
Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 22: Object-Based Databases

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan22.2Database System Concepts - 6th Edition

Chapter 22: Object-Based Databases

Complex Data Types and Object Orientation

Structured Data Types and Inheritance in SQL

Table Inheritance

Array and Multiset Types in SQL

Object Identity and Reference Types in SQL

Implementing O-R Features

Persistent Programming Languages

Comparison of Object-Oriented and Object-Relational Databases

©Silberschatz, Korth and Sudarshan22.3Database System Concepts - 6th Edition

Object-Relational Data Models

Extend the relational data model by including object orientation and

constructs to deal with added data types.

Allow attributes of tuples to have complex types, including non-atomic

values such as nested relations.

Preserve relational foundations, in particular the declarative access to

data, while extending modeling power.

Upward compatibility with existing relational languages.

©Silberschatz, Korth and Sudarshan22.4Database System Concepts - 6th Edition

Complex Data Types

Motivation:

Permit non-atomic domains (atomic  indivisible)

Example of non-atomic domain: set of integers,or set of

tuples

Allows more intuitive modeling for applications with

complex data

Intuitive definition:

allow relations whenever we allow atomic (scalar) values

— relations within relations

Retains mathematical foundation of relational model

Violates first normal form.

©Silberschatz, Korth and Sudarshan22.5Database System Concepts - 6th Edition

Example of a Nested Relation

Example: library information system

Each book has

title,

a list (array) of authors,

Publisher, with subfields name and branch, and

a set of keywords

Non-1NF relation books

©Silberschatz, Korth and Sudarshan22.6Database System Concepts - 6th Edition

4NF Decomposition of Nested Relation

Suppose for simplicity that

title uniquely identifies a

book

In real world ISBN is a

unique identifier

Decompose books into

4NF using the schemas:

(title, author, position)

(title, keyword)

(title, pub-name, pub-

branch)

4NF design requires users

to include joins in their

queries.

©Silberschatz, Korth and Sudarshan22.7Database System Concepts - 6th Edition

1NF, 2NF, 3NF, BCNF, 4NF
1NF (First Normal Form) Rules

Each table cell should contain a single value.

Each record needs to be unique.

A table is in 2nd Normal Form if:

The table is in 1st normal form, and

All the non-key columns are dependent on the table’s primary
key (Avoids repetitions of data in tables).

A table is in third normal form if:

A table is in 2nd normal form.

It contains only columns that are non-transitively dependent on
the primary key

©Silberschatz, Korth and Sudarshan22.8Database System Concepts - 6th Edition

1NF, 2NF, 3NF, BCNF, 4NF

A table is in BCNF Normal Form if:

The table is in 3rd normal form, and

it has no more than one Candidate Key

 A Candidate key is a unique key as the primary key to
identify a record uniquely in a table but a table can have
multiple candidate keys. A candidate key may or may not be
a primary key.

A table is in 4rth Normal Form if:

The table is in BCDF normal form, and

It should have no multi-valued dependency.

©Silberschatz, Korth and Sudarshan22.9Database System Concepts - 6th Edition

1NF, 2NF, 3NF, BCNF, 4NF

MVD or multivalued dependency means that for a single value of
attribute ‘a’ multiple values of attribute ‘b’ exist. We write it as,

a --> --> b

©Silberschatz, Korth and Sudarshan22.10Database System Concepts - 6th Edition

1NF, 2NF, 3NF, BCNF, 4NF

2NF Example

©Silberschatz, Korth and Sudarshan22.11Database System Concepts - 6th Edition

1NF, 2NF, 3NF, BCNF, 4NF

©Silberschatz, Korth and Sudarshan22.12Database System Concepts - 6th Edition

Complex Types and SQL

Extensions introduced in SQL:1999 to support complex types:

Collection and large object types

 Nested relations are an example of collection types

Structured types

 Nested record structures like composite attributes

Inheritance

Object orientation

 Including object identifiers and references

Not fully implemented in any database system currently

But some features are present in each of the major commercial
database systems

 Read the manual of your database system to see what it
supports

©Silberschatz, Korth and Sudarshan22.13Database System Concepts - 6th Edition

Structured Types and Inheritance in SQL

Structured types (a.k.a. user-defined types) can be declared and used in SQL

create type Name as

(firstname varchar(20),

lastname varchar(20))

final

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(20))

not final

Note: final and not final indicate whether subtypes can be created

Structured types can be used to create tables with composite attributes

create table person (
name Name,
address Address,
dateOfBirth date)

Dot notation used to reference components: name.firstname

©Silberschatz, Korth and Sudarshan22.14Database System Concepts - 6th Edition

Structured Types (cont.)

User-defined row types

create type CustomerType as (

name Name,

address Address,

dateOfBirth date)

not final

Can then create a table whose rows are a user-defined type

create table customer of CustomerType

Alternative using unnamed row types (απροσδιόριστοι τύποι

γραμμών).

create table person_r(

name row(firstname varchar(20),
lastname varchar(20)),

address row(street varchar(20),
city varchar(20),
zipcode varchar(20)),

dateOfBirth date)

©Silberschatz, Korth and Sudarshan22.15Database System Concepts - 6th Edition

Methods

create table customer of CustomerType

Can add a method declaration with a structured type.

method ageOnDate (onDate date)

returns interval year;

Method body is given separately.

create instance method ageOnDate (onDate date)

returns interval year

for CustomerType

begin

return onDate - self.dateOfBirth;

end

We can now find the age of each customer:

select name.lastname, ageOnDate (current_date)

from customer

type CustomerType

Table Customer of

type CustomerType

©Silberschatz, Korth and Sudarshan22.16Database System Concepts - 6th Edition

Constructor Functions

Συναρτήσεις Δημιουργίας
Constructor functions are used to create values of structured types

E.g.

create function Name(firstname varchar(20), lastname varchar(20))

returns Name

begin

set self.firstname = firstname;

set self.lastname = lastname;

end

To create a value of type Name, we use

new Name(‘John’, ‘Smith’)

Normally used in insert statements

insert into Person values

(new Name(‘John’, ‘Smith),

new Address(’20 Main St’, ‘New York’, ‘11001’),

date ‘1960-8-22’);

©Silberschatz, Korth and Sudarshan22.17Database System Concepts - 6th Edition

Type Inheritance

Κληρονομικότητα Τύπων

Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

Using inheritance to define the student and teacher types
create type Student

under Person
(degree varchar(20),
department varchar(20))

create type Teacher
under Person
(salary integer,
department varchar(20))

Subtypes can redefine methods by using overriding method (επικάλυψη
μεθόδου) in place of method in the method declaration

©Silberschatz, Korth and Sudarshan22.18Database System Concepts - 6th Edition

Multiple Type Inheritance

Πολλαπλή Κληρονομικότητα

SQL:1999 and SQL:2003 do not support multiple inheritance

If our type system supports multiple inheritance, we can define a type for
teaching assistant as follows:

create type Teaching Assistant
under Student, Teacher

To avoid a conflict between the two occurrences of department we can
rename them

create type Teaching Assistant
under
Student with (department as student_dept),
Teacher with (department as teacher_dept)

Each value must have a most-specific type (πιο συγκεκριμένο τύπο)

©Silberschatz, Korth and Sudarshan22.19Database System Concepts - 6th Edition

Table Inheritance

Κληρονομικότητα Πινάκων
Tables created from subtypes can further be specified as subtables

E.g. create table people of Person;
create table students of Student under people;
create table teachers of Teacher under people;

Tuples added to a subtable are automatically visible to queries on the
supertable

E.g. query on people also sees students and teachers.

Similarly updates/deletes on people also result in updates/deletes
on subtables

To override this behaviour, use “only people” in query

 (eg select/update/delete….from only people……)

Conceptually, multiple inheritance is possible with tables

e.g. teaching_assistants under students and teachers

But is not supported in SQL currently

 So we cannot create a person (tuple in people) who is both a
student and a teacher

©Silberschatz, Korth and Sudarshan22.20Database System Concepts - 6th Edition

Consistency Requirements for Subtables

Απαιτήσεις Συνέπειας Υποπινάκων

Consistency requirements on subtables (υποπίνακες) and supertables

(υπερπίνακες – γονικοί πίνακες).

Each tuple of the supertable (e.g. people) can correspond to at

most one tuple in each of the subtables (e.g. students and teachers)

 Violation results to have two records in teachers or

students for the same person

Additional constraint in SQL:1999:

All tuples corresponding to each other (that is, with the same values

for inherited attributes) must be derived from one tuple (which is

inserted into one table).

 That is, each entity must have a most specific type

 Violation: To have a tuple in people corresponding to a

tuple each in students and teachers

©Silberschatz, Korth and Sudarshan22.21Database System Concepts - 6th Edition

Array and Multiset Types in SQL

Τύποι Πινάκων και Πολλαπλών Συνόλων

στην SQL

Example of array and multiset declaration:

create type Publisher as

(name varchar(20),

branch varchar(20));

create type Book as

(title varchar(20),

author_array varchar(20) array [10],

pub_date date,

publisher Publisher,

keyword-set varchar(20) multiset);

create table books of Book;

©Silberschatz, Korth and Sudarshan22.22Database System Concepts - 6th Edition

Creation of Collection Values

Δημιουργία Τιμών Συλλογών
Array construction

array [‘Silberschatz’,`Korth’,`Sudarshan’]

Multisets

multiset [‘computer’, ‘database’, ‘SQL’]

To create a tuple of the type defined by the books relation:
(‘Compilers’, array[`Smith’,`Jones’],

new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’])

To insert the preceding tuple into the relation books

insert into books
values

(‘Compilers’, array[`Smith’,`Jones’],
new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’]);

©Silberschatz, Korth and Sudarshan22.23Database System Concepts - 6th Edition

Querying Collection-Valued Attributes

Ερωτήματα για Ιδιότητες Συλλογών

To find all books that have the word “database” as a keyword,

select title
from books
where ‘database’ in (unnest(keyword-set))

We can access individual elements of an array by using indices

E.g.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = `Database System Concepts’

To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book

select B.title, A.author
from books as B, unnest (B.author_array) as A (author)

To retain ordering information we add a with ordinality clause

select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as

A (author, position)

©Silberschatz, Korth and Sudarshan22.24Database System Concepts - 6th Edition

Unnesting

Ακύρωση ένθεσης unnest
The transformation of a nested relation into a form with fewer (or no)

relation-valued attributes us called unnesting.

E.g.

select title, A.author as author, publisher.name as pub_name,

publisher.branch as pub_branch, K.keyword

from books as B, unnest(B.author_array) as A (author),

unnest (B.keyword_set) as K (keyword)

Result relation flat_books

©Silberschatz, Korth and Sudarshan22.25Database System Concepts - 6th Edition

Nesting

Ένθεση

Nesting is the opposite of unnesting, creating a collection-valued attribute

Nesting can be done in a manner similar to aggregation, but using the

function colect() in place of an aggregation operation, to create a multiset

To nest the flat_books relation on the attribute keyword:

select title, author, Publisher (pub_name, pub_branch) as publisher,

collect (keyword) as keyword_set

from flat_books

groupby title, author, publisher

To nest on both authors and keywords:

select title, collect (author) as author_set,
Publisher (pub_name, pub_branch) as publisher,

collect (keyword) as keyword_set
from flat_books
group by title, publisher

©Silberschatz, Korth and Sudarshan22.26Database System Concepts - 6th Edition

Nesting (Cont.)

Another approach to creating nested relations is to use subqueries in

the select clause, starting from the 4NF relation books4

select title,
array (select author

from authors as A
where A.title = B.title
order by A.position) as author_array,

Publisher (pub-name, pub-branch) as publisher,
multiset (select keyword

from keywords as K
where K.title = B.title) as keyword_set

from books4 as B

©Silberschatz, Korth and Sudarshan22.27Database System Concepts - 6th Edition

Object-Identity and Reference Types

Ταυτότητα Αντικειμένων κ Τύποι Αναφοράς

Define a type Department with a field name and a field head which is a

reference to the type Person, with table people as scope:

create type Department (

name varchar (20),

head ref (Person) scope people)

We can then create a table departments as follows

create table departments of Department

We can omit the declaration scope people (πεδίο δράσης) from the

type declaration and instead make an addition to the create table

statement:

create table departments of Department

(head with options scope people)

Referenced table must have an attribute that stores the identifier, called

the self-referential attribute

create table people of Person

ref is person_id system generated;

©Silberschatz, Korth and Sudarshan22.28Database System Concepts - 6th Edition

Initializing Reference-Typed Values

To create a tuple with a reference value, we can first create the tuple

with a null reference and then set the reference separately:

insert into departments
values (`CS’, null)

update departments
set head = (select p.person_id

from people as p
where name = `John’)

where name = `CS’

©Silberschatz, Korth and Sudarshan22.29Database System Concepts - 6th Edition

User Generated Identifiers

Αναφορά Δημιουργούμενη από Χρήστη

The type of the object-identifier must be specified as part of the type
definition of the referenced table, and

The table definition must specify that the reference is user generated

create type Person
(name varchar(20)
address varchar(20))

ref using varchar(20)
create table people of Person

ref is person_id user generated

When creating a tuple, we must provide a unique value for the identifier:

insert into people (person_id, name, address) values
(‘01284567’, ‘John’, `23 Coyote Run’)

We can then use the identifier value when inserting a tuple into
departments

Avoids need for a separate query to retrieve the identifier:

insert into departments
values(`CS’, `02184567’)

©Silberschatz, Korth and Sudarshan22.30Database System Concepts - 6th Edition

User Generated Identifiers (Cont.)

Can use an existing primary key value as the identifier:

create type Person

(name varchar (20) primary key,

address varchar(20))

ref from (name)

create table people of Person

ref is person_id derived

When inserting a tuple for departments, we can then use

insert into departments

values(`CS’,`John’)

©Silberschatz, Korth and Sudarshan22.31Database System Concepts - 6th Edition

Path Expressions

Find the names and addresses of the heads of all departments:

select head –>name, head –>address
from departments

An expression such as “head–>name” is called a path expression

Path expressions help avoid explicit joins

If department head were not a reference, a join of departments
with people would be required to get at the address

Makes expressing the query much easier for the user

©Silberschatz, Korth and Sudarshan22.32Database System Concepts - 6th Edition

Implementing O-R Features

Υλοποίηση Αντικειμενο-Σχεσιακών

Λειτουργιών

Similar to how E-R features are mapped onto relation schemas

Subtable implementation

Each table stores primary key and those attributes defined in that

table

or,

Each table stores both locally defined and inherited attributes

	Slide 1: Chapter 22: Object-Based Databases
	Slide 2: Chapter 22: Object-Based Databases
	Slide 3: Object-Relational Data Models
	Slide 4: Complex Data Types
	Slide 5: Example of a Nested Relation
	Slide 6: 4NF Decomposition of Nested Relation
	Slide 7: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 8: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 9: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 10: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 11: 1NF, 2NF, 3NF, BCNF, 4NF
	Slide 12: Complex Types and SQL
	Slide 13: Structured Types and Inheritance in SQL
	Slide 14: Structured Types (cont.)
	Slide 15: Methods
	Slide 16: Constructor Functions Συναρτήσεις Δημιουργίας
	Slide 17: Type Inheritance Κληρονομικότητα Τύπων
	Slide 18: Multiple Type Inheritance Πολλαπλή Κληρονομικότητα
	Slide 19: Table Inheritance Κληρονομικότητα Πινάκων
	Slide 20: Consistency Requirements for Subtables Απαιτήσεις Συνέπειας Υποπινάκων
	Slide 21: Array and Multiset Types in SQL Τύποι Πινάκων και Πολλαπλών Συνόλων στην SQL
	Slide 22: Creation of Collection Values Δημιουργία Τιμών Συλλογών
	Slide 23: Querying Collection-Valued Attributes Ερωτήματα για Ιδιότητες Συλλογών
	Slide 24: Unnesting Ακύρωση ένθεσης unnest
	Slide 25: Nesting Ένθεση
	Slide 26: Nesting (Cont.)
	Slide 27: Object-Identity and Reference Types Ταυτότητα Αντικειμένων κ Τύποι Αναφοράς
	Slide 28: Initializing Reference-Typed Values
	Slide 29: User Generated Identifiers Αναφορά Δημιουργούμενη από Χρήστη
	Slide 30: User Generated Identifiers (Cont.)
	Slide 31: Path Expressions
	Slide 32: Implementing O-R Features Υλοποίηση Αντικειμενο-Σχεσιακών Λειτουργιών

