
Δεν είναι δυνατή η εμφάνιση αυτής της εικόνας.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 15 : Concurrency Control

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan15.2Database System Concepts - 6th Edition

Outline

 Lock-Based Protocols
 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiple Granularity

©Silberschatz, Korth and Sudarshan15.3Database System Concepts - 6th Edition

Lock-Based Protocols
Πρωτόκολλα Βασισμένα στο κλείδωμα
 A lock is a mechanism to control concurrent access to a data

item
 Data items can be locked in two modes :

1. exclusive (X) mode (Αποκλειστικό κλείδωμα). Data item can
be both read as well as written.

X-lock is requested using lock-X instruction.
2. shared (S) mode (Κοινόχρηστο κλείδωμα). Data item can
only be read.

S-lock is requested using lock-S instruction.
 Lock requests are made to the concurrency-control manager

by the programmer. Transaction can proceed only after
request is granted.

©Silberschatz, Korth and Sudarshan15.4Database System Concepts - 6th Edition

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted (παραχωρείται) a lock on an item if
the requested lock is compatible with locks already held on
the item by other transactions

 Any number of transactions can hold shared locks on an item,
 But if any transaction holds an exclusive on the item no

other transaction may hold any lock on the item.
 If a lock cannot be granted, the requesting transaction is made to

wait till all incompatible locks held by other transactions have
been released. The lock is then granted.

©Silberschatz, Korth and Sudarshan15.5Database System Concepts - 6th Edition

Lock-Based Protocols (Cont.)

 Example of a transaction performing locking:
T2: lock-S(A);

read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

 Locking as above is not sufficient to guarantee
serializability — if A and B get updated in-between the
read of A and B, the displayed sum would be wrong.

 A locking protocol (πρωτόκολλο κλειδώματος) is a set
of rules followed by all transactions while requesting and
releasing locks. Locking protocols restrict the set of possible
schedules (χρονοδιαγραμμάτων).

©Silberschatz, Korth and Sudarshan15.6Database System Concepts - 6th Edition

The Two-Phase Locking Protocol
Πρωτόκολλο κλειδώματος Δυο Φάσεων
 This protocol ensures conflict-serializable schedules

(χρονοδιαγράμματα σειριοποιήσιμα ως προς τις διενέξεις).
 Phase 1: Growing Phase (Φάση ανάπτυξης)

 Transaction may obtain locks
 Transaction may not release locks

 Phase 2: Shrinking Phase (φάση σύμπτυξης)
 Transaction may release locks
 Transaction may not obtain locks

 The protocol assures serializability (σειριοποιησιμότητα
διένεξης). It can be proved that the transactions can be serialized
in the order of their lock points (σημεία κλειδώματος) (i.e., the
point where a transaction acquired its final lock = this is the end
of the growing phase of the transaction).

©Silberschatz, Korth and Sudarshan15.7Database System Concepts - 6th Edition

The Two-Phase Locking Protocol (Cont.)
Πρωτόκολλο κλειδώματος Δυο Φάσεων
 There can be conflict serializable schedules that cannot be

obtained if two-phase locking is used.
 Cause serializability is achieved in the order of the lock

points of the transaction (= the end of the growing
phase)

 However, in the absence of extra information (e.g., ordering of
access to data), two-phase locking is needed for conflict
serializability in the following sense:
 Given a transaction Ti that does not follow two-phase

locking, we can find a transaction Tj that uses two-phase
locking, and a schedule for Ti and Tj that is not conflict
serializable.

©Silberschatz, Korth and Sudarshan15.8Database System Concepts - 6th Edition

Lock Conversions
Μετατροπές Κλειδωμάτων

 Two-phase locking with lock conversions(κλείδωμα δυο
φάσεων με μετατροπές κλειδωμάτων) – allows more
concurrency:
– First Phase (Growing Phase):
 can acquire a lock-S on item
 can acquire a lock-X on item
 can convert a lock-S to a lock-X (upgrade-αναβάθμιση)

– Second Phase (Shrinking Phase):
 can release a lock-S
 can release a lock-X
 can convert a lock-X to a lock-S (downgrade -

υποβάθμιση)
 This protocol assures serializability. But still relies on the

programmer to insert the various locking instructions.

©Silberschatz, Korth and Sudarshan15.9Database System Concepts - 6th Edition

Automatic Acquisition of Locks
Σχήμα αυτόματου κλειδώματος - Read

 This scheme automatically creates lock according to read /
write requests.

 A transaction Ti issues the standard read/write instruction,
without explicit locking calls.

 The operation read(D) is processed as:
if Ti has a lock on D

then
read(D)

else begin
if necessary wait until no other

transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end

©Silberschatz, Korth and Sudarshan15.10Database System Concepts - 6th Edition

Automatic Acquisition of Locks (Cont.)
Σχήμα αυτόματου κλειδώματος - Write
 write(D) is processed as:

if Ti has a lock-X on D
then

write(D)
else begin

if necessary wait until no other transaction has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

 All locks are released after commit or abort

©Silberschatz, Korth and Sudarshan15.11Database System Concepts - 6th Edition

Deadlocks
Αδιέξοδες Καταστάσεις

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-S(B)
causes T4 to wait for T3 to release its lock on B, while executing
lock-X(A) causes T3 to wait for T4 to release its lock on A.

 Such a situation is called a deadlock (αδιέξοδο).
 To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

©Silberschatz, Korth and Sudarshan15.12Database System Concepts - 6th Edition

Deadlocks (Cont.)
Αδιέξοδες Καταστάσεις

 Two-phase locking does not ensure freedom from
deadlocks (see previous example).

 In addition to deadlocks, there is a possibility of starvation
(Επ’ αόριστο αναμονή).

 Starvation occurs if the concurrency control manager is badly
designed. For example:
 A transaction may be waiting for an X-lock on an item,

while a sequence of other transactions request and are
granted an S-lock on the same item.

 The same transaction is repeatedly rolled back due to
deadlocks.

 Concurrency control manager can be designed to prevent
starvation.

©Silberschatz, Korth and Sudarshan15.13Database System Concepts - 6th Edition

 The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

 When a deadlock occurs there is a possibility of cascading
roll-backs.

 Avoiding cascading roll-backs:
 Cascading roll-back is possible under two-phase locking.

To avoid this, follow a modified protocol called strict two-
phase locking -- a transaction must hold all its exclusive
locks till it commits/aborts.

 Rigorous two-phase locking is even stricter. Here, all
locks are held till commit/abort. In this protocol
transactions can be serialized in the order in which they
commit.

Deadlocks (Cont.)
Αδιέξοδες Καταστάσεις

Presenter
Presentation Notes
Rigorous – αυστηρός σχολαστικός ενδελεχής

©Silberschatz, Korth and Sudarshan15.14Database System Concepts - 6th Edition

Implementation of Locking
(Χειρισμός Κλειδωμάτων)

 A lock manager can be implemented as a separate process to
which transactions send lock and unlock requests

 The lock manager replies to a lock request by sending a lock
grant messages-μηνύματα παραχώρησης (or a message
asking the transaction to roll back, in case of a deadlock)

 The requesting transaction waits until its request is answered
 The lock manager maintains a data-structure called a lock

table (πίνακας κλειδωμάτων) to record granted locks
(παραχωρημένα κλειδώματα) and pending requests
(αιτήματα σε αναμονή).

 The lock table is usually implemented as an in-memory hash
table indexed on the name of the data item being locked

©Silberschatz, Korth and Sudarshan15.15Database System Concepts - 6th Edition

Lock Table
(Πίνακας Κλειδωμάτων)

 Hash index on name of the data item
 Dark blue rectangles indicate granted locks

(παραχωρημένα κλειδώματα); light blue
indicate waiting requests(αιτήματα σε
αναμονή).

 Lock table also records the type of lock
granted or requested

 New request is added to the end of the
queue of requests for the data item, and
granted if it is compatible with all earlier
locks

 Unlock requests result in the request being
deleted, and later requests are checked to
see if they can now be granted

 If transaction aborts, all waiting or
granted requests of the transaction are
deleted
 lock manager may also keep a list of

locks held by each transaction, to
implement this efficiently

©Silberschatz, Korth and Sudarshan15.16Database System Concepts - 6th Edition

Deadlock Handling
(Χειρισμός Κλειδωμάτων)

 System is deadlocked if there is a set of transactions such that
every transaction in the set is waiting for another transaction
in the set.

 Deadlock prevention (Αποτροπή Αδιέξοδης Κατάστασης)
protocols ensure that the system will never enter into a deadlock
state. Some prevention strategies :
 Require that each transaction locks all its data items before it

begins execution (predeclaration- προ-δήλωση).
 Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by
the partial order. (After a lock on a specific item the
transaction can not require to lock items ordered before that
one)

©Silberschatz, Korth and Sudarshan15.17Database System Concepts - 6th Edition

More Deadlock Prevention Strategies
(Στρατηγικές Αποτροπής Αδιέξοδης

Κατάστασης)
 Following schemes use transaction timestamps for the sake of deadlock

prevention alone. They consider the older as more important!
 wait-die(αναμονή-τερματισμός) scheme — non-preemptive (τεχνική χωρίς

αντικατάσταση)
 older transaction may wait for younger one to release data item. (older

means smaller timestamp) Younger transactions never. Younger
transactions never wait for older ones; they are rolled back instead.

 a transaction may die several times before acquiring needed data item
 wound-wait (τραυματισμός-αναμονή) scheme — preemptive (τεχνική

αντικατάστασης)
 older transaction wounds (forces rollback) of a younger transaction instead

of waiting for it. Younger transactions may wait for older ones.
 may be fewer rollbacks than wait-die scheme.

©Silberschatz, Korth and Sudarshan15.18Database System Concepts - 6th Edition

Deadlock prevention (Cont.)
(Στρατηγικές Αποτροπής Αδιέξοδης

Κατάστασης)
 Both in wait-die and in wound-wait schemes, a rolled back

transactions is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and starvation
is hence avoided.

 Another Strategy - Timeout-Based Schemes (Λήξη Χρόνου
Κλειδωμάτων):
 a transaction waits for a lock only for a specified amount of time. If

the lock has not been granted within that time, the transaction is
rolled back and restarted,

 Thus, deadlocks are not possible
 simple to implement; but starvation (Επ’ αόριστο αναμονή) is

possible. Also difficult to determine good value of the timeout
interval.

©Silberschatz, Korth and Sudarshan15.19Database System Concepts - 6th Edition

Deadlock Detection
Εντοπισμός Αδιέξοδης Κατάστασης

 For systems with no deadlock prevention mechanisms.
 Deadlocks can be described as a wait-for graph (γράφημα αναμονής),

which consists of a pair G = (V,E),
 V is a set of vertices (all the transactions in the system)
 E is a set of edges; each element is an ordered pair Ti →Tj.

 If Ti → Tj is in E, then there is a directed edge from Ti to Tj, implying
that Ti is waiting for Tj to release a data item.

 When Ti requests a data item currently being held by Tj, then the edge
Ti → Tj is inserted in the wait-for graph. This edge is removed only
when Tj is no longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the wait-for graph
has a cycle. Must invoke a deadlock-detection algorithm periodically
to look for cycles.

©Silberschatz, Korth and Sudarshan15.20Database System Concepts - 6th Edition

Deadlock Detection (Cont.)

Wait-for graph without a cycle
Τ17 waits for T18, T19
T18 waits for T20
T19 waits for T18

Wait-for graph with a cycle

©Silberschatz, Korth and Sudarshan15.21Database System Concepts - 6th Edition

Deadlock Recovery
Αποκατάσταση από Αδιέξοδη Κατάσταση
 When deadlock is detected :

 Some transaction will have to rolled back (made a victim) to
break deadlock. Select that transaction as victim that will
incur minimum cost.

 Rollback (Αναίρεση) -- determine how far to roll back
transaction
 Total rollback (Συνολκή αναίρεση συναλλαγής): Abort the

transaction and then restart it.
 Partial rollback (Μερική αναίρεση συναλλαγής) More

effective to roll back transaction only as far as necessary to
break deadlock.

 Starvation (Επ’ αόριστο αναμονή) happens if same transaction
is always chosen as victim. Include the number of rollbacks
in the cost factor to avoid starvation.

©Silberschatz, Korth and Sudarshan15.38Database System Concepts - 6th Edition

End of Module 15

	Chapter 15 : Concurrency Control
	Outline
	Lock-Based Protocols�Πρωτόκολλα Βασισμένα στο κλείδωμα
	Lock-Based Protocols (Cont.)
	Lock-Based Protocols (Cont.)
	The Two-Phase Locking Protocol�Πρωτόκολλο κλειδώματος Δυο Φάσεων
	The Two-Phase Locking Protocol (Cont.)�Πρωτόκολλο κλειδώματος Δυο Φάσεων
	Lock Conversions�Μετατροπές Κλειδωμάτων
	Automatic Acquisition of Locks�Σχήμα αυτόματου κλειδώματος - Read
	�Automatic Acquisition of Locks (Cont.)� Σχήμα αυτόματου κλειδώματος - Write �
	Deadlocks�Αδιέξοδες Καταστάσεις
	Deadlocks (Cont.)�Αδιέξοδες Καταστάσεις
	Deadlocks (Cont.)�Αδιέξοδες Καταστάσεις
	Implementation of Locking�(Χειρισμός Κλειδωμάτων)
	Lock Table�(Πίνακας Κλειδωμάτων)
	Deadlock Handling� (Χειρισμός Κλειδωμάτων)
	More Deadlock Prevention Strategies�(Στρατηγικές Αποτροπής Αδιέξοδης Κατάστασης)
	Deadlock prevention (Cont.)� (Στρατηγικές Αποτροπής Αδιέξοδης Κατάστασης)
	Deadlock Detection�Εντοπισμός Αδιέξοδης Κατάστασης
	Deadlock Detection (Cont.)
	Deadlock Recovery�Αποκατάσταση από Αδιέξοδη Κατάσταση
	End of Module 15

