
Δεν είναι δυνατή η εμφάνιση αυτής της εικόνας.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 15 : Concurrency Control

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan15.2Database System Concepts - 6th Edition

Outline

 Lock-Based Protocols
 Timestamp-Based Protocols
 Validation-Based Protocols
 Multiple Granularity

©Silberschatz, Korth and Sudarshan15.3Database System Concepts - 6th Edition

Lock-Based Protocols
Πρωτόκολλα Βασισμένα στο κλείδωμα
 A lock is a mechanism to control concurrent access to a data

item
 Data items can be locked in two modes :

1. exclusive (X) mode (Αποκλειστικό κλείδωμα). Data item can
be both read as well as written.

X-lock is requested using lock-X instruction.
2. shared (S) mode (Κοινόχρηστο κλείδωμα). Data item can
only be read.

S-lock is requested using lock-S instruction.
 Lock requests are made to the concurrency-control manager

by the programmer. Transaction can proceed only after
request is granted.

©Silberschatz, Korth and Sudarshan15.4Database System Concepts - 6th Edition

Lock-Based Protocols (Cont.)

 Lock-compatibility matrix

 A transaction may be granted (παραχωρείται) a lock on an item if
the requested lock is compatible with locks already held on
the item by other transactions

 Any number of transactions can hold shared locks on an item,
 But if any transaction holds an exclusive on the item no

other transaction may hold any lock on the item.
 If a lock cannot be granted, the requesting transaction is made to

wait till all incompatible locks held by other transactions have
been released. The lock is then granted.

©Silberschatz, Korth and Sudarshan15.5Database System Concepts - 6th Edition

Lock-Based Protocols (Cont.)

 Example of a transaction performing locking:
T2: lock-S(A);

read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

 Locking as above is not sufficient to guarantee
serializability — if A and B get updated in-between the
read of A and B, the displayed sum would be wrong.

 A locking protocol (πρωτόκολλο κλειδώματος) is a set
of rules followed by all transactions while requesting and
releasing locks. Locking protocols restrict the set of possible
schedules (χρονοδιαγραμμάτων).

©Silberschatz, Korth and Sudarshan15.6Database System Concepts - 6th Edition

The Two-Phase Locking Protocol
Πρωτόκολλο κλειδώματος Δυο Φάσεων
 This protocol ensures conflict-serializable schedules

(χρονοδιαγράμματα σειριοποιήσιμα ως προς τις διενέξεις).
 Phase 1: Growing Phase (Φάση ανάπτυξης)

 Transaction may obtain locks
 Transaction may not release locks

 Phase 2: Shrinking Phase (φάση σύμπτυξης)
 Transaction may release locks
 Transaction may not obtain locks

 The protocol assures serializability (σειριοποιησιμότητα
διένεξης). It can be proved that the transactions can be serialized
in the order of their lock points (σημεία κλειδώματος) (i.e., the
point where a transaction acquired its final lock = this is the end
of the growing phase of the transaction).

©Silberschatz, Korth and Sudarshan15.7Database System Concepts - 6th Edition

The Two-Phase Locking Protocol (Cont.)
Πρωτόκολλο κλειδώματος Δυο Φάσεων
 There can be conflict serializable schedules that cannot be

obtained if two-phase locking is used.
 Cause serializability is achieved in the order of the lock

points of the transaction (= the end of the growing
phase)

 However, in the absence of extra information (e.g., ordering of
access to data), two-phase locking is needed for conflict
serializability in the following sense:
 Given a transaction Ti that does not follow two-phase

locking, we can find a transaction Tj that uses two-phase
locking, and a schedule for Ti and Tj that is not conflict
serializable.

©Silberschatz, Korth and Sudarshan15.8Database System Concepts - 6th Edition

Lock Conversions
Μετατροπές Κλειδωμάτων

 Two-phase locking with lock conversions(κλείδωμα δυο
φάσεων με μετατροπές κλειδωμάτων) – allows more
concurrency:
– First Phase (Growing Phase):
 can acquire a lock-S on item
 can acquire a lock-X on item
 can convert a lock-S to a lock-X (upgrade-αναβάθμιση)

– Second Phase (Shrinking Phase):
 can release a lock-S
 can release a lock-X
 can convert a lock-X to a lock-S (downgrade -

υποβάθμιση)
 This protocol assures serializability. But still relies on the

programmer to insert the various locking instructions.

©Silberschatz, Korth and Sudarshan15.9Database System Concepts - 6th Edition

Automatic Acquisition of Locks
Σχήμα αυτόματου κλειδώματος - Read

 This scheme automatically creates lock according to read /
write requests.

 A transaction Ti issues the standard read/write instruction,
without explicit locking calls.

 The operation read(D) is processed as:
if Ti has a lock on D

then
read(D)

else begin
if necessary wait until no other

transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end

©Silberschatz, Korth and Sudarshan15.10Database System Concepts - 6th Edition

Automatic Acquisition of Locks (Cont.)
Σχήμα αυτόματου κλειδώματος - Write
 write(D) is processed as:

if Ti has a lock-X on D
then

write(D)
else begin

if necessary wait until no other transaction has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end;

 All locks are released after commit or abort

©Silberschatz, Korth and Sudarshan15.11Database System Concepts - 6th Edition

Deadlocks
Αδιέξοδες Καταστάσεις

 Consider the partial schedule

 Neither T3 nor T4 can make progress — executing lock-S(B)
causes T4 to wait for T3 to release its lock on B, while executing
lock-X(A) causes T3 to wait for T4 to release its lock on A.

 Such a situation is called a deadlock (αδιέξοδο).
 To handle a deadlock one of T3 or T4 must be rolled back

and its locks released.

©Silberschatz, Korth and Sudarshan15.12Database System Concepts - 6th Edition

Deadlocks (Cont.)
Αδιέξοδες Καταστάσεις

 Two-phase locking does not ensure freedom from
deadlocks (see previous example).

 In addition to deadlocks, there is a possibility of starvation
(Επ’ αόριστο αναμονή).

 Starvation occurs if the concurrency control manager is badly
designed. For example:
 A transaction may be waiting for an X-lock on an item,

while a sequence of other transactions request and are
granted an S-lock on the same item.

 The same transaction is repeatedly rolled back due to
deadlocks.

 Concurrency control manager can be designed to prevent
starvation.

©Silberschatz, Korth and Sudarshan15.13Database System Concepts - 6th Edition

 The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

 When a deadlock occurs there is a possibility of cascading
roll-backs.

 Avoiding cascading roll-backs:
 Cascading roll-back is possible under two-phase locking.

To avoid this, follow a modified protocol called strict two-
phase locking -- a transaction must hold all its exclusive
locks till it commits/aborts.

 Rigorous two-phase locking is even stricter. Here, all
locks are held till commit/abort. In this protocol
transactions can be serialized in the order in which they
commit.

Deadlocks (Cont.)
Αδιέξοδες Καταστάσεις

Presenter
Presentation Notes
Rigorous – αυστηρός σχολαστικός ενδελεχής

©Silberschatz, Korth and Sudarshan15.14Database System Concepts - 6th Edition

Implementation of Locking
(Χειρισμός Κλειδωμάτων)

 A lock manager can be implemented as a separate process to
which transactions send lock and unlock requests

 The lock manager replies to a lock request by sending a lock
grant messages-μηνύματα παραχώρησης (or a message
asking the transaction to roll back, in case of a deadlock)

 The requesting transaction waits until its request is answered
 The lock manager maintains a data-structure called a lock

table (πίνακας κλειδωμάτων) to record granted locks
(παραχωρημένα κλειδώματα) and pending requests
(αιτήματα σε αναμονή).

 The lock table is usually implemented as an in-memory hash
table indexed on the name of the data item being locked

©Silberschatz, Korth and Sudarshan15.15Database System Concepts - 6th Edition

Lock Table
(Πίνακας Κλειδωμάτων)

 Hash index on name of the data item
 Dark blue rectangles indicate granted locks

(παραχωρημένα κλειδώματα); light blue
indicate waiting requests(αιτήματα σε
αναμονή).

 Lock table also records the type of lock
granted or requested

 New request is added to the end of the
queue of requests for the data item, and
granted if it is compatible with all earlier
locks

 Unlock requests result in the request being
deleted, and later requests are checked to
see if they can now be granted

 If transaction aborts, all waiting or
granted requests of the transaction are
deleted
 lock manager may also keep a list of

locks held by each transaction, to
implement this efficiently

©Silberschatz, Korth and Sudarshan15.16Database System Concepts - 6th Edition

Deadlock Handling
(Χειρισμός Κλειδωμάτων)

 System is deadlocked if there is a set of transactions such that
every transaction in the set is waiting for another transaction
in the set.

 Deadlock prevention (Αποτροπή Αδιέξοδης Κατάστασης)
protocols ensure that the system will never enter into a deadlock
state. Some prevention strategies :
 Require that each transaction locks all its data items before it

begins execution (predeclaration- προ-δήλωση).
 Impose partial ordering of all data items and require that a

transaction can lock data items only in the order specified by
the partial order. (After a lock on a specific item the
transaction can not require to lock items ordered before that
one)

©Silberschatz, Korth and Sudarshan15.17Database System Concepts - 6th Edition

More Deadlock Prevention Strategies
(Στρατηγικές Αποτροπής Αδιέξοδης

Κατάστασης)
 Following schemes use transaction timestamps for the sake of deadlock

prevention alone. They consider the older as more important!
 wait-die(αναμονή-τερματισμός) scheme — non-preemptive (τεχνική χωρίς

αντικατάσταση)
 older transaction may wait for younger one to release data item. (older

means smaller timestamp) Younger transactions never. Younger
transactions never wait for older ones; they are rolled back instead.

 a transaction may die several times before acquiring needed data item
 wound-wait (τραυματισμός-αναμονή) scheme — preemptive (τεχνική

αντικατάστασης)
 older transaction wounds (forces rollback) of a younger transaction instead

of waiting for it. Younger transactions may wait for older ones.
 may be fewer rollbacks than wait-die scheme.

©Silberschatz, Korth and Sudarshan15.18Database System Concepts - 6th Edition

Deadlock prevention (Cont.)
(Στρατηγικές Αποτροπής Αδιέξοδης

Κατάστασης)
 Both in wait-die and in wound-wait schemes, a rolled back

transactions is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and starvation
is hence avoided.

 Another Strategy - Timeout-Based Schemes (Λήξη Χρόνου
Κλειδωμάτων):
 a transaction waits for a lock only for a specified amount of time. If

the lock has not been granted within that time, the transaction is
rolled back and restarted,

 Thus, deadlocks are not possible
 simple to implement; but starvation (Επ’ αόριστο αναμονή) is

possible. Also difficult to determine good value of the timeout
interval.

©Silberschatz, Korth and Sudarshan15.19Database System Concepts - 6th Edition

Deadlock Detection
Εντοπισμός Αδιέξοδης Κατάστασης

 For systems with no deadlock prevention mechanisms.
 Deadlocks can be described as a wait-for graph (γράφημα αναμονής),

which consists of a pair G = (V,E),
 V is a set of vertices (all the transactions in the system)
 E is a set of edges; each element is an ordered pair Ti →Tj.

 If Ti → Tj is in E, then there is a directed edge from Ti to Tj, implying
that Ti is waiting for Tj to release a data item.

 When Ti requests a data item currently being held by Tj, then the edge
Ti → Tj is inserted in the wait-for graph. This edge is removed only
when Tj is no longer holding a data item needed by Ti.

 The system is in a deadlock state if and only if the wait-for graph
has a cycle. Must invoke a deadlock-detection algorithm periodically
to look for cycles.

©Silberschatz, Korth and Sudarshan15.20Database System Concepts - 6th Edition

Deadlock Detection (Cont.)

Wait-for graph without a cycle
Τ17 waits for T18, T19
T18 waits for T20
T19 waits for T18

Wait-for graph with a cycle

©Silberschatz, Korth and Sudarshan15.21Database System Concepts - 6th Edition

Deadlock Recovery
Αποκατάσταση από Αδιέξοδη Κατάσταση
 When deadlock is detected :

 Some transaction will have to rolled back (made a victim) to
break deadlock. Select that transaction as victim that will
incur minimum cost.

 Rollback (Αναίρεση) -- determine how far to roll back
transaction
 Total rollback (Συνολκή αναίρεση συναλλαγής): Abort the

transaction and then restart it.
 Partial rollback (Μερική αναίρεση συναλλαγής) More

effective to roll back transaction only as far as necessary to
break deadlock.

 Starvation (Επ’ αόριστο αναμονή) happens if same transaction
is always chosen as victim. Include the number of rollbacks
in the cost factor to avoid starvation.

©Silberschatz, Korth and Sudarshan15.38Database System Concepts - 6th Edition

End of Module 15

	Chapter 15 : Concurrency Control
	Outline
	Lock-Based Protocols�Πρωτόκολλα Βασισμένα στο κλείδωμα
	Lock-Based Protocols (Cont.)
	Lock-Based Protocols (Cont.)
	The Two-Phase Locking Protocol�Πρωτόκολλο κλειδώματος Δυο Φάσεων
	The Two-Phase Locking Protocol (Cont.)�Πρωτόκολλο κλειδώματος Δυο Φάσεων
	Lock Conversions�Μετατροπές Κλειδωμάτων
	Automatic Acquisition of Locks�Σχήμα αυτόματου κλειδώματος - Read
	�Automatic Acquisition of Locks (Cont.)� Σχήμα αυτόματου κλειδώματος - Write �
	Deadlocks�Αδιέξοδες Καταστάσεις
	Deadlocks (Cont.)�Αδιέξοδες Καταστάσεις
	Deadlocks (Cont.)�Αδιέξοδες Καταστάσεις
	Implementation of Locking�(Χειρισμός Κλειδωμάτων)
	Lock Table�(Πίνακας Κλειδωμάτων)
	Deadlock Handling� (Χειρισμός Κλειδωμάτων)
	More Deadlock Prevention Strategies�(Στρατηγικές Αποτροπής Αδιέξοδης Κατάστασης)
	Deadlock prevention (Cont.)� (Στρατηγικές Αποτροπής Αδιέξοδης Κατάστασης)
	Deadlock Detection�Εντοπισμός Αδιέξοδης Κατάστασης
	Deadlock Detection (Cont.)
	Deadlock Recovery�Αποκατάσταση από Αδιέξοδη Κατάσταση
	End of Module 15

