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" 3rd Law of thermodynamics

The third law of thermodynamics is sometimes stated as follows, regarding the
properties of systems in equilibrium at absolute zero temperature:

Q “The entropy of a perfect crystal at absolute zero is exactly equal to zero"

The Nernst-Simon statement of the third law of thermodynamics concerns
thermodynamic processes at a fixed, low temperature:

Q “The entropy change associated with any condensed system undergoing a
reversible isothermal process approaches zero as the temperature at
which it is performed approaches 0 K’

Here a condensed system refers to liquids and solids
A classical formulation by Nernst (actually a consequence of the Third Law) is:

Q “It is impossible for any process, no matter how idealized, to reduce the
entropy of a system to its absolute-zero value in a finite number of
operations”

Physically, the Nernst-Simon statement implies that it is impossible for any procedure to
% bring a system to the absolute zero of temperature in a finite number of steps



Eicaywyn...

31 Law of thermodynamics

Q At absolute zero (zero Kelvin), the system must be in a state with the
minimum possible energy, and the above statement of the third law holds
true provided that the perfect crystal has only one minimum energy state

Q Entropy is related to the number of accessible microstates, and for a
system consisting of many particles, quantum mechanics indicates that
there is only one unique state (called the ground state) with minimum
energy

Q If the system does not have a well-defined order (if its order is glassy, for
example), then in practice there will remain some finite entropy as the
system is brought to very low temperatures as the system becomes
locked into a configuration with non-minimal energy

QA The constant value is called the residual entropy
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31 Law of thermodynamics

A The 3rd law was developed by the chemist Warther Nernst during the
years 1906—12, and is therefore often referred to as Nernst's theorem
or Nernst's postulate

QA The third law of thermodynamics states that the entropy of a system at
absolute zero is a well-defined constant

QA This is because a system at zero temperature exists in its ground state,
so that its entropy is determined only by the degeneracy of the ground
state

Q In 1912 Nernst stated the law thus: "It is impossible for any procedure to
lead to the isotherm T = 0 in a finite number of steps"
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31 Law of thermodynamics

An alternative version of the third law of thermodynamics as stated by
Gilbert N. Lewis and Merle Randall in 1923:

Q “If the entropy of each element in some (perfect) crystalline state be
taken as zero at the absolute zero of temperature, every substance has a
finite positive entropy; but at the absolute zero of temperature the
entropy may become zero, and does so become in the case of perfect
crystalline substances”

O This version states not only AS will reach zero at 0 K, but S itself will also
reach zero as long as the crystal has a ground state with only one
configuration

@ Some crystals form defects which causes a residual entropy

Q This residual entropy disappears when the kinetic barriers to transitioning
to one ground state are overcome
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31 Law of thermodynamics

Q With the development of statistical mechanics, the third law of
thermodynamics (like the other laws) changed from a fundamental law
(justified by experiments) to a derived law (derived from even more
basic laws)

Q The basic law from which it is primarily derived is the statistical-
mechanics definition of entropy for a large system:

S-S, =kgInQ

Q where Sis entropy, &;is the Boltzman constant, and Q is the number of
microstates consistent with the macroscopic configuration

Q The counting of states is from the reference state of absolute zero,
which corresponds to the entropy of S,

R 9
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Q In simple terms, the third law states that the entropy of a perfect

crystal of a pure substance approaches zero as the temperature
approaches zero

The alignment of a perfect crystal leaves no ambiguity as to the location
and orientation of each part of the crystal

As the energy of the crystal is reduced, the vibrations of the individual
atoms are reduced to nothing, and the crystal becomes the same
everywhere

The third law provides an _absolute reference point for the
determination of entropy at any other temperature

The entropy of a system, determined relative to this zero point, is then
the absolute entropy of that system

Mathematically, the absolute entropy of any system at zero temperature
is the natural log of the number of ground states times Boltzmann'’s
constant kg=1,38x10-23 JK-1

11




Eppnveida...

O The entropy of a perfect crystal lattice as defined by Nernst's theorem is
zero provided that its ground state is unique, because In(1) = 0

A If the system is composed of one-billion atoms, all alike, and lie within
the matrix of a perfect crystal, the number of permutations of one-
billion identical things taken one-billion at a time is Q = 1

O Hence:

S-S, =kgInQ =kgIn1=0

Q The difference is zero, hence the initial entropy S, can be any selected
value so long as all other such calculations include that as the initial
entropy. As a result the initial entropy value of zero is selected S, = 0 is
used for convenience

S-S, =5-0=0=S=0

12
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Eppnveida...

Q By way of example, suppose a system consists of 1 cm3 of matter with
a mass of 1 g and 20 g/mol. The system consists of 3x10%2 identical
atoms at 0 K. If one atom should absorb a photon of wavelength of
1 cm that atom is then unique and the permutations of one unique
atom among the 3x10%2 is N=3x1022. The entropy, energy, and
temperature of the system rises and can be calculated. The entropy

change is:
A From the second law of thermodynamics:
AS =S-S, = ?

O Hence:
AS = S-S, =k In(Q) = ?

13



Eppnveida...

A Calculating entropy change:
S-0=kgInN =1.3810"*In310%* = 7010

A The energy change of the system as a result of absorbing the single
photon whose energy is €:

hc 6.6210°*Js210°ms™

=c= =210
R=e=7 0.01
Q The temperature of the system rises by:
-23
T_ ¢ 2103 1 K

" AS 70102JKL 35

@ This can be interpreted as the average temperature of the system over
the range from 0 < S < 70x10-2 J/K

O A single atom was assumed to absorb the photon but the temperature
and entropy change characterizes the entire system

14



Eppnveida...

Q An example of a system which does not have a unique ground state is
one whose net spin is a half-integer, for which time-reversal symmetry
gives two degenerate ground states

Q For such systems, the entropy at zero temperature is at least kg*In(2)
(which is negligible on a macroscopic scale). Some crystalline systems
exhibit geometrical frustration, where the structure of the crystal lattice
prevents the emergence of a unique ground state

Q Ground-state helium (unless under pressure) remains liquid

A In addition, glasses and solid solutions A
retain large entropy at 0 K, because they
are large collections of nearly degenerate
states, in which they become trapped out
of equilibrium. Another example of a solid Energy
with many nearly-degenerate ground
states, trapped out of equilibrium, is ice Ih,

which has “proton disorder”
Ground State
15
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Eppnveida...
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For the entropy at absolute zero to be zero, the magnetic moments of a
perfectly ordered crystal must themselves be perfectly ordered; from an
entropic perspective, this can be considered to be part of the definition
of a “perfect crystal”

Only ferromagnetic, antiferromagnetic, and diamagnetic materials can
satisfy this condition

However, ferromagnetic materials do not in fact have zero entropy at
zero temperature, because the spins of the unpaired electrons are all
aligned and this gives a ground-state spin degeneracy

Materials that remain paramagnetic at 0 K, by contrast, may have many
nearly-degenerate ground states (for example, in a spin glass), or may
retain dynamic disorder (a quantum spin liquid)

16
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MaOnpuarikn diaTunwon...

O Consider a closed system in internal equilibrium; as the system is in
equilibrium, there are no irreversible processes so the entropy
production is zero

A During slow heating, small temperature gradients are generated in the
material, but the associated entropy production can be kept arbitrarily
low if the heat is supplied slowly enough

O The increase in entropy due to the added heat d0Q is then given by the
second part of the 2" law of thermodynamics which states that the
entropy change of a system AS'is given by

0Q
AS =S-S, =22 Te
TT  asCMX)AT s(T,x)=s(TO,x)+Tj—C(TT;X)dT'
8Q = C(T,X)dT °

QO The parameter Xis a symbolic notation for all parameters (such as pressure, magnetic field,
liquid/solid fraction, etc.) which are kept constant during the heat supply. E.qg. if the volume
is constant we get the heat capacity at constant volume G, In the case of a phase transition

from liquid to solid, or from gas to liquid the parameter X can be one of the two componelngs
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A The mathematical formulation of the third law includes three steps:

1: in the limit 7,—0 the integral in Eq.(4) is finite. So that we may take

7,=0 and write Te(T’, X)

S(T,X)=5(0,X)+ | T

2. the value of 0,X) is independent of X. In mathematical form

Q In words: at absolute zero all isothermal processes are isentropic.
% Equation is the mathematical formulation of the third law.

19
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3: Classically, one is free to choose the zero of the entropy, and it is
convenient to take
rc(T’,X)

s(0)=0 SO sﬁ:x)=j——?7—dT'
0
Q However, reinterpreting S(0) = 0) in view of the quantized nature of the
lowest-lying energy states, the physical meaning of the equation goes
deeper than just a convenient selection of the zero of the entropy. It is
due to the perfect order at zero kelvin as explained above

20
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ZUVENEIEC TOU 3° OgpHOdUVANIKOU
a&iopaTog...

i AnoAuTto pndév (Absolute zero)
QA To 3° Oeppoduvapikod agiwpa not this i
gival 1000UvauNo  pE TNV
dlaTunwan

“"Eivar aduvaro LE 0rnoiaodnnoTe S
dlepyaaia, 10avikny n un, va
uewBel n Bepuokpaoia Evoc
oUaTNUAaroC OTo aroAuTo LNOEV
LE MENEPATLUEVO apl6Lo
NENEPACUEVQV DIELYATIWV 0 T 0 T

The reason that 7= 0 cannot be reached according to the 3 law is explained as :

O Suppose that the temperature of a substance can be reduced in an isentropic
process by changing the parameter X from X, to X;

O One can think of a multistage nuclear demagnetization setup where a magnetic
field is switched on and off in a controlled way

Q If there were an entropy difference at absolute zero, 7=0 could be reached in a
finite number of steps

O However, at 7 = 0 there is no entropy difference so an infinite number of steps
would be needed (the process is illustrated in Figure) 22




ZUVENEIEC TOU 3° OgpHOdUVANIKOU
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Eidikn Ogppornra (Specific heat)

O A non-quantitative description of his third law that Nernst gave at the very
beginning was simply that the specific heat can always be made zero by cooling the
material down far enough. A modern, quantitative analysis follows

O Suppose that the heat capacity of a sample in the low temperature region has the
form of a power law (7 X) = G T® asymptotically as 7 — 0, and we wish to find
which values of a are compatible with the third law. We have

T '
Ic:(T :x)dT, _Cofra_1g)
T T o
Q By the discussion of third law (above), this integral must be bounded as 7,—0,
which is only possible if a>0. So the heat capacity must go to zero at absolute zero

TIiLnOC(T,X) =0

if it has the form of a power law

O The same argument shows that it cannot be bounded below by a positive constant,
% even if we drop the power-law assumption

23
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Eidikn Ogppornra (Specific heat)

Q On the other hand, the molar specific heat at constant volume of a monatomic
classical ideal gas, such as helium at room temperature, is given by G,=(3/2)R with
R the molar ideal gas constant. But clearly a constant heat capacity does not satisfy
Eq. (12). That is, a gas with a constant heat capacity all the way to absolute zero
violates the third law of thermodynamics. We can verify this more fundamentally by
substituting G, receiving:

S(T,X) = S(TO,V)+gRInL

TO
Q In the limit 7,—0 this expression diverges, again contradicting the third law of
thermodynamics

w y
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Eidikn Ogppornra (Specific heat)
The conflict is resolved as follows:

Q At a certain temperature the quantum nature of matter starts to dominate the
behavior

O Fermi particles follow Fermi-Dirac statistics and Bose particles follow Bose-Einstein
statistics

Q In both cases the heat capacity at low temperatures is no longer temperature
independent, even for ideal gases. For Fermi gases

2
T T
- R—
Cv 2 T,

with Fermi temperature 7-given by:

2/3
1 Nihz(BﬂzNAj/

T =
"7 8722 MR | V

m

Here N, is Avogadro number, V,, the molar volume, and M the molar mass

R !
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Eidikn Ogppornra (Specific heat)
Q For Bose gases 3/2
C, =1.93 R[{_r—j

B

with 75 given by:

B

1 N2 (N, )
11.9 MR V..

Here N, is Avogadro number, V,, the molar volume, and M the molar mass
Q The specific heats given by the equations above, both satisfy equation T”LnoC(T, X)=0

Q Indeed, they are power laws with a = 1 and a = 3/2 respectively

R !
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ZUVENEIEC TOU 3° OgpHOdUVANIKOU
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Taon atpov (Vapor pressure)
Q The only liquids near absolute zero are 3He and 4He. Their heat of evaporation has
a limiting value given by

with L, and G, constant. If we consider a container, partly filled with liquid and partly
gas, the entropy of the liquid—gas mixture is

S(T.x) = S(T)+ x(_Lr_ucpj

where S(T) is the entropy of the liquid and x s the gas fraction

Q Clearly the entropy change during the liquid—gas transition (x from 0 to 1) diverges
in the limit of 7— 0, which, violates the mathematical expression of the 3 law

QO Nature solves this paradox as follows: at temperatures below about 50 mK the
vapor pressure is so low that the gas density is lower than the best vacuum in the
universe. In other words: below 50 mK there is simply no gas above the
liquid

27
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AavOavouoa OgpuornTa TNENG (Latent heat of melting)

Q The melting curves of 3He and 4He both extend down to absolute zero at finite
pressure

O At the melting pressure liquid and solid are in equilibrium
The third law demands that the entropies of the solid and liquid are equal at 7=0

O As a result the latent heat of melting is zero and the slope of the melting curve
extrapolates to zero as a result of the Clausius-Clapeyron equation

(]

S(T.x) = S(T)+ x(%ch

R !




ZUVENEIEC TOU 3°Y OEPHOSUVAHIKOU
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ZUVTEAEOTNG OgpuIknNG O1AOTOANG
(Thermal expansion coefficient)

Q Thermal expansion coefficient is defined as S = 1 ﬂ
VoT Jp
Q With the Maxwell relation N [ Bnm
| T ot o LoP )

Q With X = p, equation lim C(T,X)=0
T—-0

Q Isshownthat |lim =0

T—-0

Q So, the thermal expansion coefficient of all materials must go to zero at zero Kelvin

29
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OQswpnpa Nervst

Q H peraBoAn TnC evrponiac nou ouvodeuel KABE QUOIKO 1 XNUIKO
LETAOXNUATIONO KPUOTAAAIKWV OWHATWV npooeyyilel To pundév otav n
Bepuokpaacia npooeyyilel To anOAUTO PNOEV:

AS > 00tavT —0

Tpito Oepuoduvapiko Afiopa

Q Eav yvia Ta kpuaTal\ika aTtolixeia os Beppokpacia T = 0, opIOTE N TIKN TNG
gvTponiac undev, TOTE:

“210 anoAuto undev (T = 0 K), n evrponia OAwV TwV KPUOTAAAIKWV CWUATWV
eival ian pe pndev”

“01 evTponiec nou avagepovtal pe Bacon ot S(0) = 0, ovopalovTal EVTPONIEC
Tou 7piTou Ospuoduvauikou Aéiwuaroc”

R ;
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Evepyela Gibbs — Helmholtz ...

L

0 Metaoxnuatiopnocg Legendre
MaBnuatikoc TeAeoTAC TNC HOPpPNC:

g=f-f1x,
orou f=f(x,, x,,X3, ...,X,) €lval pLa KATAOTATIKA cuvapTNon UE OALKO StadopLko:
df=f,dx +f,dx,+F,dxg 4 dx, K ; :[_a"J

OX.

H epappoyn tou petaocxnuatiopou Legendre og pia cuvaptnon odnyel o€ pla vea
ouvaptnon n onoia dladEPEL ard TNV MPWTN Kata pia aveEaptntn petafAntr. Etoln
edappoyn Tou peTacynuatiopol Legendre otnv cuvaptnon f divet:

dg=df-f,dx,-x,df,
onAadn:

dg=-x,df, +f,dx,+fydx +...+f dx =(f;, X,, X3,...,X,))

32
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Evepyela Gibbs — Helmholtz ...

o Edappoyn tou petacynuatiopou Legendre otnv BepeAuwdn oxeon dU=TdS-PdV

H ecwtepikn evépyela U eival cuvaptnon twv S kat V, U=U(S,V). Apa 1o oAko dtadoplkod tng

glval: -~ ,
du=(99}cm+(§9)du
s ), v ).

g=U—| Y] s=u-Ts

os Jy
H noodtnta U-TS aviutpoownevel pia vea BepLodUVOLLLLKT KATAOTOTLKI) CUVAPTNON TToU

ovopaletal evépyela Helmholtz, A:

Edappolovrag Tov HETAOKNUATLONO LeEend re MOPVOULE:

A=U-T-S
o Edappoyn tou petaoxnuatiopol Legendre otnv BepeAiwdn oxéon dH=TdS+VdP
Me tov i6Lo Tpomo: g=H_[L:_:] S_H_TS
as J,

H nocotnta H-TS avtumpoownelel pla vea BEpPoduva ik KATAOTATIK GUVAPTNGN Mou
ovopaletal evépyela Gibbs, G:

G=H-T-S

33




Kpirnpia av@opunrwv
HETAPOAWYV & EEIOWOEIC
%R Maxwell...




Kpitnipia aufopuntwv HETABOA®V
& e€iowoeic Maxwell...
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2 AuBopuntn petafoln

ZUpdwva pe tTnv avicotnta tou Clausius yla €va cuoTNUA O LOOPPOTILA UE TO
neptBairov oe Beppokpaoia T:

dS - d_Cl >0
T
v MetaBolr) und otabepd dyko (dQ,=dU): ds —d—TU >0 = TdS>dU (V=otabepdc)
v MetapoAn uno otaBepn nieon(dQy=dH): ds— M5 0 Tds>dH (P=otaBepn)
T

Emouévwe, pe faon Toug opltopouc Twy evepysewwv Gibbs kat Helmholtz yia otaBepi T
(dA=dU-TdS kat dG=dH-TdS), Ta kptrtipla yia avBopuntec petaBoAec sivat:

dA;, <0 kot dG;,<0

> H Evépysta Gibbs givat o auvnﬁmuévn arno mv Euépyezcr Helmholtz yiati ouvnBwc ta
ms'zpcmara npaynamnmouwm urto atadepn nieon (kat G}{t ota¥epo oyko). Etol yia va
givau au&oppqrn o xnpmn avnﬁpacrn nou AauBavet ywpa os otadepn 8£puaxpacrm
Kol rtieon Oa npéEnet va LELWVETAL N eVEpyeLa Gibbs!



Kpirnpia aufopuntwv HETABOA®V
& eEiowoeic Maxwell...

N

Kpunpwo Euler

a

Mo pa ouvaptnon f=f(x,y) unopet va ypadet ot df=gdx+hdy omou ta g kat h eival eniong
OUVAPTHOELG TWV X KaL y. To pabnuatiko kpLriplo £tol wote to df va eivat oAwo diadoplko (pe tny
g€vvoLa OTL TO OAOKANPWHA TOU £EaPTATAL LOVO OO TNV APXLKA KL TEALKN) KaTdoTaon) ivat:

E}V X ij ¥
v Edappolovtac to kpttrplo Euler otic Baowkeg Sradoplkee ekdpaoelc twv U, H, A kot G:

dU=TdS—PdV , dH=VdP +TdS
dA =—PdV —SdT , dG=VdP—SdT

AapBavoupe tic e§lowoelg Maxwell:

(6T  (oP ar) (ov)
kej_vxs __(gju ’ [5)5 B [E)P
22 @
at), \av) "\ar ) ler). 36
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