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    Chapter 16   
 An Introduction to Design-Based Research 
with an Example From Statistics Education 

             Arthur     Bakker      and     Dolly     van     Eerde    

    Abstract     This chapter arose from the need to introduce researchers, including Master 
and PhD students, to design-based research (DBR). In Sect.  16.1  we address key 
features of DBR and differences from other research approaches. We also describe 
the meaning of validity and reliability in DBR and discuss how they can be improved. 
Section 16.2 illustrates DBR with an example from statistics education.  

  Keywords     Design based research   •   Statistics education  

16.1              Theory of Design-Based Research 

16.1.1    Purpose of the Chapter 

 The purpose of this chapter is to introduce researchers, including Master and PhD 
students, to design-based research. In our research methods courses for this audi-
ence and in our supervision of PhD students, we noticed that students considered 
key publications in this fi eld unsuitable as introductions. These publications have 
mostly been written to inform or convince established researchers who already have 
considerable experience with educational research. We therefore see the need to 
write for an audience that does not have that level of experience, but may want to 
know about design-based research. We do assume a basic knowledge of the main 
research approaches (e.g., survey, experiment, case study) and methods (e.g., inter-
view, questionnaire, observation). 

 Compared to other research approaches, educational design-based research 
(DBR) is relatively new (Anderson and Shattuck  2012 ). This is probably the reason 
that it is not discussed in most books on qualitative research approaches. For exam-
ple, Creswell ( 2007 ) distinguishes fi ve qualitative approaches, but these do not 
include DBR (see also Denscombe  2007 ). Yet DBR is worth knowing about, espe-
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cially for students who will become teachers or researchers in education: Design- 
based research is claimed to have the potential to bridge the gap between educational 
practice and theory, because it aims both at developing theories about domain- 
specifi c learning and the means that are designed to support that learning. DBR thus 
produces both useful products (e.g., educational materials) and accompanying sci-
entifi c insights into how these products can be used in education (McKenney and 
Reeves  2012 ; Van den Akker et al.  2006 ). It is also said to be suitable for addressing 
complex educational problems that should be dealt with in a holistic way (Plomp 
and Nieveen  2007 ). 

 In line with the other chapters in this book, Sect.  16.1  provides a general theory 
of the research approach under discussion and Sect.  16.2  gives an example from 
statistics education on how the approach can be used.  

16.1.2    Characterizing Design-Based Research 

 In this section we outline some characteristics of DBR, compare it with other 
research approaches, go over terminology and history, and fi nally summarize DBR’s 
key characteristics. 

16.1.2.1    Integration of Design and Research 

 Educational design-based research (DBR) can be characterized as research in which 
the design of educational materials (e.g., computer tools, learning activities, or a 
professional development program) is a crucial part of the research. That is, the 
design of learning environments is interwoven with the testing or developing of 
theory. The theoretical yield distinguishes DBR from studies that aim solely at 
designing educational materials through iterative cycles of testing and improving 
prototypes. 

 A key characteristic of DBR is that educational ideas for student or teacher learn-
ing are formulated in the design, but can be adjusted during the empirical testing of 
these ideas, for example if a design idea does not quite work as anticipated. In most 
other interventionist research approaches design and testing are cleanly separated. 
See further the comparison with a randomized controlled trial in Sect.  16.1.2.5 .  

16.1.2.2    Predictive and Advisory Nature of DBR 

 To further characterize DBR it is helpful to classify research aims in general (cf. 
Plomp and Nieveen  2007 ):

•    To describe (e.g., What conceptions of sampling do seventh-grade students have?)  
•   To compare (e.g., Does instructional strategy A lead to better test scores than 

instructional strategy B?)  
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•   To evaluate (e.g., How well do students develop an understanding of distribution 
in an instructional sequence?)  

•   To explain or to predict (e.g., Why do so few students choose a bachelor in math-
ematics or science? What will students do when using a particular software 
package?)  

•   To advise (e.g., How can secondary school students be supported to learn about 
correlation and regression?)    

 Many research approaches such as surveys, correlational studies, and case 
studies, typically have descriptive aims. Experiments often have a comparative 
aim, even though they should in Cook’s ( 2002 ) view “be designed to  explain  the 
consequences of interventions and not just to describe them” (p. 181, emphasis 
original). DBR typically has an explanatory and advisory aim, namely to give 
theoretical insights into how particular ways of teaching and learning can be pro-
moted. The type of theory developed can also be of a predictive nature: Under 
conditions X using educational approach Y, students are likely to learn Z (Van den 
Akker et al.  2006 ). 

 Research projects usually have one overall aim, but several stages of the project 
can have other aims. For example, if the main aim of a research project is to advise 
how a particular topic (e.g., sampling) should be taught, the project most likely has 
parts in which phenomena are described or evaluated (e.g., students’ prior knowl-
edge, current teaching practices). It will also have a part in which an innovative 
learning environment has to be designed and evaluated before empirically grounded 
advice can be given. This implies that research projects are layered. Design-based 
research (DBR) has an overall predictive or advisory aim but often includes research 
stages with a descriptive, comparative, or evaluative aim.  

16.1.2.3    The Role of Hypotheses and the Engineering Nature of DBR 

 In characterizing DBR as different from other research approaches, we also need to 
address the role of hypotheses in theory development. Put simply, a scientifi c theory 
can explain particular phenomena and predict what will happen under particular 
conditions. When developing or testing a theory, scientists typically use hypothe-
ses—conjectures that follow from some emergent theory that still needs to be tested 
empirically. This means that hypotheses should be formulated in a form in which 
they can be verifi ed or falsifi ed. The testing of hypotheses is typically done in an 
experiment: Reality is manipulated according to a theory-driven plan. If hypotheses 
are confi rmed, this is support for the theory under construction. 

 Just as in the natural sciences, it is not always possible to test hypotheses empiri-
cally within a short period of time. As a starting point design researchers, just like 
many scientists in other disciplines, use thought experiments—thinking through the 
consequences of particular ideas. When preparing an empirical teaching experi-
ment, design researchers typically do a thought experiment on how teachers or stu-
dents will respond to particular tools or tasks based on their practical and theoretical 
knowledge of the domain (Freudenthal  1991 ). 
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 In empirical experiments, a hypothesis is formulated beforehand. A theoretical idea 
is operationalized by designing a particular setting in which only this particular feature 
is isolated and manipulated. To stay objective experimental researchers are often not 
present during the interventions. In typical cases, they collect only pre- and posttest 
scores. In design-based research, however, researchers continuously take their best bets 
(Lehrer and Schauble  2001 ), even if this means that some aspect of the learning envi-
ronment during or after a lesson has to be changed. In many examples, researchers are 
involved in the teaching or work closely with teachers or trainers to optimize the learn-
ing environment (McClain and Cobb  2001 ; Smit and Van Eerde  2011 ; Hoyles et al. 
 2010 ). In the process of designing and improving educational materials (which we take 
as a prototypical case in this chapter), it does not make sense to wait until the end of the 
teaching experiment before changes can be made. This would be ineffi cient. 

 DBR is therefore sometimes characterized as a form of didactical engineering 
(Artigue,  1988 ): didactical engineering: Something has to be made with whatever 
theories and resources are available. The products of DBR are judged on innovative-
ness and usefulness, not just on the rigor of the research process that is more promi-
nent in evaluating true experiments (Plomp  2007 ). 

 In many research approaches, changing and understanding a situation are sepa-
rated. However, in design-based research these are intertwined in line with the fol-
lowing adage that is also common in sociocultural traditions: If you want to 
understand something you have to change it, and if you want to change something 
you have to understand it (Bakker  2004a , p. 37).  

16.1.2.4    Open and Interventionist Nature of DBR 

 Another way to characterize DBR is to contrast it with other approaches on the fol-
lowing two dimensions: naturalistic vs. interventionist and open vs. closed. 
Naturalistic studies analyze how learning takes place without interference by a 
researcher. Examples of naturalistic research approaches are ethnography and sur-
veys. As the term suggests, interventionist studies intervene in what naturally hap-
pens: Researchers deliberately manipulate a condition or teach according to 
particular theoretical ideas (e.g., inquiry-based or problem-based learning). Such 
studies are necessary if the type of learning that researchers want to investigate is 
not present in naturalistic settings. Examples of interventionist approaches are 
experimental research, action research, and design-based research. 

 Research approaches can also be more open or closed. The term  open  here refers 
to little control of the situation or data whereas  closed  refers to a high degree of 
control or a limited number of options (e.g., multiple choice questions). For  example, 
surveys by means of questionnaires with closed questions or responses on a Likert 
scale are more closed than surveys by means of semi-structured interviews. 
Likewise, an experiment comparing two conditions is more closed than a DBR 
 project in which the educational materials or ways of teaching are emergent and 
adjustable. Different research approaches can thus be positioned in a two-by-two 
table as in Table  16.1 . DBR thus shares an interventionist nature with experiments 
and action research. We therefore continue by comparing DBR with experiments 
( 16.1.2.5 ) and with action research ( 16.1.2.6 ).
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16.1.2.5         Comparison of DBR with Randomized Controlled Trials (RCT) 

 A randomized controlled trial (RCT) is sometimes referred to as “true” experiment. 
Assume we want to know whether a new teaching strategy for a particular topic in a 
particular grade is better than the traditionally used one. To investigate this question 
one could randomly assign students to the experimental (new teaching strategy) or 
control condition (traditional strategy), measure performances on pre- and posttests, 
and use statistical methods to test the null hypothesis that there is no signifi cant 
 difference between the two conditions. The researchers’ hope is that this hypothesis 
can be rejected so that the new type of intervention (informed by a particular theory) 
proves to be better. The underlying rationale is: If we know “what works” we can 
implement this method and have better learning results (see Fig.  16.1 ).

   This so-called experimental approach of randomized controlled trials (Creswell 
 2005 ) is sometimes considered the highest standard of research (Slavin  2002 ). It has 
a clear logic and is a convincing way to make causal and general claims about what 
works. It is based on a research approach that has proven extremely helpful in the 
natural sciences. 

 However, its limitations for education are discussed extensively in the literature 
(Engeström  2011 ; Olsen  2004 ). Here we mention two related arguments. First, if we 
know what works, we still do not know why and when it works. Even if the new 
strategy is implemented, it might not work as expected because teachers use it in 
less than optimal ways. 

 An example can clarify this. When doing research in an American school, we 
heard teachers complain about their managers’ decision that every teacher had to 

   Table 16.1    Naturalistic vs. interventionist and open vs. closed research approaches   

 Naturalistic  Interventionist 

 Closed  Survey: questionnaires with closed questions  Experiment (randomized controlled 
trial) 

 Open  Survey: interviews with open questions  Action research 
 Ethnography  Design-based research 

  Fig. 16.1    A pre-posttest experimental design (randomized controlled trial)       
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start every lesson with a warm-up activity (e.g., a puzzle). Apparently it had been 
proven by means of an RCT that student scores were signifi cantly higher in the 
experimental condition in which lessons started with a warm-up activity. The nega-
tive effect in teaching practice, however, was that teachers ran out of good ideas for 
warm-up activities, and that these often had nothing to do with the topic of the 
 lesson. Effectively, teachers therefore lost fi ve minutes of every lesson. Better 
insight into how and why warm-up activities work under particular conditions could 
have improved the situation, but the comparative nature of RCT had not provided 
this information because only the variable of starting the lesson with or without 
warm- up activity had been manipulated. 

 A second argument why RCT has its limitations is that a new strategy has to be 
designed before it can be tested, just like a Boeing airplane cannot be compared 
with an Airbus without a long tradition of engineering and producing such airplanes. 
In many cases, considerable research is needed to design innovative approaches. 
Design-based research emerged as a way to address this need of developing new 
strategies that could solve long-standing or complex problems in education. 

 Two discussion points in the comparison of DBR and RCT are the issues of gen-
eralization and causality. The use of random samples in RCT allows generalization 
to populations, but in most educational research random samples cannot be used. In 
response to this point, researchers have argued that theory development is not just 
about populations, but rather about propensities and processes (Frick  1998 ). Hence 
rather than generalizing from a random sample to a population (statistical general-
ization), many (mainly qualitative) research approaches aim for generalization to a 
theory, model or concept (theoretical or analytic generalization) by presenting fi nd-
ings as particular cases of a more general model or concept (Yin  2009 ). 

 Where the use of RCTs can indicate the intervention or treatment being the cause 
of better learning, DBR cannot claim causality with the same convincing rigor. This 
is not unique to DBR: All qualitative research approaches face this challenge of 
drawing causal claims. In this regard it is helpful to distinguish two views on 
causality: a regularity, variance-oriented understanding of causality versus a realist, 
process- oriented understanding of causality (Maxwell  2004 ). People adopting the 
fi rst view think that causality can only be proven on the basis of regularities in larger 
data sets. People adopting the second view make it plausible on the basis of circum-
stantial evidence of observed processes that what happened is most likely caused by 
the intervention (e.g., Nathan and Kim  2009 ). The fi rst view is underlying the logic 
of RCT: If we randomly assign subjects to an experimental and control condition, 
treat only the experimental group and fi nd a signifi cant difference between the two 
groups, then it can only be attributed to the difference in condition (the treatment). 
However, if we were to adopt the same regularity view on causality we would never 
be able to identify the cause of singular events, for example why a driver hit a tree. 
From the second, process-oriented view, if a drunk driver hits a tree we can judge 
the circumstances and judge it plausible that his drunkenness was an important 
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explanation because we know that alcohol can cause less control, slower reaction 
time et cetera. Similarly, explanations for what happens in classrooms should be 
possible according to a process-oriented position based on what happens in response 
to particular interventions. For example, particular student utterances are very 
unlikely if not deliberately fostered by a teacher (Nathan and Kim  2009 ). Table  16.2  
summarizes the main points of the comparison of RCT and DBR.

16.1.2.6        Comparison of DBR with Action Research 

 Like action research, DBR typically is interventionist and open, involves a refl ective 
and often cyclic process, and aims to bridge theory and practice (Opie  2004 ). In both 
approaches the teacher can be also researcher. In action research, the researcher is not 
an observer (Anderson and Shattuck  2012 ), whereas in DBR s/he can be observer. 
Furthermore, in DBR design is a crucial part of the research, whereas in action 
research the focus is on action and change, which can but need not involve the design 
of a new learning environment. DBR also more explicitly aims for instructional theo-
ries than does action research. These points are summarized in Table  16.3 .

   Table 16.2    Comparison of experimental versus design-based research   

 Experiment (RCT)  Design-based research (DBR) 

 Testing theory  Developing and testing theory simultaneously 
 Comparison of existing teaching methods by 
means of experimental and control groups 

 Design of an innovative learning environment 
long 

 Proof of what works  Insight into how and why something works 
 Research interest is isolated by manipulating 
variables separately 

 Holistic approach long white word 

 Statistical generalization  Analytic or theoretical generalization, 
transferability to other situations 

 Causal claims based on a regularity view on 
causality are possible 

 Causality should be handled with great care 
and be based on a realist, process-oriented 
view on causality 

   Table 16.3    Commonalities and differences between DBR and action research   

 DBR  Action research 

 Commonalities  Open, interventionist, researcher can be participant, refl ective cyclic process 
 Differences  Researcher can be observer  Researcher can only be participant 

 Design is necessary  Design is possible 
 Focus on instructional theory  Focus on action and improvement of a situation 
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16.1.2.7       Names and History of DBR 

 In its relatively brief history, DBR has been presented under different names. 
 Design-based research  is the name used by the Design-Based Research Collective 
(see special issues in Educational Researcher,  2003 ; Educational Psychologist 
 2004 ; Journal of the Learning Sciences  2004 ). Other terms for similar approaches are:

•    Developmental or development research (Freudenthal  1988 ; Gravemeijer  1994 ; 
Lijnse  1995 ; Romberg  1973 ; Van den Akker  1999 )  

•   Design experiments or design experimentation (Brown  1992 ; Cobb et al.  2003a ; 
Collins  1992 )  

•   Educational design research (Van den Akker et al.  2006 )    

 The reasons for these different terms are mainly historical and rhetorical. In the 
1970s Romberg ( 1973 ) used the term  development research  for research accompa-
nying the development of curriculum. Discussions on the relation between research 
and design in mathematics education, especially on didactics, mainly took place in 
Western Europe in the 1980s and the 1990s, particularly in the Netherlands (e.g., 
Freudenthal  1988 ; Goffree  1979 ), France (e.g., Artigue  1988 , cf. Artigue Chap.   17    ) 
and Germany (e.g., Wittmann  1992 ). The term  developmental research  is a transla-
tion of the Dutch  ontwikkelingsonderzoek , which Freudenthal introduced in the 
1970s to justify the development of curricular materials as belonging to a university 
institute (what is now called the Freudenthal Institute) because it was informed by 
and leading to research on students’ learning processes (Freudenthal  1978 ; 
Gravemeijer and Koster  1988 ; De Jong and Wijers  1993 ). The core idea was that 
development of learning environments and the development of theory were inter-
twined. As Goffree ( 1979 , p. 347) put it: “Developmental research in education as 
presented here, shows the characteristics of both developmental and fundamental 
research, which means aiming at new knowledge that can be put into service in 
continued development.” At another Dutch university (Twente University), the term 
 ontwerpgericht  (design-oriented) research was more common, but there the focus 
was more on the curriculum than on theory development (Van den Akker  1999 ). 
One disadvantage of the terms ‘development’ and ‘developmental’ is their connota-
tions to developmental psychology and research on children’s development of con-
cepts. This might be one reason that this term is hardly used anymore. 

 In the United States, the terms  design experiment  and  design research  were more 
common (Brown  1992 ; Cobb et al.  2003a ; Collins  1992 ; Edelson  2002 ). One advan-
tage of these terms is that design is more specifi c than development. One possible 
disadvantage of the term  design experiment  can be explained by reference to a criti-
cal paper by Paas ( 2005 ) titled  Design experiment: Neither a design nor an experi-
ment . The confusion that his pun refers to is two-fold. First, in many educational 
research communities the term  design  is reserved for research design (e.g., compar-
ing an experimental with a control group), whereas the term in design research 
refers to the design of learning environments (Sandoval and Bell  2004 ). Second, for 
many researchers, also outside the learning sciences, the term  experiment  is reserved 
for “true” experiments or RCTs. In design experiments, hypotheses certainly play 
an important role, but they are not fi xed and tested once. Instead they may be 
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 emergent, multiple, and temporary. In line with the Design-Based Research 
Collective, we use the term  design-based research  because this suggests that it is 
predominantly research (hence leading to a knowledge claim) that is based on a 
design process.  

16.1.2.8    Theory Development in Design-Based Research 

 We have already stated that theory typically has a more central role in DBR than in 
action research. To address the role of theory in DBR, it is helpful to summarize 
diSessa and Cobb’s ( 2004 ) categorization of different types of theories involved in 
educational research. They distinguish:

•    Grand theories (e.g., Piaget’s phases of intellectual development; Skinner’s 
behaviorism)  

•   Orienting frameworks (e.g., constructivism, semiotics, sociocultural theories)  
•   Frameworks for action (e.g., designing for learning, Realistic Mathematics 

Education)  
•   Domain-specifi c theories (e.g., how to teach density or sampling)  
•   Hypothetical Learning Trajectories (Simon  1995 ) or didactical scenarios (Lijnse 

 1995 ; Lijnse and Klaassen  2004 ) formulated for specifi c teaching experiments 
(explained in Sect.  16.1.3 ).    

 As can be seen from this categorization, there is a hierarchy in the generality of 
theories. Because theories developed in DBR are typically tied to specifi c learning 
environments and learning goals, they are humble and hard to generalize. Similarly, 
it is very rare that a theoretical contribution to aerodynamics will be made in the 
design of an airplane; yet innovations in airplane design occur regularly. The use of 
grand theoretical frameworks and frameworks for action is recommended, but 
researchers should be careful to manage the gap between the different types of the-
ory on the one hand and design on the other (diSessa and Cobb  2004 ). If handled 
with care, DBR can then provide the basis for refi ning or developing theoretical 
concepts such as meta-representational competence, sociomathematical norms 
(diSessa and Cobb), or whole-class scaffolding (Smit et al.  2013 ).  

16.1.2.9    Summary of Key Characteristics of Design-Based Research 

 So far we have characterized DBR in terms of its predictive and advisory aim, par-
ticular way of handling hypotheses, its engineering nature and differences from 
other research methods. Here we summarize fi ve key characteristics of DBR as 
identifi ed by Cobb et al. ( 2003a ):

    1.    The fi rst characteristic is that its purpose is  to develop theories about learning 
and the means that are designed to support that learning . In the example pro-
vided in Sect.  16.2  of in this chapter, Bakker ( 2004a ) developed an instruction 
theory for early statistics education and instructional means (e.g. computer tools 
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and accompanying learning activities) that support the learning of a multifaceted 
notion of statistical distribution.   

   2.    The second characteristic of DBR is its  interventionist  nature. One difference 
with RCTs is that interventions in the DBR tradition often have better ecological 
validity—meaning that learning already takes place in learning ecologies as they 
occur in schools and thus methods measure better what researchers want to mea-
sure, that is learning in natural situations. Findings from experiments do not have 
to be translated as much from controlled laboratory situations to the less con-
trolled ecology of schools or courses. In technical terms, theoretical products of 
DBR “have the potential for rapid pay-off because they are fi ltered in advance for 
instrumental effect” (Cobb et al.  2003a , p. 11).   

   3.    The third characteristic is that DBR has  prospective and refl ective components  that 
need not be separated by a teaching experiment. In implementing hypothesized 
learning (the prospective part) the researchers confront conjectures with actual 
learning that they observe (refl ective part). Refl ection can be done after each les-
son, even if the teaching experiment is longer than one lesson. Such refl ective 
analysis can lead to changes to the original plan for the next lesson. Kanselaar 
( 1993 ) argued that any good educational research has prospective and refl ective 
components. As explained before, however, what distinguishes DBR from other 
experimental approaches is that in DBR these components are not separated into 
the formulation of hypotheses before and after a teaching experiment.   

   4.    The fourth characteristic is the  cyclic  nature of DBR: Invention and revision 
form an iterative process. Multiple conjectures on learning are sometimes refuted 
and alternative conjectures can be generated and tested. The cycles typically con-
sist of the following phases: preparation and design phase, teaching experiment, 
and retrospective analysis. These phases are worked out in more detail later in 
this chapter. The results of such a retrospective analysis mostly feed a new design 
phase. Other types of educational research ideally also build upon prior experi-
ments and researchers iteratively improve materials and theoretical ideas in 
between experiments but in DBR changes can take place during a teaching 
experiment or series of teaching experiments.   

   5.    The fi fth characteristic of DBR is that the  theory  under development  has to do 
real work . As Lewin ( 1951 , p. 169) wrote: “There is nothing so practical as a 
good theory.” Theory generated from DBR is typically humble in the sense that 
it is developed for a specifi c domain, for instance statistics education. Yet it 
must be general enough to be applicable in different contexts such as class-
rooms in other schools in other countries. In such cases we can speak of 
transferability.    

16.1.3        Hypothetical Learning Trajectory (HLT) 

 DBR typically consists of cycles of three phases each: preparation and design, 
teaching experiment, and retrospective analysis. One might argue that the term 
 ‘retrospective analysis’ is pleonastic: All analysis is in retrospect, after a teaching 
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experiment. However, we use it here to distinguish it from analysis on the fl y, which 
takes place during a teaching experiment, often between lessons. 

 A design and research instrument that proves useful during all phases of DBR is 
the  hypothetical learning trajectory  (HLT), which we regard as an elaboration of 
Freudenthal’s thought experiment. Simon ( 1995 ) defi ned the HLT as follows:

  The hypothetical learning trajectory is made up of three components: the learning goal that 
defi nes the direction, the learning activities, and the hypothetical learning process—a pre-
diction of how the students’ thinking and understanding will evolve in the context of the 
learning activities. (p. 136)   

 Simon used the HLT for one or two lessons. Series of HLTs can be used for lon-
ger sequences of instruction (also see the literature on didactical scenarios in Lijnse 
 1995 ). The HLT is a useful research instrument to manage the gap between an 
instruction theory and a concrete teaching experiment. It is informed by general 
domain-specifi c and conjectured instruction theories (Gravemeijer  1994 ), and it 
informs researchers and teachers how to carry out a particular teaching experiment. 
After the teaching experiment, it guides the retrospective analysis, and the interplay 
between the HLT and empirical results forms the basis for theory development. This 
means that an HLT, after it has been mapped out, has different functions depending 
on the phase of the DBR and continually develops through the different phases. It 
can even change during a teaching experiment. 

16.1.3.1    HLT in the Design Phase 

 The development of an HLT starts with an analysis of how the mathematical topic of 
the design study is elaborated in the curriculum and the mathematical textbooks, an 
analysis of the diffi culties students encounter with this topic, and a refl ection on what 
they should learn about it. These analyses result in the formulation of provisional 
mathematical learning goals that form the orientation point for the design and 
redesign of activities in several rounds. While designing mathematical activities the 
learning goals may become better defi ned. During these design processes the 
researcher also starts formulating hypotheses about students’ potential learning and 
about how the teacher would support students’ learning processes. The confrontation 
of a general rationale with concrete tasks often leads to a more specifi c HLT, which 
means that the HLT gradually develops during the design phase (Drijvers  2003 ). 

 An elaborated HLT thus includes mathematical learning goals, students’ starting 
points with information on relevant pre-knowledge, mathematical problems and 
assumptions about students’ potential learning processes and about how the teacher 
could support these processes.  

16.1.3.2    HLT in Teaching Experiment 

 During the teaching experiment, the HLT functions as a guideline for the teacher 
and researcher for what to focus on in teaching, interviewing, and observing. It may 
happen that the teacher or researcher feels the need to adjust the HLT or instruc-
tional activity for the next lesson. As Freudenthal wrote ( 1991 , p. 159), the cyclic 
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alternation of research and development can be more effi cient the shorter the cycle 
is. Minor changes in the HLT are usually made because of incidents in the class-
room such as student strategies that were not foreseen, activities that were too dif-
fi cult, and so on. Such adjustments are generally not accepted in comparative 
experimental research, but in DBR, changes in the HLT are made to create optimal 
conditions and are regarded as elements of the data corpus. This means that these 
changes have to be reported well and the information is stronger when changes are 
supported by theoretical considerations. The HLT can thus also change during the 
teaching experiment phase.  

16.1.3.3    HLT in the Retrospective Analysis 

 During the retrospective analysis, the HLT functions as a guideline determining 
what the researcher should focus on in the analysis. Because predictions are made 
about students’ learning, the researcher can contrast those conjectures with the 
observations made during the teaching experiment. Such an analysis of the interplay 
between the evolving HLT and empirical observations forms the basis for develop-
ing an instruction theory. After the retrospective analysis, the HLT can be reformu-
lated, often more drastically than during the teaching experiment, and the new HLT 
can guide a subsequent design phase. 

 An HLT can be seen as a concretization of an evolving domain-specifi c instruc-
tion theory. Conversely, the instruction theory is informed by evolving HLTs. For 
example, if patterns of an HLT stabilize after a few cycles, these generalized pat-
terns in learning or instruction and the insights of how these patterns are supported 
by instructional means can become part of the emerging instruction theory. 

 Overall, the idea behind developing an HLT is not to design the perfect instruc-
tional sequence, which in our view does not exist, but to provide empirically 
grounded results that others can adjust to their local circumstances. The HLT 
remains hypothetical because each situation, each teacher, and each class is differ-
ent. Yet patterns can be found in students’ learning that are similar across different 
teaching experiments. Those patterns and the insights of how particular educational 
activities support students in particular kinds of reasoning can be the basis for a 
more general instructional theory of how a particular domain can be taught. Bakker 
( 2004a ), for example, noted that when estimating the number of elephants in a pic-
ture, students typically used one of four strategies, and these four strategies reoc-
curred in all of the fi ve classrooms in which he used the same task. Having observed 
such a pattern in strategy use, the design researcher can assume the pattern to be an 
element of the instruction theory. 

 For some readers, the term ‘trajectory’ might have a linear connotation. Although 
we aim for a certain direction, like the course of a ship, Bakker’s ( 2004a ) HLTs were 
non-linear in the sense that he did not make a linear sequence of activities in advance 
that he strictly adhered to (cf. Fosnot and Dolk  2001 ). Moreover, two subtrajectories 
came together later on in the sequence. In the following sections we give a more 
detailed description of the three phases of a DBR cycle and discuss relevant 
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 methodological issues. Further details about hypothetical learning trajectories can 
be found in a special issue of  Mathematical Thinking and Learning  (Mathematical 
Thinking and Learning  2004 , volume 6, issue 2) devoted to HLTs. 

 The term HLT stems from research in which the teacher was a researcher or a 
member of the research team (Simon  1995 ). However, if the teacher is not so famil-
iar with the research team’s intentions it may be necessary to pay extra attention to 
what the teacher can or should do to realize the potential of the learning activities. 
In such cases, the terms  hypothetical teaching and learning trajectory  (HTLT) or 
 teaching and learning strategy  (Dierdorp et al.  2011 ) may be more appropriate.   

16.1.4    Phases in DBR 

16.1.4.1    Phase 1: Preparation and Design 

 It is evident that the relevant present knowledge about a topic should be studied fi rst. 
Gravemeijer ( 1994 ) characterizes the design researcher as a tinkerer or, in French, a 
 bricoleur , who uses all the material that is at hand, including theoretical insights and 
practical experience with teaching and designing. 

 In the fi rst design phase, it is recommended to collect and invent a set of tasks 
that could be useful and discuss these with colleagues who are experienced in 
designing for mathematics education. An important criterion for selecting a task is 
its potential role in the HLT towards the mathematical end goal. Could it possibly 
lead to types of reasoning that students could build upon towards that end goal? 
Would it be challenging? Would it be a meaningful context for students? 

 There are several design heuristics, principles, and guidelines. In Sect.  16.2  we 
explain heuristics from the theory of Realistic Mathematics Education.  

16.1.4.2    Phase 2: Teaching Experiment 

 The notion of a teaching experiment arose in the 1970s. Its primary purpose was to 
experience students’ learning and reasoning fi rst-hand, and it thus served the pur-
pose of eliminating the separation between the practice of research and the practice 
of teaching (Steffe and Thompson  2000 ). Over time, teaching experiments proved 
useful for a broader purpose, namely as part of DBR. During a teaching experiment, 
researchers and teachers use activities and types of instruction that according to the 
HLT seem most appropriate at that moment. Observations in one lesson and theo-
retical arguments from multiple sources can infl uence what is done in the next les-
son. Observations may include student or teacher deviations from the HLT. 

 Hence, this type of research is different from experimental research designs in 
which a limited number of variables are manipulated and effects on other variables 
are measured. The situation investigated here, the learning of students in a new 
context with new tools and new end goals, is too complicated for such a set-up. 
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Besides that, a different type of knowledge is looked for, as pointed out earlier in 
this chapter: We do not want to assess innovative material or a theory, but we need 
prototypical educational materials that could be tested and revised by teachers and 
researchers, and a domain-specifi c instruction theory that can be used by others to 
formulate their own HLTs suiting local contingencies. 

 During a teaching experiment, data collection typically includes student work, 
tests before and after instruction, fi eld notes, audio recordings of whole-class dis-
cussions, and video recordings of every lesson and of the fi nal interviews with stu-
dents and teachers. We further fi nd ‘mini-interviews’ with students, lasting from 
about twenty seconds to four minutes, very useful provided that they are carried out 
systematically (Bakker  2004a ).  

16.1.4.3    Retrospective Analysis 

 We describe two types of analysis useful in DBR, a task oriented analysis and a 
more overall, longitudinal, cyclic approach. The fi rst is to compare data on students’ 
actual learning during the different tasks with the HLT. To this end we fi nd the data 
analysis matrix (Table  16.4 ) described in Dierdorp et al. ( 2011 ) useful. The left part 
of the matrix summarizes the HLT and the right part is fi lled with excerpts from 
relevant transcripts, clarifying notes from the researcher as well as a quantitative 
impression of how well the match was between the assumed leaning as formulated 
in the HLT and the observed learning. With such analysis it is possible to give an 
overview, as in Table  16.5 , which can help to identify problematic sections in the 
educational materials. Insights into why particular learning takes place or does not 

   Table 16.4    Data analysis matrix for comparing HLT and actual learning trajectory (ALT)   

 Hypothetical learning trajectory  Actual learning trajectory 

 Task 
number 

 Formulation 
of the task 

 Conjecture of 
how students 
would respond 

 Transcript 
excerpt 

 Clarifi cation  Match between HLT 
and ALT: Quantitative 
impression of how 
well the conjecture 
and actual learning 
matched (e.g., −, 0, +) 

   Table 16.5    ALT result compared with HLT conjectures for the tasks involving a particular type of 
reasoning   

 +  x  x  x  x  x  x  x  x  x  x  x  x  x 

 ±  x  x  x 

 –  x  x  x 

 Task:  5d  5f  6a  6c  7  8  9c  9e  10b  11c  15  17  23b  23c  24a  24c  25d  34a  42 

   Note : an x means how well the conjecture accompanying that task matched the observed learning 
(− refers to confi rmation for up to 1/3 of the students, and + to at least 2/3 of the students)  
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take place help to improve the HLTs in subsequent cycles of DBR. This iterative 
process allows the researcher to improve the predictive power of HLTs across sub-
sequent teaching experiments.

    An elaborated HLT would include assumptions about students’ potential learn-
ing and about how the teacher would support students’ learning processes. In this 
task-oriented analysis above no information is included about the role of the teacher. 
If there are crucial differences between students’ assumed and observed learning 
processes or if the teaching has been observed to diverge radically from what the 
researcher had intended, the role of the teacher should be included into the analysis 
in search of explanations for these discrepancies. 

 A comparison of HLTs and observed learning is very useful in the redesign pro-
cess, and allows answers to research questions that ask how particular learning 
goals could be reached. However, in our experience additional analyses are often 
needed to gain more theoretical insights into the learning process. An example of 
such additional analysis is a method inspired by the  constant comparative method  
(Glaser and Strauss  1967 ; Strauss and Corbin  1998 ) and Cobb and Whitenack’s 
( 1996 ) method of longitudinal analyses. Bakker ( 2004a ) used this type of analysis 
in his study in the following way. First, all transcripts were read and the videotapes 
were watched chronologically episode-by-episode. With the HLT and research 
questions as guidelines, conjectures about students’ learning and views were gener-
ated and documented, and then tested against the other episodes and other data 
material (student work, fi eld notes, tests). This testing meant looking for confi rma-
tion and counter- examples. The process of conjecture generating and testing was 
repeated. Seemingly crucial episodes were discussed with colleagues to test whether 
they agreed with our interpretation or perhaps could think of alternative interpreta-
tions. This process is called  peer examination . 

 For the analysis of transcripts or videos it is worth considering computer soft-
ware such as Atlas.ti (Van Nes and Doorman  2010 ) for coding the transcripts and 
other data sources. As in all qualitative research, data triangulation (Denscombe 
 2007 ) is commonly used in design-based research.   

16.1.5    Validity and Reliability 

 Researchers want to analyze data in a reliable way and draw conclusions that are 
valid. Therefore, validity and reliability are important concerns. In brief, validity 
concerns whether we really measure what we intend to measure. Reliability is about 
independence of the researcher. A brief example may clarify the distinction. Assume 
a researcher wants to measure students’ mathematical ability. He gives everyone 7 
out of 10. Is this a valid way of measuring? Is this a reliable way? 

 It is a very reliable way because the instruction “give all students a 7” can be 
reliably carried out, independently of the researcher. However, it is not valid, 
because there is most likely variation between students’ mathematical ability, which 
is not taken into account with this way of measuring. 
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 We should emphasize that validity and reliability are complex concepts with 
multiple meanings in different types of research. In qualitative research the 
meanings of validity and reliability are slightly different than in quantitative 
research. Moreover, there are so many types of validity and reliability that we 
cannot address them all. In this chapter we have focused on those types that 
seemed most relevant to us in the context of DBR. The issues discussed in this 
section are inspired by guidelines of Maso and Smaling ( 1998 ) and Miles and 
Huberman ( 1994 ), who distinguish between internal and external validity and 
reliability. 

16.1.5.1    Internal Validity 

 Internal validity refers to the quality of the data and the soundness of the reasoning 
that has led to the conclusions. In qualitative research, this soundness is also labeled 
as  credibility  (Guba  1981 ). In DBR, several techniques can be used to improve the 
internal validity of a study.

•    During the retrospective analysis conjectures generated and tested for specifi c 
episodes are tested for other episodes or by data triangulation with other data 
material, such as fi eld notes, tests, and other student work. During this testing 
stage there is a search for counterexamples to the conjectures.  

•   The succession of different teaching experiments makes it possible to test the 
conjectures developed in earlier experiments in later experiments.    

 Theoretical claims are substantiated where possible with transcripts to provide a 
rich and meaningful context. Reports about DBR tend to be long due to the  thick 
descriptions  (Geertz  1973 ) required. For example, the paper by Cobb et al. ( 2003b ) 
is 78 pages long!  

16.1.5.2    External Validity 

 External validity is mostly interpreted as the generalizability of the results. The 
question is how we can generalize the results from these specifi c contexts to be 
useful for other contexts. An important way to do so is by framing issues as 
instances of something more general (Cobb et al.  2003a ; Gravemeijer and Cobb 
 2006 ). The challenge is to present the results (instruction theory, HLT, educa-
tional activities) in such a way that others can adjust them to their local 
contingencies. 

 In addition to generalizability as a criterion for external validity we mention 
 transferability  (Maso and Smaling  1998 ). If lessons learned in one experiment 
are successfully applied in other experiments, this is a sign of successful gener-
alization. At the end of Sect.  16.2  we give an example of how a new type of learn-
ing activity was successfully enacted in a new research project in another 
country.  
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16.1.5.3    Internal Reliability 

 Internal reliability refers to the degree of how independently of the researcher the 
data are collected and analyzed. It can be improved with several methods. Data 
collection by objective devices such as audio- and video registrations contribute to 
the internal reliability. During his retrospective analysis Bakker ( 2004a ) ensured 
reliability by discussing the critical episodes, including those discussed in 
Sect.  16.2 , with colleagues for peer examination. For measuring interrater reliability, 
the agreement among independent researchers, it is advised to calculate not only 
the percentage of agreement but also use Cohen’s kappa or another measure that 
takes into account the probability of agreement by chance (e.g., Krippendorff’s 
alpha). It is not necessary for a second coder to code all episodes, but ensure that a 
random sample should be of suffi cient size: The larger the number of possible 
codes, the larger the sample required (Bakkenes et al.  2010 ; Cicchetti  1976 ). Note 
that the term internal reliability can also refer to the consistency of responses on a 
questionnaire or test, often measured with help of Cronbach’s alpha.  

16.1.5.4    External Reliability 

 External reliability usually denotes replicability, meaning that the conclusions of 
the study should depend on the subjects and conditions, and not on the researcher. 
In qualitative research, replicability is mostly interpreted as virtual replicability. 
The research must be documented in such a way that it is clear how the research has 
been carried out and how conclusions have been drawn from the data. A criterion 
for virtual replicability is ‘trackability’ (Gravemeijer and Cobb  2006 ), ‘traceability’ 
(Maso and Smaling  1998 ), or transparency (Akkerman et al.  2008 ). This means that 
the reader must be able to track or trace the learning process of the researchers and 
to reconstruct their study: failures and successes, procedures followed, the concep-
tual framework used, and the reasons for certain choices must all be reported. In 
Freudenthal’s words:

  Developmental research means: experiencing the cyclic process of development and 
research so consciously, and reporting on it so candidly that it justifi es itself, and that this 
experience can be transmitted to others to become like their own experience. ( 1991 , p. 161)   

 We illustrate the general characterization and description of DBR of Sect.  16.1  
by an example of a design study on statistics education in Sect.  16.2 .    

16.2            Example of Design-Based Research 

 In this second section we illustrate the theory of design-based research (DBR) as 
outlined in Sect.  16.1  with an example from Bakker’s ( 2004a ,  b ) PhD thesis on DBR 
in statistics education. We briefl y describe the aim and theoretical background of 
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this DBR project and then focus on one design idea, that of growing samples, to 
illustrate how it is related to different layers of theory and how it was analyzed. 
Finally we discuss the issue of generalizability. In the appendix we provide a struc-
ture of a DBR project with examples from this Sect.  16.2 . 

16.2.1    Relevance and Aim 

 The background problem addressed in Bakker’s ( 2004a ) research on statistics 
 education was that many stakeholders were dissatisfi ed with what and how students 
learned about statistics. For example, in many curricula there was a focus on 
 computing arithmetic means and making bar charts (Friel et al.  2001 ). Moreover, 
there was very little knowledge about how to use innovative educational statistics 
software (cf.    Biehler et al.  2013 , for an historical overview). 

 To solve these practical problems, Bakker’s ( 2004a ) aim was to contribute to an 
empirically grounded instruction theory for early statistics education with new com-
puter tools for the age group from 11 to 14. Such a theory should specify patterns in 
students’ learning as well as the means supporting that learning in the domain of 
statistics education. Like Cobb et al. ( 2003b ), Bakker ( 2004a ) focused his research 
on the concept of distribution as a key concept in statistics. One problem is that 
students tend to see isolated data points instead of a data set as a whole (Bakker and 
Gravemeijer  2004 ; Konold and Higgins  2003 ). Yet statistics is about features of data 
sets, in particular distributions of samples. The selected learning goal was therefore 
that distribution had to become an object-like entity with which students could see 
data sets as an entity with characteristics.  

16.2.2    Research Question 

 Bakker’s initial research question was: How can students with little statistical back-
ground develop a notion of distribution? In trying to answer this question in grade 
7, however, Bakker came to include a focus on other statistical key concepts such as 
data, center, and sampling because these are so intricately connected to that of dis-
tribution (Bakker and Derry  2011 ). The concept of distribution also proved hard for 
seventh-grade students. The initial research question was therefore reformulated for 
grade 8 as follows: How can coherent reasoning about distribution be promoted in 
relation to data, variability, and sampling in a way that is meaningful for students 
with little statistical background? 

 Our point here is that research questions can change during a research project. 
Indeed, the better and sharper your research question is in the beginning of the proj-
ect, the better and more focused your data collection will be. However, our experi-
ence is that most DBR researchers, due to progressive insight, end up with slightly 
different research questions than they started with. 
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 As pointed out in Sect.  16.1 , DBR typically draws on several types of theories. 
Given the importance of graphical representations in statistics education, it made 
sense for Bakker to draw on semiotics as an orienting framework. He came to focus 
on semiotics, in particular Peirce’s ideas on diagrammatic reasoning. The domain-
specifi c theory of Realistic Mathematics Education proved a useful framework for 
action in the design process even though it had hardly been applied in statistics 
education.  

16.2.3    Orienting Framework: Diagrammatic Reasoning 

 The learning goal was that distribution would become an object-like entity. 
Theories on reifi cation of concepts (Sfard and Linchevski  1992 ) and the relation 
between process and concept (cf. Tall et al.  2000 , on  procept ) were drawn upon. 
One theoretical question unanswered in the literature was what the process nature 
of a distribution could be. It is impossible to make sense of graphs without having 
appropriate conceptual structures, and it is impossible to communicate about con-
cepts without any representations. Thus, to develop an instruction theory it is 
necessary to investigate the relation between the development of the meaning of 
graphs and concepts. After studying several theories in this area, Bakker deployed 
Peirce’s semiotic theory on diagrammatic reasoning (Bakker  2007 ; Bakker and 
Hoffmann  2005 ). For Peirce, a diagram is a sign that is meant to represent rela-
tions. Diagrammatic reasoning involves three steps:

    1.    The fi rst step is to  construct  a diagram (or diagrams) by means of a representa-
tional system such as Euclidean geometry, but we can also think of diagrams in 
computer software or of an informal student sketch of statistical distribution. 
Such a construction of diagrams is supported by the need to represent the rela-
tions that students consider signifi cant in a problem. This fi rst step may be called 
 diagrammatization .   

   2.    The second step of diagrammatic reasoning is to  experiment  with the diagram (or 
diagrams). Any experimenting with a diagram is executed within a not necessarily 
perfect representational system and is a rule or habit-driven activity. Contemporary 
researchers would stress that this activity is situated within a practice. What makes 
experimenting with diagrams important is the rationality immanent in them 
(Hoffmann  2002 ). The rules defi ne the possible transformations and actions, but 
also the constraints of operations on diagrams. Statistical diagrams such as dot 
plots are also bound by certain rules: a dot has to be put above its value on the  x  
axis and this remains true even if for instance the scale is changed. Peirce stresses 
the importance of doing something when thinking or reasoning with diagrams:    

  Thinking in general terms is not enough. It is necessary that something should be DONE. In 
geometry, subsidiary lines are drawn. In algebra, permissible transformations are made. 
Thereupon the faculty of observation is called into play. (CP 4.233—CP refers to Peirce’s 
collected papers, volume 4, section 233)   
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 In the software used in this research, students can do something with the data 
points such as organizing them into equal intervals or four equal groups.

    3.    The third step is to observe the results of experimenting. We refer to this as the 
 refl ection  step. As Peirce wrote, the mathematician observing a diagram “puts 
before him an icon by the observation of which he detects relations between the 
parts of the diagram other than those which were used in its construction” (   Peirce 
 1976  III, p. 749). In this way he can “discover unnoticed and hidden relations 
among the parts” ( Peirce CP  3.363; see also CP 1.383). The power of diagram-
matic reasoning is that “we are continually bumping up against hard fact. We 
expected one thing, or passively took it for granted, and had the image of it in our 
minds, but experience forces that idea into the background, and compels us to 
think quite differently” ( Peirce CP  1.324).     

 Diagrammatic reasoning, in particular the refl ection step, is what can introduce 
the ‘new’. New implications within a given representational system can be found, but 
possibly the need is felt to construct a new diagram that better serves its purpose.  

16.2.4     Domain-Specifi c Framework for Action: Realistic 
Mathematics Education (RME) 

 As pointed out by diSessa and Cobb ( 2004 ), grand theories and orienting frame-
works do not tell the design researcher how to design learning environments. For 
this purpose, frameworks for action can be useful. Here we discuss Realistic 
Mathematics Education (RME). 

 Our research took place in the tradition of RME as developed over the last 40 
years at the Freudenthal Institute (Freudenthal  1991 ; Gravemeijer  1994 ; Treffers 
 1987 ; van den Heuvel-Panhuizen  1996 ). RME is a theory of mathematics education 
that offers a pedagogical and didactical philosophy on mathematical learning and 
teaching as well as on designing educational materials for mathematics education. 
RME emerged from research and development in mathematics education in the 
Netherlands in the 1970s and it has since been used and extended, also in other 
countries. 

 The central principle of RME is that mathematics should always be meaningful 
to students. For Freudenthal, mathematics was an extension of common sense, a 
system of concepts and techniques that human beings had developed in response to 
phenomena they encountered. For this reason, he advised a so-called  historical 
 phenomenology  of concepts to be taught, a study of how concepts had been devel-
oped in relation to particular phenomena. The insights from such a study can be 
input for the design process (Bakker and Gravemeijer  2006 ). 

 The term ‘realistic’ stresses that problem situations should be ‘experientially 
real’ for students (Cobb et al.  1992 ). This does not necessarily mean that the  problem 
situations are always encountered in daily life. Students can experience an abstract 
mathematical problem as real when the mathematics of that problem is meaningful 
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to them. Freudenthal’s ( 1991 ) ideal was that mathematical learning should be an 
enhancement of common sense. Students should be allowed and encouraged to 
invent their own strategies and ideas, and they should learn mathematics on their 
own authority. At the same time, this process should lead to particular end goals. 
This process is called  guided reinvention —one of the design heuristics of RME. This 
heuristic points to the question that underlies much of the RME-based research, 
namely that of how to support this process of engaging students in meaningful 
mathematical and statistical problem solving, and using students’ contributions to 
reach certain end goals. 

 The theory of RME is especially tailored to mathematics education, because it 
includes specifi c tenets on and design heuristics for mathematics education. For a 
description of these tenets we refer to Treffers ( 1987 ) and for the design heuristics 
to Gravemeijer ( 1994 ) or Bakker and Gravemeijer ( 2006 ).  

16.2.5    Methods 

 The absence of the type of learning aimed for is a common reason to carry out 
design research. For Bakker’s study in statistics education, descriptive, compara-
tive, or evaluative research did not make sense because the type of learning aimed 
for could not be readily observed in classrooms. Considerable design and research 
effort fi rst had to be taken to foster specifi c innovative types of learning. Bakker 
therefore had to design HLTs with accompanying educational materials that sup-
ported the desired type of learning about distribution. Design-based research offers 
a systematic approach to doing that while simultaneously developing domain- 
specifi c theories about how to support such learning for example here on the domain 
of statistics. In general, DBR researchers fi rst need to create the conditions in which 
they can develop and test an instruction theory, but to create those conditions they 
also need research. 

  Teaching experiment . Bakker designed educational materials with accompany-
ing HLTs in several cycles. Here we focus on the last cycle, involving a teaching 
experiment in grade 8 .  Half of the lessons were carried out in a computer lab and as 
part of them students used two minitools (Cobb et al.  1997 ), simple Java applets 
with which they analyzed data sets on, for instance, battery life span, car colours, 
and salaries (Fig.  16.3 ). The researcher was responsible for the educational materi-
als and the teacher was responsible for the teaching, though we discussed in advance 
on a weekly basis both the materials and appropriate teaching style. Three preser-
vice teachers served as assistants and helped with videotaping and interviewing 
students and with analyzing the data. 

 In the example that we elaborate we focus on the fourth of a series of ten lessons, 
each 50 min long. In this specifi c lesson, students reasoned about larger and larger 
samples and about the shape of distributions. 

  Subjects.  The teaching experiment was carried out in an eighth-grade class with 
30 students in a state school in the center of a Dutch city. The students in this study 
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were being prepared for pre-university ( vwo ) or higher professional education 
( havo ). The students in the class reported on here were not used to whole-class dis-
cussions, but rather to be “taken by the hand” as the teacher called it; they were 
characterized by the three research assistants as “passive but willing to cooperate.” 
These students had no prior instruction in statistics; they were acquainted with bar 
and line graphs, but not with dot plots, histograms, or box plots. Students already 
knew the mean from calculating their report grades, but mode and median were not 
introduced until the second half of the educational sequence after variability, data, 
sampling, and shape had been topics of discussion. 

  Data collection.  The collected data on which the results presented in this chapter 
are based include student work, fi eld notes, and the audio and video recordings of 
class activities that the three assistants and researcher made in the classroom. An 
essential part of the data corpus was the set of mini-interviews we held during the 
lessons; they varied from about twenty seconds to four minutes, and were meant to 
fi nd out what concepts and graphs meant for students, or how the minitools were used. 
These mini-interviews infl uenced students’ learning because they often stimulated 
refl ection. However, we think that the validity of the research was not put in danger by 
this, since the aim was to fi nd out how students learned to reason with shape or distri-
bution, not whether teaching the sequence in other eighth-grade classes would lead to 
the same results in the same number of lessons. Furthermore, the interview questions 
were planned in advance as part of the HLT, and discussed with the assistants. 

  Retrospective analysis.  In this example we do not illustrate how HLTs can be 
compared with observed learning (see Dierdorp et al.  2011 ). Here we highlight one 
type of analysis that in Bakker’s case yielded more theoretical insights: a method 
resembling Glaser and Strauss’s constant comparative method (Glaser and Strauss 
 1967 ). For the analysis, Bakker watched the videotapes, read the transcripts, and 
formulated conjectures on students’ learning on the basis of transcript episodes. 
Numbering the conjectures served as useful codes to work with during the analysis. 
Examples of such codes and conjectures were:

    C1 . Students divide imaginary data sets into three groups of low, ‘average’, and high 
values.  

   C2.  Students either characterize spread as range or look very locally at spread  
   C3 . Students are inclined to think of small samples when fi rst asked about how one 

could test something (batteries, weight).  
   C5.  What-if questions work well for letting students think of aggregate features of 

a graph or a situation. What would a weight graph of older students look like? 
What would the graph look like if a larger sample was taken? What would a 
larger sample of a good battery brand look like?  

   C7 . Students’ notions of spread, distribution, and density are not yet distinguished. 
When explaining how data are spread out, they often describe the distribution or 
the density in some area.  

   C9.  Even when students see a large sample of a particular distribution, they often do 
not see the shape we see in it.    

 The generated conjectures were tested against other episodes and the rest of the 
collected data (student work, fi eld observations, and tests) in the next round of anal-
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ysis by data triangulation. Conjectures that were confi rmed remained in the list; 
conjectures that were refuted were removed from the list. Then the whole generat-
ing and testing process was repeated. The aforementioned examples were all con-
fi rmed throughout this analysis. 

 To get a sense of the interrater reliability of the analysis, about one quarter of the 
episodes including those discussed in this chapter and the conjectures belonging to 
these episodes were judged by the three assistants who attended the teaching experi-
ment. The amount of agreement among judges was very high: all four judges agreed 
about 33 out of 35 codes. A code was only accepted if all judges agreed after discus-
sion. We give an example of a code that was fi nally rejected and one that was 
accepted. This example stems from the seventh lesson in which two students used 
the four equal groups option in Minitool 2 for a revised version of the jeans activity. 
Their task was to advise a jeans factory about frequencies of jeans sizes to be pro-
duced (Fig.  16.2 ).

    Sofi e     Because then you can best see the spread, how it is distributed.   
  Int.     How it is distributed. And how do you see that here [in this graph]? 
  What do you look at then? (…)   
  Sofi e    Well, you can see that, for example, if you put a [vertical] line here, 
   here a line, and here a line. Then you see here [two lines at the right] 
  that there is a very large spread in that part, so to speak.   

   In the fi rst line, Sofi e seems to use the terms spread and distributed as almost 
synonymous. This line was therefore coded with C7, which states that “students’ 
notions of spread, distribution, and density are not yet distinguished. When explain-
ing how data are spread out, they often describe the distribution or the density in 
some area.” In the second line, Sofi e appears to look at spread very locally, hence it 
was coded with C2, which states that “students either characterize spread as range 
or look very locally at spread.” 

 We also give an example of a code assignment that was dismissed in relation to 
the same diagram.

  Fig. 16.2    Jeans data with four equal groups option in Minitool 2       
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   Int.    What does this tell you? Four equal groups?   
  Melle    Well, I think that most jeans are between 32 and 34 [inches].   

   We had originally assigned the code C1 to the this episode (students talk about 
data sets as consisting of three groups of low, ‘average’, and high values), because 
“most jeans are between 32 and 34” implies that below 32 and above 34 the frequen-
cies are relatively low. In the episode, however, this student did not talk about three 
groups of low, average, and high values or anything equivalent. We therefore 
removed the code from this episode.  

16.2.6    HLT and Retrospective Analysis 

 To illustrate relationships between theory, method, and results, this section pres-
ents the analysis of students’ reasoning during one educational activity which was 
carried out in the fourth lesson. Its goal was to stimulate students to reason about 
larger and larger samples. We summarize the HLT of that lesson: the learning 
goal, the activity of growing a sample and the assumptions about students’ poten-
tial learning processes and about how the teacher could support these processes. 
We then present the retrospective analysis of three successive phases in growing a 
sample. 

 The overall  goal  of the growing samples activity as formulated in the hypotheti-
cal learning trajectory for this fourth lesson was to stimulate students’ diagrammatic 
reasononing about shape in relation to sampling and distribution aspects in the con-
text of weight. This implied that students should fi rst make diagrams, then experi-
ment with them and refl ect on them. The idea was to start with ideas invented by the 
students and guide them toward more conventional notions and representations. 
This process of guiding students toward these culturally accepted concepts and 
graphs while building on their own inventions is called guided reinvention. We had 
noted in previous teaching experiments that students were inclined to choose very 
small samples initially. It proved necessary to stimulate refl ection on the disadvan-
tages of such small samples and have them predict what larger samples would look 
like. Such insights from the analyses of previous teaching experiments helped to 
better formulate the HLT of a new teaching experiment. More particularly, Bakker 
assumed that starting with students’ initial ideas about small samples and asking for 
predictions about larger samples would make students aware of various features of 
distributions. 

 The  activity  of growing a sample consisted of three phases of making sketches of 
a hypothetical situation and comparing those sketches with graphs displaying real 
data sets. In the fi rst phase students had to make a graph of their own choice of a 
predicted weight data set with sample size 10. The results were discussed by the 
teacher to challenge this small sample size, and in the subsequent phases students 
had to predict larger data sets, one class and three classes in the second phase, and 
all students in the province in the third phase. Thus, three such phases took place as 
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described and analyzed below. Aiming for guided reinvention, the teacher and 
researcher tried to strike a balance between engaging students in statistical reason-
ing and allowing their own terminology on the one hand, and guiding them in using 
conventional and more precise notions and graphical representations on the other. 
Figure  16.3b  is the result of focusing only on the endpoints of the value bars in 
Fig.  16.3a . Figure  16.3c  is the result of these endpoints falling down vertically on 
the x-axis. In this way, students can learn to understand the relationship between 
value-bar graphs and dot plots, and what distribution features in different represen-
tations look like (Bakker and Hoffmann  2005 ).

  Fig. 16.3    ( a ) Minitool 1 showing a value-bar graph of battery life spans in hours of two brands. 
( b ) Minitool 1, but with bars hidden. ( c ) Minitool 2 showing a dot plot of the same data sets       
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16.2.6.1      Analysis of the First Phase of Growing a Sample 

 The text of the student activity sheet for the fourth lesson contained a number of 
tasks that we cite in the following subsections. The sheet started as follows:

   Last week you made graphs of predicted data for a balloon pilot. During this lesson you will 
get to see real weight data of students from another school. We are going to investigate the 
infl uence of the sample size on the shape of the graph.  

  Task a. Predict a graph of ten data values, for example with the dots of minitool 2.    

 The sample size of ten was chosen because the students had found that size rea-
sonable after the fi rst lesson in the context of testing the life span of batteries. 
Figure  16.4  shows examples for three different types of diagrams the students made 
to show their predictions: there were three value-bar graphs (such as in minitool 
1—e.g., Ruud’s diagram), eight with only the endpoints (such as with the option of 
minitool 1 to “hide bars”—e.g., Chris’s diagram) and the remaining nineteen plots 
were dot plots (such as in minitool 2—e.g., Sandra’s diagram). For the remainder of 
this section, the fi gures and written explanations of these three students are demon-
strated, because their work gives an impression of the variety of the whole class. 
Those three students were chosen because their diagrams represent all types of 
 diagrams made in this class, also for other phases of growing a sample.

   To stimulate the refl ection on the graphs, the teacher showed three samples of ten 
data points on the blackboard and students had to compare their own graphs 
(Fig.  16.4 ) with the graphs of the real data sets (Fig.  16.5 ).

    Task b. You get to see three different samples of size 10. Are they different from your own 
prediction? Describe the differences.    

 The reason for showing three small samples was to show the variation among these 
samples. There were no clear indications, though, that students conceived this varia-
tion as a sign that the sample size was too small for drawing conclusions, but they 
generally agreed that larger samples were more reliable. The point relevant to the 
analysis is that students started using predicates to describe aggregate features of the 
graphs. The written answers of the three students were the following:

   Ruud    Mine looks very much like what is on the blackboard.   
  Chris     The middle-most [diagram on the blackboard] best resembles mine 
  because the weights are close together and that is also the case in my 
  graph. It lies between 35 and 75 [kg].   
  Sandra    The other [real data] are more weights together and mine are further 
  apart.   

   Ruud’s answer is not very specifi c, like most of the written answers in the fi rst 
phase of growing samples. Chris used the predicate “close together” and added 
numbers to indicate the range, probably as an indication of spread. Sandra used such 
terms as “together” and “further apart,” which address spread. The students in the 
class used common predicates such as “together,” “spread out” and “further apart” 
to describe features of the data set or the graph. For the analysis it is important to 
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  Fig. 16.4    Student predictions (Ruud, Chris, and Sandra) for ten data points (weight in kg) (Bakker 
 2004a , p. 219)       

  Fig. 16.5    Three real data 
sets in minitool 2 (Bakker 
 2004a , p. 219)       
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note that the students used predicates (together, apart) and no nouns (spread, 
 average) in this fi rst phase of growing samples. Spread can only become an object-
like concept, something that can be talked about and reasoned with, if it is a noun. 
In the semiotic theory of Peirce, such transitions from the predicate “the dots are 
spread out” to “the spread is large” are important steps in the formation of concepts 
(see Bakker and Derry  2011 , for our view on concept formation).  

16.2.6.2    Analysis of the Second Phase of Growing a Sample 

 The students generally understood that larger samples would be more reliable. With 
the feedback students had received after discussing the samples of ten data points in 
dot plots, students had to predict the weight graph of a whole class of 27 students 
and of three classes with 67 students (27 and 67 were the sample sizes of the real 
data sets of eighth graders of another school).

   Task c. We will now have a look how the graph changes with larger samples. Predict a 
sample of 27 students (one class) and of 67 students (three classes).  

  Task d. You now get to see real samples of those sizes. Describe the differences. You can use 
words such as majority, outliers, spread, average.    

 During this second phase, all of the students made dot plots, probably because 
the teacher had shown dot plots on the blackboard, and because dot plots are less 
laborious to draw than value bars (only one student started with a value-bar graph 
for the sample of 27, but switched to a dot plot for the sample of 67). The hint on 
statistical terms was added to make sure that students’ answers would not be too 
superfi cial as (often happened before) and to stimulate them to use such notions in 
their reasoning. It was also important for the research to know what these terms 
meant to them. When the teacher showed the two graphs with real data, once again 
there was a short class discussion in which the teacher capitalized on the question of 
why most student predictions now looked pretty much like what was on the black-
board, whereas with the earlier predictions there was much more variation. No stu-
dent had a reasonable explanation, which indicates that this was an advanced 
question. The fi gures of the same three students are presented in Figs.  16.6  and  16.7  
and their written explanations were:

     Ruud    My spread is different.   
  Chris     Mine resembles the sample, but I have more people around a certain 
  weight and I do not really have outliers, because I have 10 about the 70 
  and 80 and the real sample has only 6 around the 70 and 80.   
  Sandra     With the 27 there are outliers and there is spread; with the 67 there are 
  more together and more around the average.   

   Here, Ruud addressed the issue of spread (“my spread is different”). Chris was 
more explicit about a particular area in her graph, the category of high values. She 
also correctly used the term “sample,” which was newly introduced in the second 
lesson. Sandra used the term “outliers” at this stage, by which students meant 
“extreme values,” which did not necessarily mean exceptional or suspect values. 
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  Fig. 16.6    Predicted graphs for one class (n = 27, top plot) and three classes (n = 67, bottom plot) 
by Ruud, Chris, and Sandra (Bakker  2004a , p. 222)       
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  Fig. 16.7    Real data sets of size 27 and 67 of students from another school (Bakker  2004a , p. 222)       
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She also seemed to locate the average somewhere and to understand that many 
 students are about average. These examples illustrate that students used statistical 
notions for describing properties of the data and diagrams. 

 In contrast to the fi rst phase of growing a sample, students used nouns instead of just 
predicates for comparing the diagrams. Like others Ruud used the noun “spread” (“my 
spread is different”) whereas students earlier used only predicates such as “spread out” 
or “further apart” (e.g., Sandra). Of course, this does not always imply that if students 
use these nouns that they are thinking of the right concept. Statistically, however, it 
makes a difference whether we say, “the dots are spread out” or “the spread is large.” 
In the latter case, spread is an object-like entity that can have particular aggregate char-
acteristics that can be measured, for instance by the range, the interquartile range, or the 
standard deviation. Other notions such as outliers, sample, and average, are now used 
as nouns, that is as conceptual objects that can be talked about and reasoned with.  

16.2.6.3    Analysis of the Third Phase of Growing a Sample 

 The aim of the hypothetical learning trajectory was that students would come to 
draw continuous shapes and reason about them using statistical terms. During teach-
ing experiments in the seventh-grade experiments (Bakker and Gravemeijer  2004 ), 
reasoning with continuous shapes turned out to be diffi cult to accomplish, even if it 
was asked for. It often seemed impossible to nudge students toward drawing the 
general, continuous shape of data sets represented in dot plots. At best, students 
drew spiky lines just above the dots. This underlines that students have to construct 
something new (a notion of signal, shape, or distribution) with which they can look 
differently at the data or the variable phenomenon. 

 In this last phase of growing the sample, the task was to make a graph showing 
data of all students in the city, not necessarily with dots. The intention of asking this 
was to stimulate students to use continuous shapes and dynamically relate samples 
to populations, without making this distinction between sample and population 
explicit yet. The conjecture was that this transition from a discrete plurality of data 
values to a continuous entity of a distribution is important to foster a notion of dis-
tribution as an object-like entity with which students could model data and describe 
aggregate properties of data sets. The task proceeded as follows:

   Task e. Make a weight graph of a sample of all eighth graders in the city. You need not draw 
dots. It is the shape of the graph that is important.  

  Task f. Describe the shape of your graph and explain why you have drawn that shape.   

   The fi gures of the same three students are presented in Fig.  16.8  and their written 
explanations were:

   Ruud    Because the average [values are] roughly between 50 and 60 kg.   
  Chris    I think it is a pyramid shape. I have drawn my graph like that because I 
  found it easy to make and easy to read.   
  Sandra    Because most are around the average and there are outliers at 30 and 
  80 [kg].   
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   Ruud’s answer focused on the average group. During an interview after the 
fourth lesson, Ruud like three other students literally called his graph a “bell shape,” 
though he had probably not encountered that term in a school situation before. This 
is probably a case of  reinvention . Chris’s graph was probably inspired by line graphs 
that the students made during mathematics lessons. She introduced the vertical axis 
with frequency, though such graphs had not been used before in the statistics course. 
Sandra may have started with the dots and then drawn the continuous shape. 

 In this third phase of growing a sample, 23 students drew a bump shape. The 
words they used for the shapes were pyramid (three students), semicircle (one), 
and bell shape (four). Many students drew continuous shapes but these were all 

  Fig. 16.8    Predicted graphs for all students in the city by Ruud, Chris, and Sandra (Bakker  2004a , 
p. 224)       
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 symmetrical. Since weight distributions are not symmetrical and because skewness 
is an important concept, a subsequent lesson addressed asymmetrical shapes in rela-
tion to the weight data (see Bakker  2004b ).   

16.2.7    Refl ection on the Example 

 The research question we addressed in the example is: How can coherent reasoning 
about distribution be promoted in relation to data, variability, and sampling in a way 
that is meaningful for students with little statistical background? We now discuss 
those key elements for the educational activity and speculate about what can be 
learned from the analysis presented here. 

 The activity of growing a sample involved short phases of constructing diagrams 
of new hypothetical situations, and comparing these with other diagrams of a real 
sample of the same size. The activity has a broader empirical basis than just the 
teaching experiment reported in this chapter, because it emerged from a previous 
teaching experiment (Bakker and Gravemeijer  2004 ) as a way to address shape as a 
pattern in variability. 

 To theoretically generalize the results, Bakker analyzed students’ reasoning as an 
instance of diagrammatic reasoning, which typically involves constructing dia-
grams, experimenting with them, and refl ecting on the results of the previous two 
steps. In this growing samples activity, the quick alternation between prediction and 
refl ection during diagrammatic reasoning appears to create ample opportunities for 
concept formation, for instance of spread. 

 In the fi rst phase involving the prediction of a small data set, students noted that 
the data were more spread out, but in subsequent phases, students wrote or said that 
the spread was large. From the terms used in this fourth lesson, we conclude that 
many statistical concepts such as center (average, majority), spread (range and range 
of subsets of data), and shape had become topics of discussion (object-like entities) 
during the growing samples activity. Some of these words were used in a rather 
unconventional way, which implies that students needed more guidance at this point. 
Shape became a topic of discussion as students predicted that the shape of the graph 
would be a semicircle, a pyramid, or a bell shape, and this was exactly what the HLT 
targeted. Given the students’ minimal background in statistics and the fact that this 
was only the fourth lesson of the sequence, the results were promising. Note, how-
ever, that such activities cannot simply be repeated in other contexts; they need to be 
adjusted to local circumstances if they are to be applied in other situations. 

 The instructional activity of growing samples later became a connecting thread 
in Ben-Zvi’s research in Israel, where it also worked to help students develop statis-
tical concepts in relation to each other (Ben-Zvi et al.  2012 ). This implies that this 
instructional idea was transferable to other contexts. The transferability of instruc-
tional ideas from the USA to the Netherlands to Israel, even to higher levels of 
education, illustrates that generalization in DBR can take place across contexts, 
cultures and age group.  
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16.2.8    Final Remarks 

 The example presented in Sect.  16.2  was intended to substantiate the issues dis-
cussed in Sect.  16.1 , and we hope that readers will have a sense of what DBR could 
look like and feel invited to read more about it. It should be noted that there are 
many variants of DBR. Some are more focused on theory, some more on empiri-
cally grounded products. Some start with predetermined learning outcomes, others 
have more open-ended goals (cf. Engeström  2011 ). DBR may be a challenging 
research approach but it is in our experience also a very rewarding one given the 
products and insights that can be gained.      
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    Appendix: Structure of a DBR Project with Illustrations 

 In line with Oost and Markenhof ( 2010 ), we formulate the following general criteria 
for any research project:

    1.    The research should be  anchored  in the literature.   
   2.    The research aim should be  relevant , both in theoretical and practical terms.   
   3.    The formulation of aim and questions should be  precise , i.e. using concepts and 

defi nitions in the correct way.   
   4.    The method used should be  functional  in answering the research question(s).   
   5.    The overall structure of the research project should be  consistent , i.e. title, aim, 

theory, question, method and results should form a coherent chain of reasoning.     

 In this appendix we present a structure of general points of attention during DBR 
and specifi cations for our statistics education example, including references to rel-
evant sections in the chapter. In this structure these criteria are bolded. This struc-
ture could function as the blueprint of a book or article on a DBR project.

 General points  Examples 

 Introduction:  1. Choose a topic  1. Statistics education at the middle school level 
 2. Identify common 
problems 

 2. Statistics as a set of unrelated concepts and 
techniques 

 3. Identify knowledge gap 
and relevance 

 3. How middle school students can be supported 
to develop a concept of distribution and related 
statistical concepts 

 4. Choose mathematical 
learning goals 

 4. Understanding of distribution (2.1) 

(continued)
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 General points  Examples 

 Literature review forms the basis for formulating the research aim (the research has to be 
 anchored  and  relevant ) 
 Research aim:  It has to be clear whether 

an aim is descriptive, 
explanatory, evaluative, 
advisory etc. (1.2.2) 

 Contribute to an empirically and theoretically 
grounded instruction theory for statistics 
education at the middle school level (advisory 
aim) (2.1) 

 Research aim has to be narrowed down to a research question and possibly subquestions with 
the help of different theories 
 Literature 
review 
(theoretical 
background): 

   Orienting frameworks    Semiotics (2.3) 
   Frameworks for action    Theories on learning with computer tools 
   Domain-specifi c learning 

theories (1.2.8) 
   Realistic Mathematics Education (2.4) 

 With the help of theoretical constructs the research question(s) can be formulated 
 (the formulation has to be  precise ) 
 Research 
question: 

 Zoom in what knowledge is 
required to achieve the 
research aim 

 How can students with little statistical 
background develop a notion of distribution? 

 It should be underpinned why this research question requires DBR (the method should be 
 functional ) 
 Research 
approach: 

 The lack of the type of 
learning aimed for is a 
common reason to carry 
out DBR: It has to be 
enacted so it can be studied 

 Dutch statistics education was atomistic: 
Textbooks addressed mean, median, mode, and 
different graphical representations one by one. 
Software was hardly used. Hence the type of 
learning aimed for had to be enacted. 

 Using a research method involves several research instruments and techniques 
 Research 
instruments 
and techniques 

 Research instrument that 
connects different theories 
and concrete experiences in 
the form of testable 
hypotheses. 

 Series of hypothetical learning trajectories 
(HLTs) 

 1. Identify students’ prior 
knowledge 

 1. Prior interviews and pretest 

 2. Professional 
development of teacher 

 2. Preparatory meetings with teacher 

 3. Interview schemes and 
planning 

 3. Mini-interviews, observation scheme 

 4. Intermediate feedback 
and refl ection with teacher 

 4. Debrief sessions with teacher 

 5. Determine learning yield 
(1.4.2) 

 5. Posttest 

 Design  Design guidelines  Guided reinvention; Historical and didactical 
phenomenology (2.4) 

 Data analysis  Hypotheses have to be 
tested by comparison of 
hypothetical and observed 
learning. Additional 
analyses may be necessary 
(1.4.3) 

 Comparison of hypothetical and observed 
learning 
 Constant comparative method of generating 
conjectures and testing them on the remaining 
data sources (2.6) 

(continued)
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 General points  Examples 

 Results  Insights into patterns in 
learning and means of 
supporting such learning 

 Series of HLTs as progressive diagrammatic 
reasoning about growing samples (2.6) 

 Discussion  Theoretical and practical 
yield 

   Concrete example of an historical and 
didactical phenomenology in statistics 
education 

   Application of semiotics in an educational 
domain 

   Insights into computer use in the mathematics 
classroom 

   Series of learning activities 
   Improved computer tools 

 The aim, theory, question, method and results should be aligned (the research has to be 
 consistent ) 
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    Chapter 17   
 Perspectives on Design Research: 
The Case of Didactical Engineering 

             Michèle     Artigue    

    Abstract     In what is often called the “French didactical culture,” design has always 
played an essential role in research. This is attested by the introduction and institu-
tionalization of a specifi c concept, that of  didactical engineering , already in the 
early 1980s and by the way didactical engineering has accompanied the development 
of didactical research, both in its fundamental and applied dimensions. In this chapter, 
I present this vision of design and its characteristics as a research methodology, 
coming back to its historical origin in close connection with the development of the 
theory of didactical situations, tracing its evolution along the last three decades, and 
illustrating this methodology by some particular examples. I also consider current 
developments within this design culture, especially those linked to the integration 
of a design dimension into the anthropological theory of didactics and also to the 
idea of didactical engineering of second generation introduced for addressing more 
effi ciently the development dimension of didactical engineering.  

  Keywords     Didactical engineering   •   Theory of didactical situations  

17.1        Introduction 

 Design has always played a substantial role in mathematics education up to the 
point that some researchers consider this fi eld as a design science (see, for instance, 
Wittmann  1998 ; Cobb  2007 ). But the conception of design and the exact role it is 
given in research strongly depend on educational cultures. In this chapter we 
consider the case of what is often called the “French didactical culture” in which 
design has always played a fundamental role. This importance of design is attested 
by the introduction and institutionalization of a specifi c concept, that of  Didactical 
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Engineering  (DE in the following) already in the early eighties. Since that time DE, 
which developed in close connection with the theory of didactical situations 
initiated by Brousseau (cf. (Warfi eld  2006 ) for an introduction and (Brousseau 
 1997 ) for a more detailed vision), has accompanied the development of didactical 
research, both in its fundamental and applied dimensions. This chapter is structured 
into four main sections. In the fi rst section I briefl y review the development of DE 
from its emergence in the early eighties until now, and clarify its links with the 
theory of didactical situations (see also (Bessot  2011 )). In the second section I pres-
ent its characteristics as a research methodology. In the third section I illustrate this 
methodology with examples taken at different levels of schooling. In the fourth sec-
tion I consider two recent evolutions of DE. The fi rst one is conveyed by the anthro-
pological theory of didactics in terms of course of study and research that considers 
very open forms of design; the second one is “didactical engineering of second 
generation” introduced by Perrin-Glorian for addressing dissemination and up-
scaling issues (Perrin-Glorian  2011 ). Beyond the many examples of realizations, 
the writing of this chapter has been especially inspired by some foundational texts 
such as (Chevallard  1982 ; Artigue  1990 ,  2002 ,  2009 ), and by the extensive refl ection 
on didactical engineering carried out at the XV e  Summer School of Didactics of 
Mathematics in 2009 (Margolinas et al.  2011 ).  

17.2    Didactical Engineering: An Historical Review 

 The emergence, consolidation and evolution of didactical engineering can be traced 
through the successive summer schools of didactics of mathematics organized every 
2 years in France since 1980. In this brief historical review, I focus on three of these 
(1982, 1989, 2009) for which DE was a specifi c theme of study. Already, at the 
second summer school in 1982, DE was one of the themes addressed. Chevallard 
prepared a specifi c manuscript note for supporting the work of the summer school 
collective (Chevallard  1982 ); Brousseau gave a course, and practical sessions were 
organized around this theme. Accessible documents regarding this summer school 
show the shared conviction that didactical research should give a more central role 
to the construction and study of classroom realizations. French researchers expressed 
concerns about the observed tendency to privilege methodologies borrowed from 
established fi elds such as psychology (clinical interviews, questionnaires, pre-test/
post-test comparisons…) for ensuring the scientifi c legitimacy of research in math-
ematics education. They pointed out that the didactics of mathematics is a genuine 
scientifi c fi eld whose methodologies should be in line with its specifi c purpose: the 
study of intentional dissemination of mathematical knowledge through didactical 
systems, and the associated interaction between teaching and learning processes. As 
explained in Chevallard’s note, the need for developing specifi c methodologies 
based on classroom realizations was justifi ed by both theoretical and practical 
reasons. On the theoretical side, such methodologies were judged necessary for 
this essential part of scientifi c activity which is the production of phenomena (in this 
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case, didactical phenomena), what Bachelard ( 1937 ) called  phénoménotechnique . 
On the practical side, such methodologies were judged necessary for establishing 
productive relationships between research and practice, because they permit 
researchers to consider didactical systems in their concrete functioning, and to pay 
the necessary attention to the different constraints and forces acting on these, which 
could be neglected otherwise. Didactical engineering thus emerged as a research 
and development methodology based on classroom realizations in form of sequences 
of lessons, informed by theory and putting to the test theoretical ideas. At that time, 
what was predominant in the French didactical community was the theory of 
didactical situations that had emerged in the late 1960s. This theory became thus the 
natural support of DE. Its systemic perspective, constructions and values shaped 
DE, which progressively became the research methodology privileged within this 
community. In fact, it would be more adequate to say that theoretical constructions 
and DE jointly developed along the 1980s. 

 In 1989, for the second time, didactical engineering was a specifi c theme of the 
summer school and I was asked to give a course on this methodology. This course 
(Artigue  1990 ) contributed to the institutionalization of DE as a research methodology, 
making explicit its characteristics and its foundational links with the theory of 
didactical situations. It also pointed out that its privileged links with the theory 
of didactical situations did not prevent researchers using this methodology from 
relying on other theoretical approaches. For instance, several examples mentioned 
in the course or worked out in the practical sessions associated to it relied on the 
tool- object dialectics due to Douady ( 1986 ). Many contributions to the summer 
school indeed combined its specifi c constructs (through the attention paid in design 
to the dialectics to be organized between the tool and object dimensions of 
mathematics concepts and to the learning potential offered by moves between 
mathematical settings, numbers and geometry for instance) with those offered by 
the theory of didactical situations. In this course too, I pointed out that if DE had 
consolidated as a research methodology, the problem of establishing productive 
links between research and practice had not been solved. DE produced by research 
was disseminating through articles, educational resources and teacher education, 
but there was some evidence that along this dissemination process, it tended to lose 
its essence and value. 

 In fact, in coherence with the theory of didactical situations, in DE design, particular 
efforts had been made to create situations in which:

•    the mathematical knowledge aimed at is an optimal solution to the problem to 
solve (which is captured in the theory by the idea of  fundamental situation );  

•   students as a collective are able to reach this optimal solution through their inter-
action with the  milieu  1     of the situation, without signifi cant help from their teacher 
(which is captured in the theory by the idea of  adidactical situation ).    

1   In the theory, the milieu of a situation is defi ned as the system with which the student interacts, 
and which provides objective feedback to her. The milieu may comprise material and symbolic 
elements: artifacts, informative texts, data, results already obtained…, and also other students who 
collaborate or compete with the learner. 
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 The teacher’s role, for its part, had been mainly approached in terms of the dual 
processes of  devolution  and  institutionalization , coherently with the vision of learn-
ing as a combination of  adaptation  and  acculturation  processes underlying the 
theory. Through the devolution process, the teacher tries to make her students accept 
the mathematical responsibility of solving the problem at stake. She tries to make 
thus possible the adidactic interaction with the milieu required for learning through 
adaptation. If the devolution process is successful, the students agree to forget 
for a while the didactical intention of the teacher; to concentrate on the search for 
mathematical solutions instead of trying to decipher the teacher’s expectations. 
Through the process of institutionalization, the teacher connects the knowledge 
built by students through adidactic interaction with the milieu to the scholarly 
and decontextualized forms of knowledge aimed at by the institution, making the 
acculturation dimension of learning possible. 

 In 1989, even if the DEs produced by researchers had been able to approach in 
many cases this ideal-type, their functioning out of the control of research seemed 
diffi cult. Moreover, high attention was paid to the innovative situations designed for 
introducing new mathematical ideas or overcoming  epistemological obstacles,  2  and 
much less to the more standard situations used for consolidating mathematical 
knowledge and techniques. This situation created a distorted vision of DE products 
that certainly had negative impact on the quality of their dissemination. 

 In 2009, 20 years later, DE was once again a theme for the summer school, in fact 
its unique theme. Since 1989, the didactic fi eld had substantially evolved. The 
anthropological theory of didactics that was just emerging in the late 1980s had 
matured and gained in infl uence. Moreover, in the last decade, it had created its own 
design approach in terms of activities of research and study and then programs of 
study and research (Chevallard  2006 ,  in press ). A new theoretical framework had 
also emerged from the theory of didactical situations and the anthropological theory 
of didactics: the theory of joint action between teachers and students, proposing a 
renewed vision of the role of the teacher and of students-teacher interactions 
(Sensevy  2011 ,  2012 ). More generally, teachers’ practices and professional development 
had become a focus of research, and this research had developed its own methodolo-
gies involving naturalistic and participative observations of classrooms. DE was 
still an important research methodology, especially each time the didactical systems 
one wanted to study could not be observed in natural conditions (as is for instance 
often the case in research about technology), but was no longer the privileged 
methodology (Artigue  2002 ,  2009 ). Didactical engineering had also migrated out-
side its original habitat. It has been extended to teacher education and to the study 

2   The notion of epistemological obstacle, introduced by the philosopher Gaston Bachelard, was 
imported in the educational fi eld by Guy Brousseau ( 1983 ) for expressing the fact that the develop-
ment of mathematical knowledge necessarily faces obstacles, due to prior forms of knowledge that 
were relevant and successful in specifi c contexts. Epistemological obstacles are those attested in 
the historical development of knowledge, and having played a constitutive role in this develop-
ment. Their identifi cation may help understand students’ resistant errors and diffi culties. Schneider 
( 2014 ) provides a synthetic presentation and discussion of the notion, its development and use in 
mathematics education research. 
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of innovative pedagogical practices, including informal education; didacticians 
from other disciplines, for instance physical sciences or sports, had used it (Terrisse 
 2002 ); researchers educated in other countries and cultures, and having different 
theoretical backgrounds, had used it, for instance researchers referring to the 
socio-epistemological framework in mathematics education (Farfán  1997 ; Cantoral 
and Farfán  2003 ) or to semiotic approaches (Maschietto  2002 ; Falcade  2006 ). 
Moreover, design-based research perspectives had emerged and grown in other con-
texts, independently of it (Burkhardt and Schoenfeld  2003 ; Design-Based Research 
Collaborative  2003 ). These conditions created the need for a thorough refl ection 
about the concept of DE and this was the exact purpose of the 2009 summer school. 
I have integrated some of the results of this refl ection in the next section describing 
the characteristics of DE as a research methodology, and some others will be dealt 
with in the fourth section. Nevertheless the size of this chapter does not allow to pay 
full justice to the work carried out at this summer school and those interested are 
invited to read the report by Margolinas et al. ( 2011 ).  

17.3    Didactical Engineering as a Research Methodology 

 In this section, I present the characteristics of DE as a research methodology, using 
for that purpose its most standard form: the conception, realization, observation, 
analysis and evaluation of classroom realizations aiming at the learning of a specifi c 
content. However, it should be clear that, while obeying fi xed principles, this 
research methodology might take a diversity of forms in practice, according to the 
nature of the questions addressed by the researchers, and to the contexts involved. 
I will end this section by pointing out some similarities and differences with design- 
based research perspectives more and more infl uential in mathematics education. 

 One essential characteristic of DE as a research methodology is that, contrary to 
the traditional use of classroom realizations in educational research, it does not 
obey the validation paradigm based on the comparison of control and experimental 
groups. Its validation is internal and based on the comparison between the  a priori  
and  a posteriori analyses  of the didactic situations involved. This methodological 
choice can be easily understood considering the educational culture in which DE 
has emerged. In this culture, as explained above, research in mathematics education 
(didactics of mathematics) is seen as a scientifi c fi eld of its own whose ambition is 
the study of the intentional dissemination of mathematical knowledge through 
didactical systems. What is to be understood is the functioning of such didactical 
systems, and associated didactical phenomena, which requires entering into the 
intimacy of their functioning. Validating the hypotheses engaged in the conception 
phase of a DE cannot be thus a matter of comparison between experimental and 
control groups. 

 As a research methodology, DE is structured into different phases. These are the 
following: preliminary analyses, conception and  a priori  analysis ,  realization, 
observation and data collection,  a   posteriori  analysis and validation. 
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17.3.1    Preliminary Analyses 

 Preliminary analyses set the background for the conception phase of the process. 
They cover different dimensions, and especially the three following:

•    An epistemological analysis of the content at stake, often including an historical 
part. This analysis helps researchers to fi x the precise goals of the DE and to 
identify possible epistemological obstacles to be faced. It also supports the 
search for mathematical situations representative of the knowledge aimed at, 
what the theory of didactical situations calls  fundamental situations . These are 
problematic situations for the solving of which this knowledge is necessary or in 
some sense optimal. The epistemological analysis helps the researchers to take 
the necessary refl ective position and distance with respect to the educational 
world they are embedded in, and to build a reference point.  

•   An institutional analysis whose aim is to identify the characteristics of the 
context in which the DE takes place, the conditions and constraints it faces. 
These conditions and constraints may be situated at different levels of what is 
called the  hierarchy of levels of co-determination  (Chevallard  2002 ) in the 
anthropological theory of didactics. They may be attached to curricular choices 
regarding the content at stake and associated teaching practices, to more general 
curricular characteristics regarding the teaching of the discipline, the (technological) 
resources accessible, the evaluation practices and the school organization. 
They can also be linked to the characteristics of the students and teachers 
involved, to the way the school is connected with its environment… Depending 
on the precise goals and context of the research, the importance attached to these 
different levels may of course vary.  

•   A didactical analysis whose aim is to survey what research has to offer regarding 
the teaching and learning of the content at stake, and is likely to guide the design.    

 The three dimensions organizing the phase of preliminary analyses refl ect the 
systemic perspective underlying DE as a research methodology. Each of them has its 
methodological specifi cities and needs. The epistemological analysis often involves 
the use of historical sources and not just secondary sources; the institutional analysis 
also generally includes an historical dimension. As made clear by the theory of 
didactical transposition (Bosch and Gascón  2006 ), curricular organizations and 
choices are the result of a long-term historical process; they cannot be understood 
just by analyzing current curricula, offi cial documents and textbooks. Such under-
standing is needed for making clear the strength of the constraints faced and the way 
some of these can be moved in the design. The didactical analysis has generally a 
substantial cognitive dimension, but this cognitive dimension is only one part of the 
global picture even if what is aimed at is the development of a didactical strategy 
allowing students to learn better some part of mathematics. 

 It must also be pointed out that, according to the precise goals of the research, 
what is exactly investigated in these dimensions, and the respective importance 
attached to each of them may vary substantially.  
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17.3.2    Conception and  a Priori  Analysis 

 Conception and  a priori  analysis is a crucial phase of the methodology. It relies 
on the preliminary analyses carried out, and is the place where research hypoth-
eses are made explicit and engaged in the conception of didactical situations, 
where theoretical constructs are put to the test. Conception requires a number of 
choices and these situate at different levels. Some choices pilot the global project 
and in that case it is usual to speak of  macro-choices;  some are situated at the 
level of a particular situation, and in that case it is usual to speak of  micro-
choices . These choices determine  didactical variables,  3  so we have both  macro-
didactic and micro-didactic variables . These variables condition the milieu, thus 
the interactions between students and knowledge, the interactions between 
students and between students and teacher, thus the exact opportunities that 
students have to learn, how and what they can learn. In line with the theoretical 
foundations of DE, in these choices particular attention must be paid to the 
epistemological pertinence of the problems posed and to the mathematical 
responsibility given to the students. 

 The  a priori  analysis makes clear the different choices and the way they relate to 
the research hypotheses and preliminary analyses. For each situation, it identifi es 
the main didactical variables, that is to say those that affect the effi ciency and cost 
of the possible strategies developed by students, and their possible dynamics. These 
variables can be attached to the characteristics of the tasks proposed to students, but 
they can also be linked to the resources provided to the students for solving these 
tasks (which in the theory corresponds to the  material milieu  of the situation) and to 
the way the students’ interaction with the  milieu  is socially organized. From these 
characteristics, conjectures are made regarding the possible development of the 
situation, students’ interaction with the  milieu , students’ strategies and their evolu-
tion, and the possible sharing of mathematical responsibilities between teacher and 
students. It is important to stress that such conjectures do not regard individuals but 
a  generic and epistemic student  who enters the situation with some supposed 
 knowledge background and is ready to play the role that the situation proposes her 
to play. Of course, the realization will involve students with their personal specifi ci-
ties and history, but the goal of the  a priori  analysis is not to anticipate how each 
particular student will behave and benefi t from the situation, but what the situation 
 a priori  can offer in terms of learning in the context at stake. It creates a reference 
with which classroom realizations will be contrasted.  

3   Among the many variables infl uencing the possible dynamics of a situation and its learning 
outcomes, didactical variables are those under the control of the teacher. In a situation of 
enlargement such as the well-known “Puzzle situation” by Brousseau, the number of pieces of the 
puzzle, their shapes and dimensions, the ratio of enlargement are didactical variables; the fact 
that students work in group, each student being asked to enlarge one piece of the puzzle is also a 
didactical variable. 
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17.3.3    Realization, Observation and Data Collection 

 During the realization phase, data are collected for the analysis  a   posteriori . 
The nature of the collected data depends on the precise goals of the DE, on the 
hypotheses put to the test in it and on the conjectures made in the  a priori  analysis. 
However, particular attention is paid to the collection of data allowing the researcher 
to understand students’ interaction with the milieu, and up to what point this interac-
tion supports their autonomous move from initial strategies to the strategies aimed 
at, and to analyze devolution and institutionalization processes. Generally collected 
data include the students’ productions including computer fi les when technology is 
used, fi eld notes from observers, audios and, more and more, videos covering group 
work and collective phases. The data, collected during the realization are generally 
complemented by additional data (questionnaires, interviews with students and 
teacher, tests) allowing a better evaluation of the outcomes of the DE. During the 
realization, researchers are in the position of observers. It is important to point out 
that the realization often leads to make some adaptation of the design during the 
realization, especially when the DE is of substantial size, or from one realization to 
the next one when several realizations are planned in the research project. In that 
case, adaptations are of course documented together with the rationale for them and 
taken into account when the  a posteriori  analysis is carried out.  

17.3.4    A Posteriori Analysis and Validation 

  A   posteriori  analysis is organized in terms of contrast with the  a priori  analysis. Up 
to what point do the data collected during the realization phase support the  a priori  
analysis? What are the signifi cant convergences and divergences and how can 
they be interpreted? What happened that was not anticipated and how can it be 
interpreted? Through this connection between  a priori  and  a   posteriori  analyses, the 
hypotheses underlying the design are put to the test. It is important to be aware that 
there are always differences between the reference provided by the  a priori  analysis 
and the contingence analyzed in the  a posteriori  analysis. As observed above, the  a 
priori  analysis deals with generic and epistemic students, which is not the case for 
the contingence of the realization. Thus, the validation of the hypotheses underlying 
the design does not impose perfect match between the two analyses. 

 The analyses carried out are qualitative in nature and local, even when the 
researchers use statistical tools such as for instance implicative analysis for identifying 
dependences. In accordance with the theoretical foundation of DE, what the 
researcher looks at is the dynamic of a complex system, and he does so through the 
comparison of the observed dynamics with the reference provided by the  a priori  
analysis, trying to make sense of similarities and differences. The precise tools used 
for that purpose depend on the research questions at stake and the data collected. 
There is no doubt however that these tools have evolved along the years, infl uenced 
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by the global evolution of the fi eld and also by the technological evolution. In 
general, researchers combine and triangulate different scales of analyses. They 
more and more include microscopic analyses taking into account the multimodality 
of the semiotic resources used by students and teachers that technology makes 
accessible today. To this should be added that, as mentioned above, the validation of 
the research hypotheses generally combines the analysis of data collected during the 
classroom sessions themselves and of complementary data.  

17.3.5    The Nature of the Results 

 It must be stressed that the results obtained through this methodology are mainly 
local, contextualized, and generally in form of existence theorems in their positive 
forms. For instance, in the research I developed about the teaching of differential 
equations in the mid-1980s (Artigue  1992 ,  1993 ), I used DE methodology to inves-
tigate the possibility of combining qualitative, algebraic and numerical approaches 
to the solving of ordinary differential equations in a university mathematics course 
for fi rst year students. The research showed the possibility of organizing such a 
course in the French context, at that time, with the support of technological tools; it 
made clear what could be expected from such a course in terms of learning 
outcomes in this particular context and why. Beyond that, one important result was 
that a condition for the viability of the course was the acceptance by the didactical 
system of proofs based on specifi c graphical arguments, which violated the usual 
didactical contract 4  regarding proofs in Analysis at university. The diffi culty of 
ensuring this acceptance out of experimental contexts and research control at that 
time hindered a large-scale dissemination of the developed didactical strategy, 
despite the fact that its robustness had been attested by realizations carried out with 
different categories of students. These results were certainly interesting but could 
not be generalized without precaution to another educational context. However, it 
would be unreasonable to consider that the results of this engineering work were 
limited to what we have summarized above. 

 As evidenced by the further use of this work by different researchers, the pre-
liminary analyses carried out had a more general value, as well as the understanding 
gained on:

•    the students’ cognitive development in this area;  
•   the role played in it by the interaction between the quantitative and the qualitative, 

between algebraic and graphical representations;  
•   the affordances of technological tools for approaching the qualitative study of 

differential equations;  

4   The notion of didactical contract is a fundamental notion in the theory of didactical situations 
(Brousseau  1997 ). It expresses the mutual expectations, partly explicit but mainly implicit, of 
students and teacher regarding the mathematical knowledge at stake in a given situation. The rules 
of the didactic contract often become visible when they are transgressed by one actor or another. 
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•   the characteristics of usual didactical contract regarding graphical representations 
and their didactical effects, especially the fact that proofs based on graphical 
arguments were not accepted.   

Looking back at decades of DE research, what is evident indeed is that the results of 
DE research are far from being limited to the production and validation of didactical 
designs. DE research has also been a highly productive tool for understanding the 
functioning of didactical systems, and for identifying didactical phenomena. For 
decades, DE research has been an essential tool for the development of theoretical 
constructs paying justice to the complexity of the systems involved in the teaching 
and learning of mathematics. 

 What I have described here are the characteristics of the main form of DE: a 
research methodology based on the conception, experimentation and evaluation 
of a succession of classroom sessions having a precise mathematical aim. As 
already mentioned, this methodology has been extended to other contexts such 
as teacher education, to more open activities such as project work or modeling, 
and even to mathematical activities carried out in informal settings such as sum-
mer camps which obey a different form of contract, which Pelay ( 2011 ) defi nes 
as the  didactical and ludic contract.  5  These extensions infl uence the content of 
preliminary analyses, but also what the design aims to control in terms of learn-
ing trajectories. The reference provided by the  a priori  analysis cannot exactly 
have the same nature, and this impacts the ways  a priori  and  a posteriori  analyses 
are contrasted.  

17.3.6    Didactical Engineering and Design-Based Research 

 I will fi nish this section by situating didactical engineering with respect to design- 
based research, using the defi nition of it provided in the Encyclopedia of mathematics 
education (Swan  2014 , p. 148):

  Design-based research is a formative approach to research, in which a product or process 
(or ‘tool’) is envisaged, designed, developed and refi ned through cycles of enactment, 
observation, analysis and redesign, with systematic feedback from end users. In education, 
such tools might, for example, include innovative teaching methods, materials, professional 
development programs, and/or assessment tasks. Educational theory is used to inform the 
design and refi nement of the tools, and is itself refi ned during the research process. Its goals 
are to create innovative tools for others to use, describe and explain how these tools 
function, account for the range of implementations that occur, and develop principles and 
theories that may guide future designs. Ultimately, the goal is  transformative ; we seek to 
create new teaching and learning possibilities and study their impact on teachers, children 
and other endusers.  

5   The didactical and ludic contract is defi ned as the set of rules that, implicitly or explicitly, fi xes 
the respective expectations and regulate the behaviour of one educator and one or several participants, 
in a project combining ludic and learning aims. 
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This defi nition makes clear that design-based research and DE have some common 
methodological characteristics. Both methodologies are organized around the 
design of some educational tool; this design is informed by educational theory, but 
also contributes to its development. Moreover, both methodologies reject standard-
ized validation processes based on the comparison of experimental and control 
groups through a pre-test/ post-test system. However, differences are visible. The 
global vision underlying design-based research is that of mathematics education as 
a design science whose aim is the controlled production of educational tools 
(Wittmann  1998 ; Collins  1992 ); the global vision underlying DE is of didactics of 
mathematics as a fundamental science, whose aim is the understanding of didactical 
systems and didactical phenomena, and which has also of course an applied 
dimension. This fundamental difference refl ects in methodological characteristics. 
Design- based research is interventionist and iterative in nature, and the cyclic nature 
of its process is essential. Along the successive cycles, the design is refi ned but 
also experimented in wider contexts for studying how it functions with different 
categories of users, not involved in the design process, and what adaptations may be 
necessary for its large-scale use. Didactical engineering as a research methodology 
does not obey the same pattern. It is more a “phénoménotechnique” with the meaning 
given to this term by Bachelard ( 1937 ), a tool for answering didactical questions, 
for identifying, analyzing and producing didactical phenomena through the con-
trolled organization of teaching experiments. This is the reason why the preliminary 
analyses with their different dimensions and the  a priori  analysis are a central 
part of the research work, and are given so much importance in the articles referring 
to this methodology. Of course, this does not mean that a DE used in research is 
built from scratch, but previous constructions when they exist are used to inform the 
 a priori  analysis; the process is not theorized as a cyclic process. Moreover, 
what concerns robustness and up-scaling is considered as a matter of development. 
I come back to this point in the last section of this chapter, but fi rst illustrate the 
ideas developed up to now with two examples.   

17.4    Two Particular Examples 

17.4.1     A Paradigmatic Example: The Extension 
of the Field of Numbers by G. and N. Brousseau 

 The fi rst example I will consider is the paradigmatic example of the didactical 
engineering developed by N. and G. Brousseau, more than three decades ago, for 
extending the fi eld of whole numbers towards rational and decimals (Brousseau and 
Brousseau  1987 , English version: Brousseau et al.  2014 ). This engineering which 
ranges over 65 classroom sessions is a very big object when compared with usual 
constructions whose size is much more limited. I cannot enter into its very details 
but would like to show how this construction is characteristic of a DE piloted by the 
theory of didactical situations. 
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17.4.1.1    Preliminary Analyses 

 This construction evidences fi rst the importance attached to the preliminary analyses, 
and especially to their epistemological and didactical dimensions, the initial realiza-
tions having taken place in the COREM 6  where the institutional pressure was 
reduced. These analyses led Brousseau to question the usual educational strategy 
for extending the fi eld of whole numbers. Usually indeed, the fi rst step was the 
introduction of decimal numbers in connection with changes in units in the metric 
system, and fractions played a more marginal role. Emphasis was put on the continuity 
between the two systems of numbers (whole numbers and decimals), especially 
regarding the techniques for arithmetic operations, and the resistant cognitive 
diffi culties that these strategies generated or reinforced were more and more evidenced 
by research. Brousseau made the hypothesis that, in their last years at elementary 
school, students were able to learn much more about rational and decimal numbers, 
for instance to differentiate the dense order of rational and decimal numbers from 
the discrete order of whole numbers, to appreciate the computational interest of 
decimal numbers and the possibility that this system offers for approaching rational 
numbers with arbitrary levels of precision. The didactical engineering developed 
aimed at testing the validity of this hypothesis with ordinary students.  

17.4.1.2    Conception and Analysis a Priori 

 The epistemological analysis carried out inspired the fi rst macro-choice, in clear 
rupture with established practices: to extend fi rst the fi eld of numbers towards 
rational numbers, and then to particularize decimal numbers among these for the 
facilities they offer in terms of comparison, estimation and calculation. Regarding 
the introduction of rational numbers, another macro-choice was made linked to the 
identifi cation of two different conceptions for rational numbers: a conception in 
terms of partition of the unit (1/n is then associated with the partition of one unit 
into n equal parts and the rational m/n represents m such pieces of the unit) and 
a conception in terms of commensurability, which corresponds to the search for a 
common multiple to two different magnitudes for instance two lengths (the ratio of 
two magnitudes is expressed by the rational m/n if m times the second one equals n 
times the fi rst one). Generally didactical strategies privilege the fi rst conception in 
the context of pizza parts or other equivalent contexts. This constitutes an easy 
entrance in the world of fractions but Brousseau hypothesized that it could contribute 
to the observed cognitive diffi culties. This led him to explore the potential offered 

6   COREM was the Center for observation and research in mathematics education created by 
Brousseau in Bordeaux in 1973. An experimental elementary school was attached to this center, 
with very advanced means for systematic data collection and storage. The data collected there during 
more than 20 years are still studied by researchers, for instance, in the frame of the national project 
VISA ( http://visa.ens.lyon.fr ). Detailed information is accessible at the following url:  http://guy-
brousseau.com/le-corem/acces-aux-documents-issus-des-observations-du-corem-1973-1999/ 
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by an entry in terms of commensurability, and to search for a fundamental situation 
attached to this conception: a situation that would oblige to consider multiples of 
magnitudes to compare them. 

 The problem posed to the grade 4 students was the following: how to compare 
the thickness of different sheets of paper? There is no doubt that this problem 
answers the condition just mentioned. The thickness of a sheet of paper cannot 
directly be measured with usual instruments but taking a suffi cient number of such 
sheets one obtains something measurable. This problem being fi xed, different 
choices must be done for defi ning a situation. Evident didactic variables are the 
number of types of paper to compare and their respective thickness. Anticipating 
that a basic strategy for students is to use their senses (sight and touch) for ordering 
the different types, it is important to have papers of close thickness invalidating 
perceptive strategies. Other choices concern, as mentioned above, the organization 
of the material milieu and the students’ interaction with this milieu, the social orga-
nization of the classroom. In the organization adopted in this DE, the material milieu 
was made of piles of sheets of different thickness which often were very close and 
students worked in groups. First, they had to fi nd a way of comparing the thickness 
of the sheets provided to their group, then in a second phase, after selecting one type 
of paper, to write a message allowing another group of students having the same 
types of paper to fi nd the paper they had selected. These messages became then 
themselves an object of study: did the messages produced by the different groups 
solve the particular problem each group had to address, and, beyond that, did they 
provide a technique for solving the problem of comparison in a general way? We 
can see here a construction which takes into account the distinction made in the 
theory of didactical situations between three different functionalities of mathemati-
cal knowledge: for acting, for formulating, for proving. Their development obeys 
different dialectics and thus supposes different types of situations:  situations of 
action  in the fi rst phase,  situations of formulation  in the second phase (in which the 
key for success is the quality of the specifi c language developed) and  situations of 
validation  in the third phase (in which what is at stake is the validity of assertions). 

 In an implicit way, the winning strategy in this situation uses the fact that the 
thickness of a pile is proportional to the number of sheets, which constitutes a 
reasonable model under certain limits, of course. In fact, the different couples of 
whole numbers attached to the same paper obtained through manipulations are not 
exactly proportional, which shows the distance that separates the real world from 
mathematical models. In observed realizations, this strategy systematically emerged 
through a-didactic interaction with the milieu. This emergence is certainly fostered 
by the presence of piles of paper in the material milieu. In the  a priori  analysis, it 
was expected that each type of paper would be eventually characterized by one or 
several couples of whole numbers that are nearly proportional, in reference to the 
manipulations carried out by the students. For instance, it could be 1 mm for 27 
sheets in one case, 2 mm for 40 sheets in another case. Once such couples are 
obtained, as they do not necessarily correspond to the same number of millimeters 
or to the same number of sheets, if students are not allowed more manipulations, the 
success of the comparison relies on proportional reasoning. For a good functioning 
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of the interaction with the milieu, it is thus necessary that some knowledge about 
proportional reasoning be part of the mathematical knowledge shared by students. 
In the  a priori  analysis, this knowledge is supposed from the generic student. For 
instance, if the task is to compare the types of paper corresponding to the two couples 
mentioned above, one can develop the following reasoning: for the fi rst paper, 2 mm 
should correspond to 54 sheets, and 54 is more than 40, thus the second paper is 
thicker. For close thicknesses, comparison may be more delicate for the reasons 
mentioned above, and several exchanges of messages might be needed. 

 What is mathematically at stake in the solving of this problem is the ordered 
structure of rational numbers seen as couples of whole numbers or more appropriately 
families of such couples, and the conception attached is clearly the commensurability 
conception. As shown by the many realizations carried out, substantial work can be 
developed in this context about equality and order of rational numbers, students can 
progressively discover a good number of properties in a-didactic interaction with 
the successive milieus organized for them, validate them pragmatically using piles 
of paper, and then use piles of paper more metaphorically for supporting computations 
and reasoning. However, the mathematical knowledge built still remains attached to 
this specifi c context. There is no reason that the notations introduced by students 
and progressively refi ned for reasons of economy and effi ciency are the conventional 
notations. This is the responsibility of the teacher to decide when to connect these 
classroom notations to the usual ones expected by the institution, and also to organize 
the decontextualization of knowledge through appropriate situations. Of course, in 
the DE, these steps are also carefully designed. 

 In this DE, the same context is then used for extending addition to these new 
numbers. However it does not allow to extend multiplication to rational numbers in 
a similar way. For this extension, the choice is made of privileging a conception of 
multiplication as an external operation in terms of linear application for which the 
well-known situation of the puzzle is the associated fundamental situation. With this 
new situation, it is also expected to make students face the epistemological obstacle 
of the additive model.  

17.4.1.3     Realization, Data Collection,  a Posteriori  Analysis, Validation 
and Further Outcomes 

 I cannot enter into more details in this DE structured in four main phases and invite 
the interested reader to consult the references mentioned above or the retrospective 
analysis provided by Brousseau and Brousseau ( 2007 ). In the description above, 
I have focused on the essential phases of design and  a priori  analysis of the meth-
odology, trying to show how they were informed by the preliminary analyses and 
guided by the theory of didactical situations. The experimentations took place in 
the experimental school attached to the COREM, the sessions were observed by 
researchers according to specifi c guidelines and systematically video-recorded. The 
comparison of the  a priori  and  a posteriori  analyses, the complementary tests taken 
by the students, validated the hypotheses underlying the DE. 
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 This DE was used year after year in the experimental school attached to the 
COREM. More than 750 students were exposed to it and its robustness was 
confi rmed. However, as often stressed by Brousseau himself, it was never consid-
ered that it could be easily implemented in ordinary schools and become a standard 
teaching strategy. Moreover, the comparison of the successive dynamics attracted 
Brousseau’s attention to the fact that the reproduction of the same situations, year 
after year, by a teacher generated what he called a phenomenon of obsolescence 
affecting the internal reproducibility of the DE. This phenomenon more globally 
raised the issue of the reproducibility of didactical situations that was theorized in 
further work (Artigue  1986 ). 

 It must also be stressed that this DE was in fact used for approaching a diversity 
of research questions, and for instance for investigating dependences between 
conceptions (Ratsimba-Rajohn  1982 ). In his doctoral thesis, indeed, Ratsimba-
Rajohn, starting from the two strategies for associating a rational measure to a 
magnitude mentioned above (commensurability and partition of the unit), precisely 
differentiated these in terms of situations of effectiveness and mathematical 
knowledge engaged. This analysis led to the identifi cation of a set of nine variables 
conditioning the effectiveness and cost of each strategy, depending on the type of 
task (game in the terminology used by the author, in line with the use of game the-
ory in the theory of didactical situations). The author used this tool for investigating 
how students introduced to rational measures through the commensurability strat-
egy, as was the case in the DE, could enrich their strategies by incorporating the 
partitioning strategy,  a priori  more intuitive and socially used. For that purpose, a 
sequence of three situations was designed as part of the DE. In the fi rst situation, the 
commensurability strategy was extended to other magnitudes (length, weight, 
capacity); in the second situation, the tasks proposed were out of the domain of 
effectiveness of the commensuration strategy but could be solved using the partition 
strategy. 7  The goal of the third situation was to initiate the validation of equivalence 
of the two models when both strategies are effective. The corresponding lessons 
were implemented in two consecutive years. Students’ strategies and their evolution 
were carefully documented. Different dynamics were identifi ed. The most striking 
result was the diffi culty that these students had at moving from commensuration 
strategies to partition strategies, even when commensuration was ineffective. These 
diffi culties were confi rmed by the evolution of students’ answers at a test taken by 
the students before and after the teaching sequence in the fi rst year of experimentation. 
All students signifi cantly progressed in their answers to questions that favored the 
commensuration strategy or were neutral, only one student progressed on questions 
blocking the commensuration strategy. Diffi culties met in using commensuration 
and efforts made for overcoming these diffi culties in fact tended to reinforce this 
strategy and the associated conception of rational numbers; more was needed for 

7   This is the case for instance when pupils are asked to fi nd a rational measure for a stick, a unit 
stick being provided, but the limitation of the physical space and material provided does not allow 
them to implement the strategy of commensuration. 
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integrating an alternative conception in terms of partition, despite the fact that it 
seemed  a priori  much more accessible than the commensuration conception.   

17.4.2     An Example of Didactical Engineering Combining 
the Theory of Didactical Situations with Semiotic 
Perspectives 

 The second example I consider is substantially different. It corresponds to a didacti-
cal engineering developed by Maschietto in her doctoral thesis (Maschietto  2002 ) on 
the transition between Algebra and Analysis. The goal of this DE was to explore the 
possibility of introducing students very early to the local/global game on functional 
objects fundamental in Calculus and Analysis, through the introduction of the deriva-
tive in terms of local linear approximation. The main hypothesis was that, through an 
appropriate use of the potential offered by symbolic and graphical calculators, this 
local/global game could be initiated already in high school, and that the idea of derivative 
could be built by the students as mathematization of a perceptive phenomenon. 
Another aim of this DE whose theoretical framework combined the theory of didactical 
situations and the theory of semiotic mediations (Bartolini Bussi and Mariotti  2008 ) 
was to analyze how gestures and metaphors (Arzarello and Edwards  2005 ; Lakoff 
and Nuñez  2000 ) contributed to the mathematization process and the cognitive 
development of students, as summarized by Maschietto ( 2008 , p. 208):

  The research hypothesis is that the transformations of the graphical representation of a function 
through the use of zoom-controls and the experience of the perceptive phenomena of “micro-
straightness” that these transformations provoke, can give rise to the formulation of some specifi c 
language, the construction of metaphors and the production of gestures and specifi c signs by 
the students. Our hypothesis is also that adequately exploited by thke teacher, these germs can 
lead to an entrance in the local/global game, fundamental in Calculus and Analysis hardly 
observed at high- school level.  

We fi nd in this DE interesting variations from the standard case; they illustrate how, while 
maintaining the foundational values of this methodology, researchers can adapt it to their 
theoretical culture and needs. In this presentation, I will try to make clear how the theoreti-
cal combination at stake affects the methodological work. 

17.4.2.1    Preliminary Analyses 

 In this DE, we observe still the same attention paid to preliminary analyses. 
Maschietto developed a detailed analysis of the different perspectives that can be 
attached to a function: punctual, local, global, of the idea of local straightness, and 
of thinking modes in Analysis. Her epistemological analyses also aimed at under-
standing how, before the offi cial introduction of the concept of limit, the language 
of infi nitesimals could support the transition from Algebra towards Calculus, foster-
ing the identifi cation of rules for computations taking into consideration the 
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respective order of magnitudes of the quantities involved. 8  From an institutional 
perspective, the DE was strongly constrained. Realizations could only be organized 
at the end of the school year in grade 11 in the Italian context, and in usual practices 
very few sessions were devoted to the topic. Moreover the use of calculators was 
usually limited in ordinary classrooms and that of symbolic calculators nearly non-
existent. What was proposed was thus far apart from usual practices and would have 
been impossible to observe in naturalistic conditions. In fact, Maschietto worked 
with a teacher used to collaborate with researchers, but the institutional constraints 
limited the realization to a few sessions. Six sessions of 90 min were initially 
planned, but the thesis only analysed the three fi rst sessions implemented in each 
of the three experimentations carried out. 

 Didactical analysis classically reviewed research carried out in that area which is 
substantial from the seminal work by Tall ( 1989 ). What this review showed never-
theless was that, even when the property of local straightness was put to the fore and 
the visualization potential of technology used for making students aware of it, the 
responsibility of the mathematization process was hardly devolved to them. 
Moreover, with few exceptions (see, for instance, Defouad  2000 ), the distance 
between what was seen on the screen of calculators or computers, or the equations 
provided by the calculator for tangent lines and the ideal mathematical objects 
was not necessarily questioned; thus the mathematization process was not fully 
developed. Research has also shown that when students enter Calculus, the idea of 
tangent is not new to them; they have coherent conceptions, geometric and algebraic 
ones, coming from the experience gained when working with circles. These 
 conceptions lead to characterize the tangent to a curve as a line having a unique 
intersection point with the curve and staying on the same side of it, but not in terms 
of proximity (Castela  1995 ). This conception has to be questioned and as research 
also shows, usual teaching does not pay much attention to the reconstruction needed. 
Maschietto pointed out that, in Italy, these conceptions could be reinforced through 
the teaching of conics in grade 10. Her preliminary analyses also reviewed research 
developed on gestures and embodiment, as well as the metaphorical vision of 
mathematics developed by Lakoff and Nuñez ( 2000 ).  

17.4.2.2    Conception and Analysis a Priori 

 The conception phase of the DE relied on these preliminary analyses. In the fi rst situ-
ation, students were asked to consider six different functions and after entering them 
in the calculator and getting their graphical representation in the standard window, to 
make successive zooms around particular points and to explore what happened. 

 They were also asked to sketch the initial representation and those obtained after 
two zooms and at the end of the exploration (when they had the feeling that the 
graphical representation was more or less stable), before moving to another function. 

8   For instance, taking into account the fact that, in the neighbourhood of 0, the order of magnitude 
of  x 2  + x is the order of magnitude of x. 
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The number and characteristics of the proposed functions and the selected points are 
evidently micro-didactical variables for this task. In the DE, the value of these was 
chosen so that students fi rst met differentiable functions, then faced a function not 
differentiable at a point but having left and right derivatives (the function defi ned by 
f(x) = −x 3  − 2∣x∣ + 4), a linear function and a function with a more complex behavior 
(the function defi ned by f(x) = 4 + x.sin(1/x) for x  0 and f(0) = 4). It was hypothe-
sized that the fi rst examples would lead students to perceptively identify the local 
straightness phenomenon and to expect its emergence for further examples. The 
examples of non-differentiable functions would then oblige them to realize that there 
exist exceptions to this apparently common behavior and that these exceptions might 
present different characteristics. It was also expected that the dynamic process of 
zooming would make emerge discourses and metaphors able to support the further 
mathematization of the perceptive phenomena of local straightness. The drawings 
asked of the students were expected to be a useful support for this emergence, and for 
the substantial collective discussion at the end of the session. These drawings were 
also data to be used for the  a posteriori  analysis. Moreover, for each function two 
different points were selected for insisting on the local nature of the observed 
phenomenon. Students worked in pairs with one calculator for each pair and one 
common graphical production to deliver. This is a classical organization in DE for 
fostering verbal exchanges and making these accessible to researchers. 

 The aim of the second situation was the mathematization of this perceptive phe-
nomenon. A differentiable function was selected, different from those already envis-
aged, and a particular point of its graphical representation. Students were asked to 
check its local behavior around this point and to fi nd the equation of the line they 
had got on the screen. It was hypothesized that the different groups would manage 
the zooming process in different ways and stop it at different times, obtaining thus 
close but different lines. Using the Trace command or numerical values from the 
Table application of the calculator for getting coordinates of a second point of their 
line, they would thus get different equations. At this stage, it was planned that the 
teacher would collect and write on the blackboard all these equations and would 
launch a collective discussion. It was hypothesized that the view of the equations, 
close but different would lead students to consider all these lines as approximations 
of one ideal object: the tangent to the curve, whose equation they could conjecture 
from the equations written on the blackboard. The validation of this conjecture was 
not supposed to result from mere a-didactical interaction with the milieu. In the 
scenario for this session, it was planned that the teacher would ask students to fi nd 
a common way of expressing the different computations and that, if this was not 
spontaneously proposed by them, she would introduce the idea of giving account of 
the commonalities between these different calculations through the use of a letter h 
representing the different small increments chosen by the students. From this point 
a collective computation was expected to lead to an equation for the line depending 
on h, but becoming the ideal equation when h was made equal to 0 (in some sense 
when infi nite zooming was performed). This should allow the teacher both to 
institutionalize the defi nition of the tangent to a curve at a given point in terms of 
linear approximation, and the specifi c type of computation that allowed fi nding its 
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equation. For this second situation, the characteristics of the function and of the 
point were the main micro-didactical variables of the task. In the DE, two different 
choices were successively made: a polynomial function of degree 2 and then one of 
degree 3, with simple coeffi cients and of a point whose coordinates were such that 
the ideal equation could be easily conjectured. Choosing a polynomial function and 
using the letter h in the symbolic computation resulted in the equation of the line 
described by a polynomial in h (after simplifi cation by h), which made the reasoning 
easier. Choosing a polynomial of degree 3 made that the algebraic strategy known 
from these students for fi nding tangents to conics did no longer work. Once again 
students worked in pairs. In the third situation, it was planned to begin to consolidate 
the form of computation that had been introduced and also to connect this conception 
of the tangent in terms of approximation with those conceptions, geometric and 
algebraic, mentioned above, reinforced in grade 10, through the work with conics. 

 As mentioned above, it was hypothesized that during the three sessions, the students 
would combine gestures with the use of language and different semiotic representations 
for making sense of the situations and exchange with other students and the teacher. 
However, the exact forms these combinations would take, and the language that 
students were likely to introduce for qualifying local straightness was not anticipated. 
From that point of view, the DE had more an exploratory purpose. 

 Each session lasted 90 min and combined a phase of autonomous work by the 
students and a phase of collective discussion. Its  a priori  analysis was structured in 
the thesis around the following dimensions:

•    the preparation of students’ worksheets and analysis of them in terms of 
mathematical content, pre-requisites, didactical variables;  

•   the analysis of the role to be played by graphic and symbolic calculators in each 
phase of the session;  

•   the analysis of the work expected from the students, the anticipation of possible 
strategies and diffi culties;  

•   the analysis of the work expected from the teacher in each phase of the session, 
and of the distribution of responsibility expected between students and teacher.     

17.4.2.3    Data Collection,  a Posteriori  Analysis and Validation 

 The collected data consisted of students’ worksheets and productions, videos of one 
particular group and of collective phases, observation notes for different groups 
(two or three depending on the experimentation) according to guidelines defi ned in 
the analysis  a priori . A test taken by students 2 weeks after the teaching experiment 
and a questionnaire fi lled by them regarding their participation in this experience 
were added. The semiotic perspective impacted the collection of data (those in 
charge of video-recording for instance tried to capture students’ and teacher’s gestures 
as much as possible) and the  a posteriori  analysis of the sessions. 

 The  a posteriori  analysis of each session combined two levels. The fi rst level 
presented a global analysis of the session in its relation to the  a priori  analysis 
(regarding the scenario of the session, the distribution between group work and 
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collective discussions, the strategies developed by the students and the main charac-
teristics of their work, the diffi culties observed, the teacher’s role…). The second 
level was a fi ne-grained analysis of the data collected during the session elucidating 
the conceptualization processes at stake and their characteristics, through the role 
of the calculator, of metaphors, of discourse and gestures, of interactions between 
students during group work and between students and teacher. 

 We illustrate this methodological work by a few examples taken from the 
 a posteriori  analysis of the fi rst session. For this session, the global analysis was 
structured around four dimensions: the scenario, the localization of the perspective, 
the emergence of the invariant and the role of the teacher. Regarding the localization 
of the perspective for instance, the main elements taken into account in this global 
approach were the characteristics of the graphical representations drawn by the 
different groups. A specifi c list of codes had been developed in the  a posteriori 
 analysis of the fi rst experimentation, starting from students’ productions. It was 
used again in the  a posteriori  analysis of the second and third experimentation. 
These codes showed the expected evolution of representations along the zoom 
process, but they also made evident the strength of the usual didactic contract 
regarding graphical representations of functions and the diffi culty most students 
thus faced when the zooming process makes the axes disappear. 

 The analysis of data for the observed groups and for the collective discussion then 
combined different semiotic elements for clarifying the conceptualization  processes 
at stake and the characteristics of the situation that fostered these conceptualizations 
(characteristics of the task, of the milieu and of social interactions). In particular, 
discourse, inscriptions and gestures were tightly connected in the analysis. 

 In the  a posteriori  analysis, the different levels of analysis for one particular ses-
sion were then combined for testing the conjectures made in the  a priori  analysis 
regarding this particular session. The same type of  a posteriori  analysis was made 
for the three sessions, then the different results were synthesized and triangulated 
with those resulting from the analysis of the fi nal test and questionnaire. 

 The following two quotations by Maschietto ( 2008 ) in which the author gives a 
synthetic vision of her research work, illustrate the form that these analyses 
have taken. The fi rst quotation (pp. 215–216) regards the emergence of the linear 
invariant and an interesting phenomenon accompanying this emergence. This 
phenomenon was not anticipated in the  a priori  analysis but it had a positive effect 
on the dynamics of the situation.

  Excerpt 1: DAL-DF-MA group (Exp_A)   

 15. DF     “Forward zoom” ( he carries out the 3rd ZoomIn    )   
  16. DF     “Again” ( he carries out the 4th ZoomIn )   
  17. DF     “It becomes straighter and straighter”   
  18. DF     “The drawing is the same as before. Even if the result is the same, we’ll 

write it down”. 
 After getting the representation in the standard window, DF does 2 ZoomIns   
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    DF     “I want the other piece of function. It’s still a line! Draw at least one axis” 
( addressed to MA. DF carries out the 3rd ZoomIn )   

  DF     “We’ll stop here because it stays the same”.   

   In the pencil-and-paper environment (Fig.  17.1a ), the linearity is emphasised by the use 
of a ruler to draw the graphical representation that appears on the calculator display on the 
third sheet (end of the exploration).
   In other protocols (Exp_B and Exp_C), the students try to explain the end-point of their explo-
ration, for example: “REASON WHY WE STOPPED CARRYING OUT THE ZOOMS →  The 
more we used the ZoomIn, the more the curve sector considered tended to become a line” . We 
observe here a dynamic language, that draws on the infi nite approximation process.  

 In the protocols, there are two distinct phenomena, linked to the local point of view. The 
fi rst regards the strength of the “straight” nature at a perceptive level. The second regards 
the interference of the global point of view with the local one. As far as the fi rst phenome-
non is concerned, the comments (for example, Excerpt 2) on the exploration of the corner 
(function y3 9 ) highlight that at this stage the students have, in general, clearly identifi ed the 
graphic phenomenon “it becomes straight using the zoom”.  

 Excerpt 2: DAL-DF-MA group (Exp_A)  
 In all these cases the functions, even with the second zoom, are similar to a line with a 
gradient ≥0 but:

 –    y4 10  is similar to a line only after the 4th zoom [Note: at x = 1/pi]  
 –   y3 is similar to two lines (one with m > 0 and the other with m < 0)    

 However, this recognition does not allow them to distinguish the situation of the func-
tion that is differentiable at the given point and that of the function having two different half 
derivatives and leading to a corner. In fact, these situations, mathematically different, are 
unifi ed by their common “straightness” recognized at a perceptive level (Excerpt 2). The 
second function does not therefore represent a counter-example, unlike what is hypothe-
sized in the a-priori analysis. Their distinction will only occur during the mathematization 

9   y3(x) = − x 3  − 2 ∣ x ∣ + 4  at  x = 0. 
10   y4(x) = 4 + sin(1/x)at x  0, = 4  at x = 0 

  Fig. 17.1    Window at the end of the exploration process (Exp_A)       
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 The second quotation (pp. 217–218) shows the importance attached to gestures 
in the  a posteriori  analysis:

 In accordance with the a-priori analysis, the activity presented to the students 
shows its potential for the production of gestures and metaphors. These 
appeared both during the communication inside the groups and during the 
collective discussions. The analysis of the students’ protocols and the discussions 
show that the conceptualisation of the zoom- controls, that supports the locali-
sation of the view, appears through gestures that accompany the explanation 
of the exploration strategies and linguistic expressions that can be analysed in 
terms of metaphors.  

 A particularly representative example is the analysis of the gestures of one 
student, PM (Exp_A), while he is explaining the exploration of a graphical 
representation. The ZoomIn control is used in order to see some of the char-
acteristics of the curve in a detailed way and is associated with a downward 
movement meaning an “entrance into the curve,” that corresponds with moving 
into the curve (ZoomIn gesture, Fig   .  17.2a ). The ZoomOut control, which is 
used to obtain a bigger curve and to study its characteristics better, is associ-
ated with an upward movement meaning an “exit from the curve” (ZoomOut 
gesture, Fig.  17.2b ), which also corresponds with moving away from the curve. 
PM’s gestures lead the details of the curve to be interpreted as downwards and the 
overall curve as upwards. PM also creates a space in front of him for controlling 
these processes (the standard window of the calculator becomes a little rect-
angle that is constructed by his fi ngers, Fig.  17.2c ).

  Fig. 17.2    PA’s gestures (Exp_A): ZoomIn, ZoomOut, standard window       

process of the linear invariant. The real counter-example is provided by the y4 function, 
the graphical representation of which, after subsequent zooms, is perceptively different. In 
this case there is no move from the “curve” category to the “straight” category, as happens 
for all the other functions.   
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   The realization took place in three different classes as mentioned above, with 
some minor adjustments and evident regularities were observed. Globally the 
hypotheses mentioned above were confi rmed despite the fact that it was not possible 
to cover all that had been planned and that, due to their previous experience 
with conics, some groups conjectured very early that the line was the tangent and 
privileged an algebraic strategy for fi nding its equation, persisting in that strategy 
with the polynomial of degree 3 in the second and third experiments. Some interesting 
and non-anticipated phenomena also occurred but they did not necessarily invalidate 
the  a priori  analysis. For instance, as shown in the fi rst quotation above, it appeared 
that most students considered that straight lines and curves were objects belonging to 
different categories. This conception in fact helped them to consider that the linear 
representations they obtained by zooming were not exactly linear but just very 
close to a linear object, and that linearity could only be reached through an infi nite 
succession of zooms. This helped them to make sense of the notion of tangent as 
an ideal object and of the computations carried out for fi nding its equation. This 
conception nevertheless also led them to think that the function admitting only left 
and right derivatives at a given point was not very different from the regular ones. 
This question was considered again later on once the derivative was properly 
defi ned. As expected also, gestures accompanied students’ verbalizations and work, 
and the language and metaphors used by students showed evident embodiment. 
They introduced their own expressions for qualifying the phenomenon of local 
straightness, saying for instance that the functions were “zoomata lineare” at a particular 
point and these were accepted and used by the teacher. Validation of the DE did not 
just use the comparison of the  a priori  and  a posteriori  analysis of the sessions, but 
also the data from the questionnaire and interviews taken by the students after the 
completion of the process as mentioned above. 

 I cannot enter into more details here. The interested reader can fi nd these in the 
references mentioned above. But I would like to stress a few points. According to 
the author, this methodological construction is a DE and I fully agree with this posi-
tion, recognizing in it the fundamental features of DE presented above. This is nev-
ertheless a construction sensibly different from that described in the fi rst example. 
For instance, it is diffi cult to model the fi rst situation as a game that students enter 
with basic strategies that they must make evolve towards winning strategies. 
Students are asked to stop their exploration when they have got the feeling that the 
graphical representations will no longer substantially evolve, which is a rather fuzzy 
condition. Moreover, if the situations are designed in order to ensure productive 
adidactical interaction with the milieu, in the construction of the situations an 
important role is given to collective discussions piloted by the teacher and to her 

   The reference to the ZoomOut control identifi es the space under his eyes, while the palm of 
one hand is associated with the fl at part that is obtained from the ZoomIn. In this way, PM 
has created his own space, which is suggested by the activity with the calculator, where the 
two different transformations of the curve can co-exist and be controlled. 
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mediations. These collective discussions are not just institutionalization phases. As 
evidenced by the  a posteriori  analysis, they play an essential role in the progression 
of knowledge beyond what has been achieved by each pair of students in the phase 
of autonomous work. In some sense, they play the role given in the theory of didac-
tical situations to situations of formulation and of validation but they do not obey a 
similar organization; they are not supported by the same theoretical constructs. We 
can see here the effect of a combination of the theory of didactical situations and the 
theory of semiotic mediation. It shows us that, as a research methodology, DE can 
productively combine several theoretical approaches. Another close example is 
provided by the thesis by Falcade ( 2006 ) also combining the theory of didactical 
situations and the theory of semiotic mediation in an approach to functions using 
Cabri-Géomètre (see also Falcade et al.  2007 ).    

17.5    Some Recent Developments of Didactical Engineering 

17.5.1     Didactical Engineering and the Anthropological 
Theory of Didactics 

 After considering these two examples, in the last part of the paper, we enter into 
some recent developments of didactical engineering, referring more precisely to the 
work carried out at the 2009 summer school. 

 As mentioned earlier, the anthropological theory of didactics has developed in 
the last decade a design perspective based on the idea of Programme of Study and 
Research (PSR in the following). At the 2009 summer school, Chevallard proposed 
to refund didactical engineering around this idea (Chevallard  2011 ). I will not follow 
him up to this point but would like to situate Chevallard’s perspective with respect 
to the vision of DE that has been presented in the fi rst sections of this chapter, and 
briefl y explore some possible complementarities between these. 

 Through PSR, Chevallard wants to build a new epistemology opposing what he 
calls the “monumentalistic” doctrine pervading contemporary school epistemology 
(Chevallard  2006 ,  in press ). As explained by Chevallard ( 2006 ):

  For every praxeology 11  or praxeological ingredient chosen to be taught, the new epistemol-
ogy should in the fi rst place make clear that this ingredient is in no way given, or a pure 
echo of something out there, but a purposeful human construct. And it should consequently 
bring to the fore what its raisons d’être are, that is, what its reasons are to be here, in front 
of us, waiting to be studied, mastered, and rightly utilised for the purpose it was created to 
serve. (p. 26)  

11   The notion of praxeology is central in the anthropological theory of didactics that considers that 
knowledge emerges from human practices and is shaped by the institutions where these practices 
develop. Praxeologies ,  which model human practices, at the most elemental level (punctual prax-
eologies), are defi ned as 4-uplets made of a type of task, a technique for solving this type of task, 
a discourse explaining and justifying the technique (technology), and a theory legitimating the 
technology itself. 
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In coherence with this vision, a PSR starts from the will to bring an answer to some 
generating question. In fact, at the 2009 summer school, Chevallard distinguished 
between different forms of PSR, and especially between fi nalized and open PSR. In 
fi nalized PSR, the main praxeologies aimed at are known. They correspond for 
instance to praxeologies aimed at by a given curriculum. The designer must found a 
question or a succession of questions which are able to generate the encounter of the 
corresponding types of tasks and the development of techniques and technological 
discourse constituting these praxeologies. This is done by a combination of study of 
existing works and inquiry processes. In open PSR, the situation is quite different. 
There is a generating question but the praxeological equipment needed for answering 
it is not  a priori  known; neither it is necessarily limited to mathematical praxeologies. 
This is for instance often the case in project work, and modeling activities. 

 Even in the case of fi nalized PSR, the proposed vision however is at some distance 
from the forms of DE mentioned above, especially in what concerns the milieu and its 
evolution. This is notably due to the place given to cultural answers to the question at 
stake in PSR. In the didactical schema that Chevallard proposes (Chevallard  in press ), 
a role is given to cultural answers or pieces of information accessible to the learners in 
the media and especially on the Internet. It is supposed that such cultural answers or 
pieces of information can enter the milieu on the initiative of teacher or students and 
that, duly studied and criticized, they should contribute to the elaboration of the 
expected answer to the question at stake. In the anthropological theory of didactics, 
this is encapsulated in the idea of  media-milieu dialectics . 

 Differences with the classical vision of DE also concern more globally what the 
researcher ambitions to optimize and control in the design phase and consequently 
they affect the  a priori  analysis. This is especially the case for open PSR. For that 
case Chevallard denies the possibility of an  a priori  analysis. He thus introduces 
the idea of  analysis in vivo , fully integrated into the inquiry work. This position can 
be questioned all the more as the publications of researchers working within this 
perspective show that they develop some form of  a priori  analysis to select questions 
having a strong generating power under the institutional conditions and constraints 
at stake. What is clear, however, is that, for such open PSR, in the  a priori  analysis 
researchers are more interested in investigating the didactical potential of the 
selected question, trying to make clear how its study can develop and generate 
new and interesting questions, motivate the study and progressive structuring of 
important praxeologies, than in the optimization of students’ learning trajectories. 
In fact, the  a priori  analysis becomes an on-going process that develops and adjusts 
along the implementation phase of the DE. The doctoral thesis by Barquero ( 2009 ), 
(see also Barquero et al.  2008 ) analyzing the design and implementation of a PSR 
devoted to the modeling of population dynamics with undergraduate students 
provides a good example of such functioning. 

 There is no doubt that, from a DE perspective, the notion of open PSR makes it 
possible to address research issues attached to the functioning and viability of 
didactical forms more open than those usually addressed by existing DE such as 
project work and modeling activities. These didactical forms still have a marginal 
position in educational systems but they are also more and more encouraged as 
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evidenced for instance by the number of European projects currently funded 
around inquiry-based education in mathematics and science. 12  As a research meth-
odology, DE certainly needs some accommodation in order to cope effi ciently with 
the research issues that emerge from this evolution, and also for taking into account 
the dramatic changes in access to information of the digital era. From this point of 
view, the design perspective offered by the anthropological theory of didactics 
seems promising.  

17.5.2     Research and Development: Didactical Engineering 
of Second Generation 

 The second evolution I would like to mention is that introduced by Perrin-Glorian 
( 2011 ) who distinguishes between DE of fi rst and second generation. In this chap-
ter, we have considered DE from a research perspective focusing on its character-
istics as a research methodology. We cannot forget nevertheless that from its 
emergence DE had the ambition to contribute both to research and development. In 
the historical review we mentioned the diffi culties met at converting DE developed 
for research aims into useful educational resources. This problem is still not solved 
but the increase in our knowledge of teachers’ representations and practices, and of 
possible dynamics for their evolution makes us better understand the diffi culty of 
the enterprise. The distinction introduced by Perrin-Glorian directly addresses this 
issue and we consider it because it can also affect the vision of DE as a research 
methodology. Contrasting RDE and DDE (research didactical engineering and 
development didactical engineering), she compares the levels of theoretical con-
trols in which these two forms of DE engage. She thus points out that even if in 
both cases the analysis of the mathematical knowledge at stake and of the students’ 
knowledge, the defi nition of the situations and associated milieus are under theo-
retical control, for DDE much more fl exibility is needed for preparing the adapta-
tion to a diversity of contexts. The loss of control is even greater with regard to the 
role of the teacher while institutional constraints cannot be partly removed as is 
often the case in RDE. These considerations lead her to postulate that before trying 
to implement a DE product coming from research in ordinary classes, it is neces-
sary to plan at least two different levels of DE, each one having specifi c aims: This 
is the whole process that she names DE of second generation. 

 At the fi rst level, the goal is the theoretical validation of the situations of the DE 
(i.e. their capacity in producing the knowledge aimed at) and the identifi cation of 
the fundamental choices of the DE, separating what is essential from what is linked 
to the particular context and could be changed, and adapted. The associated realization 
takes place in a rather protected environment and under the control of researchers as 
is the case for RDE. 

12   See the portal  www.scientix.eu  for information about these projects. 
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 At the second level, the goal is the study of the adaptability of such validated 
situations to ordinary classrooms and teachers through the negotiation of the DE with 
teachers who have not been involved in the fi rst phase. These negotiations and the 
transformations introduced by the teachers involved in this second phase are taken 
as objects of study together with their impact on the DE itself and its outcomes. It is 
expected that the results allow researchers to determine what concessions can be 
made in such negotiations, what should be preserved and why, and to identify what 
forms of control can be maintained. 

 As Perrin-Glorian points out, envisaging this second level modifi es in fact the 
fi rst level because it obliges researchers to move from a top-down conception of 
transmission of research results to an idea of adaptation much more dialectical. 
As she adds:

  The problem is no longer to control and disseminate engineering products coming from 
research but to determine the key variables, in terms of knowledge involved, piloting the 
didactical engineering that one wants to make a resource for ordinary teaching, and to study 
the conditions of their dissemination. (p. 69, our translation)  

She then illustrates this vision by an example regarding the teaching of axial 
symmetry at the transition between elementary school and junior high school. 

 This refl ection in fact points out that the transition from research to development 
needs specifi c forms of research, extending our view of the ways didactical engineering 
and educational research can be connected.   

17.6    Conclusion 

 In this chapter, I have tried to present didactical engineering, focusing on its dimension 
of research methodology. To help readers make sense of this methodology, I have 
reviewed its history from its emergence in the early 1980s until now. I have tried to 
clarify its main characteristics and to show that this methodology, even if it has 
been shaped by the values and constructs of the theory of didactical situations, is a 
methodology that can be productively used beyond the frontiers of this theory, and 
is enriched by the different uses made of it. I have also tried to show that, as for 
many other constructs in educational research, didactical engineering is a living and 
dynamic concept which adapts to the evolution of the fi eld, to the advances of educational 
knowledge, and to the evolution of the social and cultural contexts of mathematics 
education. I also hope to have made clear that this methodology, although fl exible, 
imposes a systemic view of the fi eld, a view of the classroom as a social organization, 
of learning as a combination of adaptation and acculturation processes and a particular 
sensitivity to the discipline and its epistemology.     
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