and M the molar mass
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Ειδική θερμότητα (Specific heat)



Ειδική θερμότητα (Specific heat)

❑ For Bose gases

with TB given by:

Here NA is Avogadro number, Vm the molar volume, and M the molar mass

❑ The specific heats given by the equations above, both satisfy equation

❑ Indeed, they are power laws with α = 1 and α = 3/2 respectively
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Τάση ατμών (Vapor pressure)

❑ The only liquids near absolute zero are ³He and ⁴He. Their heat of evaporation has
a limiting value given by

with L0 and Cp constant. If we consider a container, partly filled with liquid and partly
gas, the entropy of the liquid–gas mixture is

where Sl(T) is the entropy of the liquid and x is the gas fraction

❑ Clearly the entropy change during the liquid–gas transition (x from 0 to 1) diverges
in the limit of T → 0, which, violates the mathematical expression of the 3rd law

❑ Nature solves this paradox as follows: at temperatures below about 50 mK the
vapor pressure is so low that the gas density is lower than the best vacuum in the
universe. In other words: below 50 mK there is simply no gas above the
liquid
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Λανθάνουσα θερμότητα τήξης (Latent heat of melting)

❑ The melting curves of ³He and ⁴He both extend down to absolute zero at finite
pressure

❑ At the melting pressure liquid and solid are in equilibrium

❑ The third law demands that the entropies of the solid and liquid are equal at T=0

❑ As a result the latent heat of melting is zero and the slope of the melting curve
extrapolates to zero as a result of the Clausius-Clapeyron equation

( ) ( ) 







++= Pl C

T

L
xTSxTS 0,

TCLL P+= 0

28

Συνέπειες του 3ου Θερμοδυναμικού 
αξιώματος…



Συντελεστής θερμικής διαστολής
(Thermal expansion coefficient)

❑ Thermal expansion coefficient is defined as

❑ With the Maxwell relation

❑ With X = p, equation

❑ Is shown that

❑ So, the thermal expansion coefficient of all materials must go to zero at zero Kelvin
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The third law of thermodynamics…
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Θεώρημα Nerνst

❑ Η μεταβολή της εντροπίας που συνοδεύει κάθε φυσικό ή χημικό
μετασχηματισμό κρυσταλλικών σωμάτων προσεγγίζει το μηδέν όταν η
θερμοκρασία προσεγγίζει το απόλυτο μηδέν:

Τρίτο Θερμοδυναμικό Αξίωμα

❑ Εάν για τα κρυσταλλικά στοιχεία σε θερμοκρασία Τ = 0, οριστεί η τιμή της
εντροπίας μηδέν, τότε:

“Στο απόλυτο μηδέν (Τ = 0 Κ), η εντροπία όλων των κρυσταλλικών σωμάτων 
είναι ίση με μηδέν”

“Οι εντροπίες που αναφέρονται με βάση ότι S(0) = 0, ονομάζονται εντροπίες 
του Τρίτου Θερμοδυναμικού Αξιώματος”
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Ενέργεια Gibbs – Helmholtz …
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Κριτήρια αυθόρμητων μεταβολών
& εξισώσεις Maxwell…
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