hapter 22: Object-Based Databa

Database System Concepts, 6t Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

SES

http://www.db-book.com/

Chapter 22: Object-Based Databases

Complex Data Types and Object Orientation
Structured Data Types and Inheritance in SQL
Table Inheritance

Array and Multiset Types in SQL

Object Identity and Reference Types in SQL
Implementing O-R Features

Persistent Programming Languages

O O O O Oo O o 0O

Comparison of Object-Oriented and Object-Relational Databases

Database System Concepts - 6t Edition 22.2 ©Silberschatz, Korth and Sudarshan

Object-Relational Data Models

0 Extend the relational data model by including object orientation and
constructs to deal with added data types.

0 Allow attributes of tuples to have complex types, including non-atomic
values such as nested relations.

0 Preserve relational foundations, in particular the declarative access to
data, while extending modeling power.

0 Upward compatibility with existing relational languages.

Database System Concepts - 6t Edition 22.3 ©Silberschatz, Korth and Sudarshan

Complex Data Types

0 Motivation:
Permit non-atomic domains (atomic = indivisible)

Example of non-atomic domain: set of integers,or set of
tuples

Allows more intuitive modeling for applications with
complex data

O Intuitive definition:

allow relations whenever we allow atomic (scalar) values
— relations within relations

Retains mathematical foundation of relational model

Violates first normal form.

Database System Concepts - 6t Edition 22.4 ©Silberschatz, Korth and Sudarshan

Example of a Nested Relation

0 Example: library information system
0 Each book has
title,
a list (array) of authors,
Publisher, with subfields name and branch, and
a set of keywords
O Non-1NF relation books

title author_array publisher keyword_set
(name, branch)

Compilers | [Smith, Jones] | (McGraw-Hill, NewYork) | {parsing, analysis}
Networks | [Jones, Frick] (Oxford, London) {Internet, Web}

Database System Concepts - 6t Edition 22.5 ©Silberschatz, Korth and Sudarshan

ANF Decomposition of Nested Relation

N title author | position
0 Suppose for simplicity that C] Smith 1
title uniquely identifies a ompllers | Smit
book Compilers | Jones 2
In real world ISBN is a ﬁetworlﬁs {:opelf ;
unique identifier etworks 1;}“5
0 Decompose books into Aurnors
ANF using the schemas: title keyword
(title, author, position) Compilers | parsing
(title, keyword) Compilers | analysis
(title, pub-name, pub- Networks | Internet
branch) Networks | Web
0 4NF design requires users keywords
to include joins in their
queries. title pub_name | pub_branch
Compilers | McGraw-Hill | New York
Networks Oxford London
books4

Database System Concepts - 6t Edition 22.6 ©Silberschatz, Korth and Sudarshan

g INF, 2NF, 3NF, BCNF, 4NF
0 1NF (First Normal Form) Rules

Each table cell should contain a single value.
Each record needs to be unique.

T ——

0 A tableisin 2nd Normal Form if:
The table is in 1st normal form, and

All the non-key columns are dependent on the table’s primary
key (Avoids repetitions of data in tables).

0 A table is in third normal form if;
A table is in 2nd normal form.

It contains only columns that are non-transitively dependent on
the primary key

Database System Concepts - 6t Edition 22.7 ©Silberschatz, Korth and Sudarshan

INF, 2NF, 3NF, BCNF, 4NF

Customer‘ .

)

CustomeriD]]
C1000
C1010
C1020
C1030
C1040
C1050

CustomerName || CustomerCity | | Population

Ford Dearborn 94000
GM Detroit 670000
Dell Austin 950000
HP Palo Alto 67000
Apple Cupertino 60000
Boeing Chicago 2700000

0 A table is in BCNF Normal Form if:
The table is in 3rd normal form, and
it has no more than one Candidate Key

» A Candidate key is a unigue key as the primary key to
identify a record uniquely in a table but a table can have
multiple candidate keys. A candidate key may or may not be

a primary key.

0 A tableis in 4rth Normal Form if:
The table is in BCDF normal form, and
It should have no multi-valued dependency.

Database System Concepts - 6t Edition

22.8

©Silberschatz, Korth and Sudarshan

INF, 2NF, 3NF, BCNF, 4NF

0 MVD or multivalued dependency means that for a single value of
attribute ‘a’ multiple values of attribute ‘b’ exist. We write it as,

a->->b

PROJECT |[HOBBY
MS Reading

Music

MS Music

Oracle Reading

Here project and hobby are multivalued
attributes because they contain different values
for the same name(Geeks)

Attributes(columns): a,b,c
Tupples(rows):t1,t2,t3,t4

R=set of attributes r=relation

Database System Concepts - 6t" Edition 22.9 ©Silberschatz, Korth and Sudarshan

INF, 2NF, 3NF, BCNF, 4NF

1NF Example
FULL NAMES PHYSICAL MOVIES RENTED SALUTATION
ADDRESS
Janet Jones First Street Plot Pirates of the Ms.
No 4 Caribbean
Janet Jones First Street Plot Clash of the Titans Ms.
No 4
Rabert Phil 3" Street 34 Forgetting Sarah Mr.
Marshal
Robert Phil 3" Street 34 Daddy’s Little Girls | Mr.
Robert Phil 5% Avenue Clash of the Titans Mr.
Example of 1NF in DBMS
MEMBERSHIP ID FULL NAMES PHYSICAL ADDRESS SALUTATION
2NF Exam ple 1 Janet Jones First Street Plot No 4 Ms.
2 Robert Phil 3 Street 34 Mr.
3 Robert Phil 5" Avenue Mr.
MEMBERSHIP ID MOVIES RENTED
1 | Pirates of the Caribbean
1 Clash of the Titans
2 [Forgetting Sarah Marshal
2 Daddy’s Little Girls
3 [Clash of the Titans

We have divided our 1NF table into two tables viz. Table 1 and Table2. Table 1 contains member
information. Table 2 contains information on movies rented.

We have introduced a new column called Membership_id which is the primary key for table 1.
Records can be uniquely identified in Table 1 using membership id

Database System Concepts - 6t" Edition 22.10 ©Silberschatz, Korth and Sudarshan

INF, 2NF, 3NF, BCNF, 4NF

3NF Example
Below is a 3NF example in SQL database:
MEMBERSHIP ID FULL NAMES PHYSICAL ADDRESS SALUTATION ID
1 JanetJones | First Street Plot No4 2
2 Robert Phil 3™ Street 34 1
3 Robert Phil | 5* Avenue 1
MEMBERSHIP ID MOVIES RENTED
1 Pirates of the Caribbean
1 Clash of the Titans
Z Forgetting Sarah Marshal
2 Daddy’s Little Girls
3 Clash of the Titans
SALUTATION ID SALUTATION
1 M.
2 Ms.
3 Mrs.
4 Dr.

We have again divided our tables and created a new table which stores Salutations.

Database System Concepts - 6t" Edition 22.11 ©Silberschatz, Korth and Sudarshan

Complex Types and SQL

0 Extensions introduced in SQL:1999 to support complex types:
Collection and large object types
» Nested relations are an example of collection types
Structured types
» Nested record structures like composite attributes
Inheritance
Object orientation
» Including object identifiers and references
O Not fully implemented in any database system currently

But some features are present in each of the major commercial
database systems

» Read the manual of your database system to see what it
supports

Database System Concepts - 6t Edition 22.12 ©Silberschatz, Korth and Sudarshan

w Structured Types and Inheritance in SQL

0 Structured types (a.k.a. user-defined types) can be declared and used in SQL
create type Name as

(firsthname varchar(20),
lastname varchar(20))
final

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(20))
not final

Note: final and not final indicate whether subtypes can be created

0 Structured types can be used to create tables with composite attributes
create table person (
name Name,
address Address,
dateOfBirth date)
0 Dot notation used to reference components: name.firstname

Database System Concepts - 6t Edition 22.13 ©Silberschatz, Korth and Sudarshan

Structured Types (cont.)

0 User-defined row types

create type CustomerType as (
name Name,
address Address,
dateOfBirth date)
not final

0 Can then create a table whose rows are a user-defined type
create table customer of CustomerType

0 Alternative using unnamed row types (amrpocdiépIicTOl TUTTOI
YPOAHHWY).
create table person_r(

name row(firsthame varchar(20),
lastname varchar(20)),

address row(street varchar(20),
city varchar(20),
zipcode varchar(20)),

dateOfBirth date)

Database System Concepts - 6t Edition 22.14 ©Silberschatz, Korth and Sudarshan

q

=1

Methods

0 create table customer of CustomerType
0 Can add a method declaration with a structured type.
method ageOnDate (onDate date)
returns interval year;
0 Method body is given separately.
create instance method ageOnDate (onDate date)

returns interval year

type CustomerType

for CustomerType <
begin
return onDate - self.dateOfBirth;
end
0 We can now find the age of each customer:
select name.lasthame, ageOnDate (current_date)

from customer \ Table Customer of

type CustomerType

Database System Concepts - 6t Edition 22.15 ©Silberschatz, Korth and Sudarshan

Constructor Functions
2UVOPTNOEIGC Anuioupyiag

0 Constructor functions are used to create values of structured types

0 E.g.
create function Name(firstname varchar(20), lastname varchar(20))
returns Name
begin
set self.firsthame = firsthname;
set self.lasthname = lasthame;
end

0 To create a value of type Name, we use
new Name('John’, ‘Smith’)

0 Normally used in insert statements
insert into Person values
(new Name(‘John’, ‘Smith),
new Address(’20 Main St’, ‘New York’, “11001’),
date ‘1960-8-22’);

Database System Concepts - 6t Edition 22.16 ©Silberschatz, Korth and Sudarshan

Type Inheritance
KAnpovouikoTnTa TUtTTWV

0 Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

0 Using inheritance to define the student and teacher types
create type Student
under Person
(degree varchar(20),
department varchar(20))
create type 7eacher
under Person
(salary integer,
department varchar(20))

0 Subtypes can redefine methods by using overriding method (emikaAuywn
HEOBODOU) in place of method in the method declaration

Database System Concepts - 6t Edition 22.17 ©Silberschatz, Korth and Sudarshan

Multiple Type Inheritance
[MToAAaTTAR KANPOVOUIKOTNTO

0 SQL:1999 and SQL:2003 do not support multiple inheritance

0 If our type system supports multiple inheritance, we can define a type for
teaching assistant as follows:
create type 7eaching Assistant
under Student, Teacher

0 To avoid a conflict between the two occurrences of department we can
rename them

create type 7eaching Assistant

under
Student with (department as student_dept),
Teacher with (department as teacher_dept)

0 Each value must have a most-specific type (nio cuykekpipgevo TUNO)

Database System Concepts - 6t Edition 22.18 ©Silberschatz, Korth and Sudarshan

Table Inheritance
KAnpovouikoTnTa NMNivakwyv

Tables created from subtypes can further be specified as subtables

E.g. create table people of Person,;
create table students of Student under people;
create table teachers of Teacher under people;

0 Tuples added to a subtable are automatically visible to queries on the
supertable

E.g. query on people also sees students and teachers.

Similarly updates/deletes on people also result in updates/deletes
on subtables

To override this behaviour, use “only people” in query

Database System Concepts - 6t Edition 22.19 ©Silberschatz, Korth and Sudarshan

i

Consistency Requirements for Subtables
ATTaITAOEIC ZUVETTEIOG YTTOTTIVAKWYV

0 Consistency requirements on subtables (utrotrivakecg) and supertables
(UTTEPTTIVOKEC — YOVIKOI TTIVAKEG).

Each tuple of the supertable (e.g. people) can correspond to at
most one tuple in each of the subtables (e.g. students and teachers)

» Violation results to have two records in teachers or
students for the same person

Additional constraint in SQL:1999:

All tuples corresponding to each other (that is, with the same values
for inherited attributes) must be derived from one tuple (which is
inserted into one table).

» That is, each entity must have a most specific type

» Violation: To have a tuple in people corresponding to a
tuple each in students and teachers

Database System Concepts - 6t Edition 22.20 ©Silberschatz, Korth and Sudarshan

oTnVv SQL

0 Example of array and multiset declaration:
create type Publisher as

(name varchar(20),

branch varchar(20));
create type Book as

(title varchar(20),

author_array varchar(20) array [10],
pub_date date,

publisher Publisher,

keyword-set varchar(20) multiset);

create table books of Book;

Database System Concepts - 6t" Edition 22.21

Array and Multiset Types in SQL
UTtrol Mivakwyv Kail MoAAaTTAwyv ZuvoAwyv

©Silberschatz, Korth and Sudarshan

Creation of Collection Values
Anuioupyia Tipwv ZuAAoywv

0 Array construction
array ['Silberschatz’,”Korth’,”Sudarshan’]

0 Multisets
multiset [‘computer’, ‘database’, ‘SQL’]

0 To create a tuple of the type defined by the books relation:
(‘Compilers’, array[Smith’,"Jones’],
new Publisher (‘McGraw-Hill’,’New York’),
multiset [parsing’, analysis’])

0 To insert the preceding tuple into the relation books

insert into books
values
(‘Compilers’, array[Smith’,"Jones’],
new Publisher (‘McGraw-Hill’,” New York’),
multiset [parsing’, analysis’]);

Database System Concepts - 6t Edition 22.22 ©Silberschatz, Korth and Sudarshan

Querying Collection-Valued Attributes
EpwtAuaTta yia 1810TNTEG ZUAAOYWV

0 To find all books that have the word “database” as a keyword,

select title
from books
where ‘database’ in (unnest(keyword-set))

0 We can access individual elements of an array by using indices
E.g.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = "Database System Concepts’

0 To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book

select B.title, A.author
from books as B,

0 To retain ordering information we add a with ordinality clause
select B.title, A.author, A.position

from books as B, unnest (B.author_array) with ordinality as
A (author, position)

Database System Concepts - 6t Edition 22.23 ©Silberschatz, Korth and Sudarshan

Unnesting
AKUpwon €vBeong unnest

0 The transformation of a nested relation into a form with fewer (or no)

relation-valued attributes us called unnesting.

E.Q.

select title, A.author as author, publisher.name as pub_name,
publisher.branch as pub_branch, K.keyword
from books as B,
unnest (B.keyword_set) as K (keyword)

Result relation flat_books

title author pub_name pub_branch keyword
Compilers | Smith | McGraw-Hill | New York parsing
Compilers | Jones McGraw-Hill | New York parsing
Compilers | Smith | McGraw-Hill | New York analysis
Compilers | Jones McGraw-Hill | New York analysis
Networks Jones Oxford London Internet
Networks Frick Oxford London Internet
Networks Jones Oxford London Web
Networks Frick Oxford London Web

Database System Concepts - 6t Edition

22.24

©Silberschatz, Korth and Sudarshan

Nesting
‘EvBeon

0 Nesting is the opposite of unnesting, creating a collection-valued attribute

0 Nesting can be done in a manner similar to aggregation, but using the
function colect() in place of an aggregation operation, to create a multiset

0 To nest the flat_books relation on the attribute keyword:

select title, author, Publisher (pub_name, pub_branch) as publisher,
collect (keyword) as keyword_set

from flat_books

groupby title, author, publisher

0 To nest on both authors and keywords:

select title, collect (author) as author_set,
Publisher (pub_name, pub_branch) as publisher,
collect (keyword) as keyword_set
from flat_books
group by title, publisher

Database System Concepts - 6t Edition 22.25 ©Silberschatz, Korth and Sudarshan

Nesting (Cont.)

0 Another approach to creating nested relations is to use subqueries in
the select clause, starting from the 4NF relation books4

select title,
array (select author
from authors as A
where A.title = B.title
order by A.position) as author_array,

Publisher (pub-name, pub-branch) as publisher,
multiset

as keyword_set
from books4 as B

Database System Concepts - 6t Edition 22.26 ©Silberschatz, Korth and Sudarshan

=& Object-ldentity and Reference Types
Taummm AVTIKEINEVWYV K TuTTOI AVa@Oopdg

0 Define a type Department with a field name and a field head which is a
reference to the type Person, with table people as scope:

create type Department (
name varchar (20),
head ref (Person) scope people)

0 We can then create a table departments as follows

create table departments of Department

0 Referenced table must have an attribute that stores the identifier, called
the self-referential attribute

create table people of Person
ref is person_id system generated;

Database System Concepts - 6t Edition 22.27 ©Silberschatz, Korth and Sudarshan

Initializing Reference-Typed Values

0 To create a tuple with a reference value, we can first create the tuple
with a null reference and then set the reference separately:
Insert into departments
values ("CS’, null)
update departments
set head = (select p.person _id
from people as p
where name = "John’)
where name = "CS’

Database System Concepts - 6t Edition 22.28 ©Silberschatz, Korth and Sudarshan

User Generated ldentifiers
Ava@opd Anpioupyoupevn atro XpnoTtn

0 The type of the object-identifier must be specified as part of the type
definition of the referenced table, and

0 The table definition must specify that the reference is user generated

create type Person
(name varchar(20)
address varchar(20))
ref using varchar(20)
create table people of Person
ref is person_id user generated

0 When creating a tuple, we must provide a unique value for the identifier:
insert into people (person_id, name, address) values

(‘01284567°, ‘John’, 23 Coyote Run’)

0 We can then use the identifier value when inserting a tuple into
departments

Avoids need for a separate query to retrieve the identifier:

insert into departments
values('CS’, '02184567’)

Database System Concepts - 6t Edition 22.29 ©Silberschatz, Korth and Sudarshan

User Generated ldentifiers (Cont.)

0 Can use an existing primary key value as the identifier:

create type Person
(name varchar (20) primary key,
address varchar(20))
ref from (name)
create table people of Person
ref is person_id derived

0 When inserting a tuple for departments, we can then use

insert into departments
values("CS’, John’)

Database System Concepts - 6t Edition 22.30 ©Silberschatz, Korth and Sudarshan

Path Expressions

0 Find the names and addresses of the heads of all departments:

select head —>name, head —>address
from departments

0 An expression such as “head—>name” is called a path expression
0 Path expressions help avoid explicit joins

If department head were not a reference, a join of departments
with people would be required to get at the address

Makes expressing the query much easier for the user

Database System Concepts - 6t Edition 22.31 ©Silberschatz, Korth and Sudarshan

Implementing O-R Features
YAoTtroinon AVTIKEINEVO-ZXECIAKWYV
AgiTOoUupyiwyv

0 Similar to how E-R features are mapped onto relation schemas
0 Subtable implementation

Each table stores primary key and those attributes defined in that
table

or,
Each table stores both locally defined and inherited attributes

Database System Concepts - 6t" Edition 22.32 ©Silberschatz, Korth and Sudarshan

	Slide 1: Chapter 22: Object-Based Databases
	Slide 2: Chapter 22: Object-Based Databases
	Slide 3: Object-Relational Data Models
	Slide 4: Complex Data Types
	Slide 5: Example of a Nested Relation
	Slide 6: 4NF Decomposition of Nested Relation
	Slide 7: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 8: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 9: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 10: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 11: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 12: Complex Types and SQL
	Slide 13: Structured Types and Inheritance in SQL
	Slide 14: Structured Types (cont.)
	Slide 15: Methods
	Slide 16: Constructor Functions Συναρτήσεις Δημιουργίας
	Slide 17: Type Inheritance Κληρονομικότητα Τύπων
	Slide 18: Multiple Type Inheritance Πολλαπλή Κληρονομικότητα
	Slide 19: Table Inheritance Κληρονομικότητα Πινάκων
	Slide 20: Consistency Requirements for Subtables Απαιτήσεις Συνέπειας Υποπινάκων
	Slide 21: Array and Multiset Types in SQL Τύποι Πινάκων και Πολλαπλών Συνόλων στην SQL
	Slide 22: Creation of Collection Values Δημιουργία Τιμών Συλλογών
	Slide 23: Querying Collection-Valued Attributes Ερωτήματα για Ιδιότητες Συλλογών
	Slide 24: Unnesting Ακύρωση ένθεσης unnest
	Slide 25: Nesting Ένθεση
	Slide 26: Nesting (Cont.)
	Slide 27: Object-Identity and Reference Types Ταυτότητα Αντικειμένων κ Τύποι Αναφοράς
	Slide 28: Initializing Reference-Typed Values
	Slide 29: User Generated Identifiers Αναφορά Δημιουργούμενη από Χρήστη
	Slide 30: User Generated Identifiers (Cont.)
	Slide 31: Path Expressions
	Slide 32: Implementing O-R Features Υλοποίηση Αντικειμενο-Σχεσιακών Λειτουργιών

