C

hapter 15 : Concurrency Contrc

Database System Concepts, 6! Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use

-’

http://www.db-book.com/

QOutline

Lock-Based Protocols
Timestamp-Based Protocols
Validation-Based Protocols

O O O 0O

Multiple Granularity

Database System Concepts - 61" Edition 15.2 ©Silberschatz, Korth and Sudarshan

Lock-Based Protocols
NMpwTtoKOAAQ Baoiopéva 0TO KAEIOWHA

O A lock is a mechanism to control concurrent access to a data
item

0 Data items can be locked in two modes :

1. exclusive (X) mode (AmokAecioTikO kAgidwpa). Data item can
be both read as well as written.
X-lock is requested using lock-X instruction.

2. shared (S) mode (Koivoxpnoro kAcidwua). Data item can
only be read.
S-lock is requested using lock-S instruction.

0 Lock requests are made to the concurrency-control manager
by the programmer. Transaction can proceed only after
request is granted.

Database System Concepts - 6t" Edition 15.3 ©Silberschatz, Korth and Sudarshan

- Lock-Based Protocols (Cont.)

0 Lock-compatibility matrix

S X
true false
X | false | false

0 A transaction may be granted (Trapaxwpeitai) a lock on an item if
the requested lock is compatible with locks already held on

the item by other transactions

O Any number of transactions can hold shared locks on an item,

But if any transaction holds an exclusive on the item no

other transaction may hold any lock on the item.

0 If alock cannot be granted, the requesting transaction is made to
wait till all incompatible locks held by other transactions have

been released. The lock is then granted.

Database System Concepts - 61" Edition

15.4

©Silberschatz, Korth and Sudarshan

g Lock-Based Protocols (Cont.)

0 Example of a transaction performing locking:
T,: lock-S(A);
read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

0 Locking as above is not sufficient to guarantee
serializability — if A and B get updated in-between the
read of A and B, the displayed sum would be wrong.

0 A locking protocol (TrpwTOKOAAO KAEIDWMATOG) IS a set
of rules followed by all transactions while requesting and
releasing locks. Locking protocols restrict the set of possible
schedules (xpovodiaypauuaTwy).

Database System Concepts - 61" Edition 155 ©Silberschatz, Korth and Sudarshan

The Two-Phase Locking Protocol
NMPpwTOKOAAO KAEIdWHATOS Auo PAcEWY

0 This protocol ensures conflict-serializable schedules
(xpovodiaypAupaTa OEIPIOTTOINCIKNA WG TTPOG TIG OIEVEEEIC).

0 Phase 1: Growing Phase (Pdon avamrtugng)
Transaction may obtain locks
Transaction may not release locks
0 Phase 2: Shrinking Phase (¢aon ouuttugng)
Transaction may release locks
Transaction may not obtain locks
0 The protocol assures serializability (ociplotroincipotnTa
d1Evelnc). It can be proved that the transactions can be serialized
in the order of their lock points (onueia kKAeiIdwpuartog) (i.e., the

point where a transaction acquired its final lock = this is the end
of the growing phase of the transaction).

Database System Concepts - 6t" Edition 15.6 ©Silberschatz, Korth and Sudarshan

E‘ The Two-Phase Locking Protocol (Cont.)
= MpwTtoKoAAo KAEIdWpaTOC Auo Pdcewv

0 There can be conflict serializable schedules that cannot be
obtained if two-phase locking is used.

Cause serializability is achieved in the order of the lock
points of the transaction (= the end of the growing
phase)

0 However, in the absence of extra information (e.g., ordering of
access to data), two-phase locking is needed for conflict
serializability in the following sense:

Given a transaction T, that does not follow two-phase
locking, we can find a transaction T; that uses two-phase
locking, and a schedule for T; and T; that is not conflict
serializable.

Database System Concepts - 6t" Edition 15.7 ©Silberschatz, Korth and Sudarshan

- Lock Conversions

= MeTatpoTréc KAEISWHATWY

0 Two-phase locking with lock conversions(kAgidwua duo
PACEWV PE METATPOTTEG KAEIDWHATWY) — allows more
concurrency:

— First Phase (Growing Phase):

can acquire a lock-S on item

can acquire a lock-X on item

can convert a lock-S to a lock-X (upgrade-avapaduion)
— Second Phase (Shrinking Phase):

can release a lock-S

can release a lock-X

can convert a lock-X to a lock-S (downgrade -
utToRA0uIoN)

0 This protocol assures serializability. But still relies on the
programmer to insert the various locking instructions.

Database System Concepts - 6t" Edition 15.8 ©Silberschatz, Korth and Sudarshan

Automatic Acquisition of Locks
2XNHA aUTOMATOU KAEIOWMATOC - Read

0 This scheme automatically creates lock according to read /
write requests.

0 A transaction T, issues the standard read/write instruction,
without explicit locking calls.
0 The operation read(D) is processed as:
if T, has alock on D
then
read(D)
else begin

if necessary wait until no other
transaction has alock-Xon D
grant T; a lock-S on D;
read(D)
end

Database System Concepts - 6t" Edition 15.9 ©Silberschatz, Korth and Sudarshan

Automatic Acquisition of Locks (Cont.)
2XNHA AUTOMATOU KAEIDWMATOC - Write

0 write(D) is processed as:

If T, has a lock-X on D
then
write(D)
else begin
If necessary wait until no other transaction has any lock on D,
if T, has a lock-S on D
then
upgrade lock on D to lock-X
else
grant T, a lock-X on D
write(D)
end;

0 Alllocks are released after commit or abort

Database System Concepts - 6t" Edition 15.10 ©Silberschatz, Korth and Sudarshan

-! Deadlocks
o Ad1€£€00ec KaTaoTaoEIg

0 Consider the partial schedule

e Ty
lock-x (B)
rea
B:=B-50
write (B)

. lock-s (A)
read ‘AI

lock-x (A) @

0 Neither T; nor T, can make progress — executing lock-S(B)
causes T, to wait for T, to release its lock on B, while executing
lock-X(A) causes T to wait for T, to release its lock on A.

0 Such a situation is called a deadlock (ad1£§060).

To handle a deadlock one of T, or T, must be rolled back
and its locks released.

Database System Concepts - 6t" Edition 15.11 ©Silberschatz, Korth and Sudarshan

ol & Deadlocks (Cont.)
- Adi1£€0dec KaraoTaoelg

0 Two-phase locking does not ensure freedom from
deadlocks (see previous example).

0 In addition to deadlocks, there is a possibility of starvation
(ET’ aépioTo avauovn).

0 Starvation occurs if the concurrency control manager is badly
designed. For example:

A transaction may be waiting for an X-lock on an item,
while a sequence of other transactions request and are
granted an S-lock on the same item.

The same transaction is repeatedly rolled back due to
deadlocks.

0 Concurrency control manager can be designed to prevent
starvation.

Database System Concepts - 6t" Edition 15.12 ©Silberschatz, Korth and Sudarshan

Deadlocks (Cont.)
Ad1€£€00ec KaTaoTaoEIg

0 The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

0 When a deadlock occurs there is a possibility of cascading
roll-backs.

0 Avoiding cascading roll-backs:

Cascading roll-back is possible under two-phase locking.

To avoid this, follow a modified protocol called strict two-
phase locking -- a transaction must hold all its exclusive

locks till it commits/aborts.

Rigorous two-phase locking is even stricter. Here, all
locks are held till commit/abort. In this protocol
transactions can be serialized in the order in which they
commit.

Database System Concepts - 6t" Edition 15.13 ©Silberschatz, Korth and Sudarshan

Presenter
Presentation Notes
Rigorous – αυστηρός σχολαστικός ενδελεχής

g Implementation of Locking
- (Xe1ip1opog KAEIDWHATWYV)

0 Alock manager can be implemented as a separate process to
which transactions send lock and unlock requests

0 The lock manager replies to a lock request by sending a lock
grant messages-unvugara rapaywpnong (or a message
asking the transaction to roll back, in case of a deadlock)

0 The requesting transaction waits until its request is answered

0 The lock manager maintains a data-structure called a lock
table (Trivakag kAeidwpdartwyv) to record granted locks
(Trapaxwpnuéva kKAsidwpuara) and pending requests
(ITApaTa o€ avapovi).

0 The lock table is usually implemented as an in-memory hash
table indexed on the name of the data item being locked

Database System Concepts - 6t" Edition 15.14 ©Silberschatz, Korth and Sudarshan

L7

123

-

| T23

- 212

.

| 14

;

T1 T23

144

.

Database System Concepts - 6t" Edition

T1

Lock Table
(Mivakag KAs1dwpaTtwy)

mc

s 12

d
O

15.15

Hash index on name of the data item

Dark blue rectangles indicate granted locks
(Trapaxwpnuéva KAEIdwpaTa); light blue
indicate waiting requests(aiTipara o€
AVAUOVH).

Lock table also records the type of lock
granted or requested

New request is added to the end of the
gueue of requests for the data item, and
granted if it is compatible with all earlier
locks

Unlock requests result in the request being
deleted, and later requests are checked to
see if they can now be granted

If transaction aborts, all waiting or
granted requests of the transaction are
deleted

lock manager may also keep a list of
locks held by each transaction, to
implement this efficiently

©Silberschatz, Korth and Sudarshan

s Deadlock Handling
o (Xe1p1op6g KAEIBWHATWV)

0 System is deadlocked if there is a set of transactions such that
every transaction in the set is waiting for another transaction
In the set.

0 Deadlock prevention (Amrotpotr) AdiE€odn¢ KaraoTaong)
protocols ensure that the system will never enter into a deadlock
state. Some prevention strategies :

Require that each transaction locks all its data items before it
begins execution (predeclaration- TTpo-0nAwaon).

Impose partial ordering of all data items and require that a
transaction can lock data items only in the order specified by
the partial order. (After a lock on a specific item the
transaction can not require to lock items ordered before that
one)

Database System Concepts - 6t" Edition 15.16 ©Silberschatz, Korth and Sudarshan

g More Deadlock Prevention Strategies

T (Zrpamyikég Amrotpotriig ABIE§odns
Kardotaonc)

0 Following schemes use transaction timestamps for the sake of deadlock
prevention alone. They consider the older as more important!

0 wait-die(avapovi-TeppaTiopog) scheme — non-preemptive (TEXVIKA XWPEIC
QAVTIKATAOTAON)

older transaction may wait for younger one to release data item. (older
means smaller timestamp) Younger transactions never. Younger
transactions never wait for older ones; they are rolled back instead.

a transaction may die several times before acquiring needed data item

0 wound-wait (TpauuaTtiopoG-avauovr)) scheme — preemptive (TEXVIKN
avTIKATAOTAONG)

older transaction wounds (forces rollback) of a younger transaction instead
of waiting for it. Younger transactions may wait for older ones.

may be fewer rollbacks than wait-die scheme.

Database System Concepts - 6t" Edition 15.17 ©Silberschatz, Korth and Sudarshan

E‘ Deadlock prevention (Cont.)
== (Ztparnyikéc AtroTpotriic AS1E§0dNG
Karactaong)

0 Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and starvation
IS hence avoided.

0 Another Strategy - Timeout-Based Schemes (AR¢n Xpoévou
KAg10wWpATWV):

a transaction waits for a lock only for a specified amount of time. If
the lock has not been granted within that time, the transaction is
rolled back and restarted,

Thus, deadlocks are not possible

simple to implement; but starvation (ET’ aépioTo avauovi) is
possible. Also difficult to determine good value of the timeout
interval.

Database System Concepts - 6t" Edition 15.18 ©Silberschatz, Korth and Sudarshan

g Deadlock Detection
 Evromopocg Adi€odng KardaoTaong

0 For systems with no deadlock prevention mechanisms.

0 Deadlocks can be described as a wait-for graph (ypaenua avauovnc),
which consists of a pair G = (V,E),

V is a set of vertices (all the transactions in the system)
E is a set of edges; each element is an ordered pair T; >T;.

O If T,— T;is in E, then there Is a directed edge from T; to T;, implying
that T; is waiting for T, to release a data item.

O When T, requests a data item currently being held by T;, then the edge
T; - T;is inserted in the wait-for graph. This edge is removed only
when T; is no longer holding a data item needed by T;.

0 The system is in a deadlock state if and only if the wait-for graph
has a cycle. Must invoke a deadlock-detection algorithm periodically
to look for cycles.

Database System Concepts - 6t" Edition 15.19 ©Silberschatz, Korth and Sudarshan

el

—. Deadlock Detection (Cont.)
Wait-for graph without a cycle Wait-for graph with a cycle
T17 waits for T18, T19
T18 waits for T20
T19 waits for T18

Database System Concepts - 6t" Edition 15.20 ©Silberschatz, Korth and Sudarshan

Deadlock Recovery
AtrokatacTaon amro AdiE€odn KataoTaon

0 When deadlock is detected :

Some transaction will have to rolled back (made a victim) to
break deadlock. Select that transaction as victim that will
Incur minimum cost.

Rollback (Avaipeon) -- determine how far to roll back
transaction

» Total rollback (ZuvoAkr avaipeon cuvaAiayric): Abort the
transaction and then restart it.

» Partial rollback (Mepiki avaipeon ouvaAAayng) More
effective to roll back transaction only as far as necessary to
break deadlock.

Starvation (ET’ adpioTto avauovry) happens if same transaction
IS always chosen as victim. Include the number of rollbacks
In the cost factor to avoid starvation.

Database System Concepts - 6t" Edition 15.21 ©Silberschatz, Korth and Sudarshan

End of Module 15

Database System Concepts - 6! Edition 15.38 ©Silberschatz, Korth and Sudarshan

	Chapter 15 : Concurrency Control
	Outline
	Lock-Based Protocols�Πρωτόκολλα Βασισμένα στο κλείδωμα
	Lock-Based Protocols (Cont.)
	Lock-Based Protocols (Cont.)
	The Two-Phase Locking Protocol�Πρωτόκολλο κλειδώματος Δυο Φάσεων
	The Two-Phase Locking Protocol (Cont.)�Πρωτόκολλο κλειδώματος Δυο Φάσεων
	Lock Conversions�Μετατροπές Κλειδωμάτων
	Automatic Acquisition of Locks�Σχήμα αυτόματου κλειδώματος - Read
	�Automatic Acquisition of Locks (Cont.)� Σχήμα αυτόματου κλειδώματος - Write �
	Deadlocks�Αδιέξοδες Καταστάσεις
	Deadlocks (Cont.)�Αδιέξοδες Καταστάσεις
	Deadlocks (Cont.)�Αδιέξοδες Καταστάσεις
	Implementation of Locking�(Χειρισμός Κλειδωμάτων)
	Lock Table�(Πίνακας Κλειδωμάτων)
	Deadlock Handling� (Χειρισμός Κλειδωμάτων)
	More Deadlock Prevention Strategies�(Στρατηγικές Αποτροπής Αδιέξοδης Κατάστασης)
	Deadlock prevention (Cont.)� (Στρατηγικές Αποτροπής Αδιέξοδης Κατάστασης)
	Deadlock Detection�Εντοπισμός Αδιέξοδης Κατάστασης
	Deadlock Detection (Cont.)
	Deadlock Recovery�Αποκατάσταση από Αδιέξοδη Κατάσταση
	End of Module 15

