
Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 14: Transactions

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

©Silberschatz, Korth and Sudarshan 14.2 Database System Concepts - 6th Edition

Outline

 Transaction Concept
 Transaction State
 Concurrent Executions
 Serializability
 Recoverability
 Implementation of Isolation
 Transaction Definition in SQL
 Testing for Serializability.

©Silberschatz, Korth and Sudarshan 14.3 Database System Concepts - 6th Edition

Transaction Concept
(Θεωρία Συναλλαγών)

 A transaction is a unit of program execution that accesses and
possibly updates various data items.

 E.g., transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

 Two main issues to deal with:
 Failures of various kinds, such as hardware failures and

system crashes
 Concurrent execution of multiple transactions

©Silberschatz, Korth and Sudarshan 14.4 Database System Concepts - 6th Edition

Required Properties of a Transaction

 Consider a transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

 Atomicity (Ατομικότητα) requirement
 If the transaction fails after step 3 and before step 6, money will be

“lost” leading to an inconsistent database state
 Failure could be due to software or hardware

 The system should ensure that updates of a partially executed
transaction are not reflected in the database

 Durability (Ανθεκτικότητα) requirement — once the user has been
notified that the transaction has completed (i.e., the transfer of the $50 has
taken place), the updates to the database by the transaction must persist
even if there are software or hardware failures.

Presenter
Presentation Notes
Persist παραμένουν

©Silberschatz, Korth and Sudarshan 14.5 Database System Concepts - 6th Edition

Required Properties of a Transaction (Cont.)

 Consistency (Συνέπεια) requirement in above example:
 The sum of A and B is unchanged by the execution of the transaction

 In general, consistency requirements include
 Explicitly specified integrity constraints such as primary keys and

foreign keys
 Implicit integrity constraints

– e.g., sum of balances of all accounts, minus sum of loan
amounts must equal value of cash-in-hand

 A transaction, when starting to execute, must see a consistent database.
 During transaction execution the database may be temporarily

inconsistent.
 When the transaction completes successfully the database must be

consistent
 Erroneous transaction logic can lead to inconsistency

Presenter
Presentation Notes
Explicitly – απερίφραστα – ρητά – κατηγορηματικάImplicitly - έμμεσα

©Silberschatz, Korth and Sudarshan 14.6 Database System Concepts - 6th Edition

Required Properties of a Transaction (Cont.)

 Isolation (Απομόνωση) requirement — if between steps 3 and 6 (of
the fund transfer transaction) , another transaction T2 is allowed to
access the partially updated database, it will see an inconsistent
database (the sum A + B will be less than it should be).

 T1 T2
1. read(A)
2. A := A – 50
3. write(A)

 read(A), read(B), print(A+B)
4. read(B)
5. B := B + 50
6. write(B

 Isolation can be ensured trivially by running transactions serially
 That is, one after the other.

 However, executing multiple transactions concurrently has significant
benefits, as we will see later.

©Silberschatz, Korth and Sudarshan 14.7 Database System Concepts - 6th Edition

ACID Properties

 Atomicity (Ατομικότητα). Either all operations of the transaction are
properly reflected in the database or none are.

 Consistency (Συνέπεια). Execution of a transaction in isolation
preserves the consistency of the database.

 Isolation (Απομόνωση). Although multiple transactions may execute
concurrently, each transaction must be unaware of other concurrently
executing transactions. Intermediate transaction results must be hidden
from other concurrently executed transactions.
 That is, for every pair of transactions Ti and Tj, it appears to Ti that

either Tj, finished execution before Ti started, or Tj started execution
after Ti finished.

 Durability (Ανθεκτικότητα). After a transaction completes successfully,
the changes it has made to the database persist, even if there are
system failures.

A transaction is a unit of program execution that accesses and possibly
updates various data items. To preserve the integrity of data the database
system must ensure:

Presenter
Presentation Notes
Integrity ακεραιότηταPersist παραμένουν

©Silberschatz, Korth and Sudarshan 14.8 Database System Concepts - 6th Edition

Transaction State

 Active (Ενεργή)– the initial state; the transaction stays in this state
while it is executing

 Partially committed (εν μέρει ολοκληρωμένη)– after the final
statement has been executed.

 Failed (Αποτυχημένη)-- after the discovery that normal execution
can no longer proceed. May happen due to logic errors or write-
to-disk failures.

 Aborted (Διακοπείσα)– after the transaction has been rolled back
and the database restored to its state prior to the start of the
transaction. Two options after it has been aborted:
 Restart the transaction

 can be done only if no internal logical error
 Kill the transaction

 Committed(Εκτελεσμένη) – after successful completion.

©Silberschatz, Korth and Sudarshan 14.9 Database System Concepts - 6th Edition

Transaction State (Cont.)

©Silberschatz, Korth and Sudarshan 14.10 Database System Concepts - 6th Edition

Concurrent Executions
 Multiple transactions are allowed to run concurrently in the

system. Advantages are:
 Increased processor and disk utilization, leading to

better transaction throughput
 E.g. one transaction can be using the CPU while

another is reading from or writing to the disk
 Reduced average response time for transactions: short

transactions need not wait behind long ones.
 Concurrency control schemes (Σχήματα ταυτόχρονου

ελέγχου) – mechanisms to achieve isolation
 That is, to control the interaction among the concurrent

transactions in order to prevent them from destroying the
consistency of the database
Will study in Chapter 15, after studying notion of

correctness of concurrent executions.

©Silberschatz, Korth and Sudarshan 14.11 Database System Concepts - 6th Edition

Schedules (Χρονοδιαγράμματα
Εργασιών)

 Schedule (χρονοδιάγραμμα εργασιών)– a sequences of
instructions that specify the chronological order in which
instructions of concurrent transactions are executed
 A schedule for a set of transactions must consist of all

instructions of those transactions
 Must preserve the order in which the instructions appear in

each individual transaction.
 A transaction that successfully completes its execution will have a

commit instructions as the last statement
 By default transaction assumed to execute commit instruction

as its last step
 A transaction that fails to successfully complete its execution will

have an abort instruction as the last statement

©Silberschatz, Korth and Sudarshan 14.12 Database System Concepts - 6th Edition

Schedule 1

 A=1000E & B=2000E & A+B=3000E
 Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.
 An example of a serial schedule (σειριακό χρονοδιάγραμμα) in which T1 is

followed by T2 :

Finally A=855E & B=2145E & A+B=3000E

©Silberschatz, Korth and Sudarshan 14.13 Database System Concepts - 6th Edition

Schedule 2

 A serial schedule in which T2 is followed by T1 :

©Silberschatz, Korth and Sudarshan 14.14 Database System Concepts - 6th Edition

Schedule 3
 Let T1 and T2 be the transactions defined previously. The following

schedule is not a serial schedule (concurrent transactions
ταυτόχρονες συναλλαγές), but it is equivalent to Schedule 1.

Note -- In schedules 1, 2 and 3, the sum “A + B” is preserved = 3000E.

©Silberschatz, Korth and Sudarshan 14.15 Database System Concepts - 6th Edition

Schedule 4

 The following concurrent schedule (ταυτόχρονο
χρονοδιάγραμμα) does not preserve the sum of “A + B”

Finally A=950E & B=2100E & A+B=3050E

A B temp
1000
950
1000
 100
900
900
 2000
950
 2000
 2050
 2050

 2100
 2100

©Silberschatz, Korth and Sudarshan 14.16 Database System Concepts - 6th Edition

Serializability (Σειριοποιησιμότητα)

 Basic Assumption – Each transaction preserves database
consistency.

 Thus, serial execution of a set of transactions preserves
database consistency.

 A (possibly concurrent) schedule is serializable
(σειριοποιήσιμο) if it is equivalent to a serial schedule.
Different forms of schedule equivalence give rise to the notions
of:
1. conflict serializability (διένεξη σειριοποιησιμότητας)
2. view serializability (σειριοποιησιμότητα προβολών)

©Silberschatz, Korth and Sudarshan 14.17 Database System Concepts - 6th Edition

Simplified view of transactions

 We ignore operations other than read and write instructions
 We assume that transactions may perform arbitrary

computations on data in local buffers in between reads and
writes.

 Our simplified schedules consist of only read and write
instructions.

©Silberschatz, Korth and Sudarshan 14.18 Database System Concepts - 6th Edition

Conflicting Instructions (Εντολές
διένεξης)

 Let li and lj be two Instructions of transactions Ti and Tj
respectively. Instructions li and lj conflict if and only if there
exists some item Q accessed by both li and lj, and at least one of
these instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don’t conflict.
 2. li = read(Q), lj = write(Q). They conflict.
 3. li = write(Q), lj = read(Q). They conflict
 4. li = write(Q), lj = write(Q). They conflict

 Intuitively, a conflict between li and lj forces a (logical) temporal
order between them.
 If li and lj are consecutive in a schedule and they do not

conflict (eg they are reads), their results would remain the
same even if they had been interchanged in the schedule.

©Silberschatz, Korth and Sudarshan 14.19 Database System Concepts - 6th Edition

Conflict Serializability
(Διένεξη σειριοποιησιμότητας)

 If a schedule S can be transformed into a schedule S´
by a series of swaps of non-conflicting instructions, we
say that S and S´ are conflict equivalent (ισοδύναμα
ως προς τις διενέξεις).

 We say that a schedule S is conflict serializable
(σειριοποιήσιμο ως προς τις διενέξεις) if it is conflict
equivalent to a serial schedule

©Silberschatz, Korth and Sudarshan 14.20 Database System Concepts - 6th Edition

Conflict Serializability (Cont.)

 Schedule 3 can be transformed into Schedule 6 -- a serial schedule where
T2 follows T1, by a series of swaps of non-conflicting instructions.
Therefore, Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

©Silberschatz, Korth and Sudarshan 14.21 Database System Concepts - 6th Edition

Conflict Serializability (Cont.)

 Example of a schedule that is not conflict serializable

(σειριοποιήσιμο ως προς τις διενέξεις) :

 We are unable to swap instructions in the above schedule to
obtain either the serial schedule < T3, T4 >, or the serial
schedule < T4, T3 >.

©Silberschatz, Korth and Sudarshan 14.22 Database System Concepts - 6th Edition

Precedence Graph
 Consider some schedule of a set of transactions T1, T2, ..., Tn
 Precedence graph (γράφημα προτεραιότητας)— a direct

graph where the vertices are the transactions (names).
 We draw an arc from Ti to Tj if the two transaction conflict,

and Ti accessed the data item on which the conflict arose
earlier (eg wr,rw, ww).

 We may label the arc by the item that was accessed.
 Example

rw(A)

rw(B)

Presenter
Presentation Notes
Vertices -κορυφές

©Silberschatz, Korth and Sudarshan 14.23 Database System Concepts - 6th Edition

Testing for Conflict Serializability
(Έλεγχος Σειριοποιήσιμου ως προς τις

Διενέξεις)
 A schedule is conflict serializable

(σειριοποιήσιμο ως προς τις διενέξεις) if and
only if its precedence graph (γράφημα
προτεραιότητας) is acyclic.

 Cycle-detection algorithms exist which take order
n2 time, where n is the number of vertices in the
graph.
 (Better algorithms take order n + e where e is

the number of edges.)
 If precedence graph is acyclic, the serializability

order can be obtained by a topological sorting
(τοπολογική ταξινόμηση) of the graph.
 That is, a linear order consistent with the

partial order (εν μέρη σειρά) of the graph.
 For example, a serializability order for the

schedule (a) would be one of either (b) or (c)

©Silberschatz, Korth and Sudarshan 14.24 Database System Concepts - 6th Edition

Recoverable Schedules
(Χρονοδιαγράμματα με δυνατότητα

Αποκατάστασης)
 Recoverable schedule — if a transaction Tj reads a data item

previously written by a transaction Ti , then the commit operation of Ti
must appear before the commit operation of Tj.

 The following schedule is not recoverable (although it is conflict
serializable) if T9 commits immediately after the read(A) operation.

 If T8 should abort, T9 would have read (and possibly shown to the user)
an inconsistent database state. Hence, database must ensure that
schedules are recoverable.

©Silberschatz, Korth and Sudarshan 14.25 Database System Concepts - 6th Edition

Cascading Rollbacks (Διαδοχικές
αναιρέσεις)

 Cascading rollback – a single transaction failure leads to a
series of transaction rollbacks. Consider the following schedule
where none of the transactions has yet committed (so the
schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.

 Can lead to the undoing of a significant amount of work

©Silberschatz, Korth and Sudarshan 14.26 Database System Concepts - 6th Edition

Cascadeless Schedules
(Χρονοδιαγράμματα χωρίς διαδοχικές

αναιρέσεις)
 Cascadeless schedules — for each pair of transactions Ti and

Tj such that Tj reads a data item previously written by Ti, the
commit operation of Ti appears before the read operation of
Tj.

 Every cascadeless schedule is also recoverable
 It is desirable to restrict the schedules to those that are

cascadeless
 Example of a schedule that is NOT cascadeless

©Silberschatz, Korth and Sudarshan 14.27 Database System Concepts - 6th Edition

Concurrency Control (Σχήματα
Ταυτόχρονου ελέγχου)

 A database must provide a mechanism that will ensure that all
possible schedules are both:
 Conflict serializable (σειριοποιήσιμα ως προς τις διενέξεις).
 Recoverable and preferably cascadeless (με δυνατότητα

Αποκατάστασης και προτιμώνται χωρίς διαδοχικές αναιρέσεις)
 A policy in which only one transaction can execute at a time

generates serial schedules, but provides a poor degree of
concurrency

 Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur

 Testing a schedule for serializability after it has executed is a little
too late!
 Tests for serializability help us understand why a

concurrency control protocol is correct
 Goal – to develop concurrency control protocols that will

assure serializability.

Presenter
Presentation Notes
concurrency ταυτοχρονισμός

©Silberschatz, Korth and Sudarshan 14.28 Database System Concepts - 6th Edition

Weak Levels of Consistency

 Some applications are willing to live with weak levels of
consistency, allowing schedules that are not serializable
 E.g., a read-only transaction that wants to get an approximate

total balance of all accounts
 E.g., database statistics computed for query optimization can

be approximate (why?)
 Such transactions need not be serializable with respect to

other transactions
 Tradeoff accuracy for performance

©Silberschatz, Korth and Sudarshan 14.29 Database System Concepts - 6th Edition

Levels of Consistency in SQL-92
Επίπεδα συνέπειας στην SQL

 Serializable Σειριοποιήση— default (εξασφάλιση σειριοποιήσιμης
εκτέλεσης)

 Repeatable read Επαναλαμβανόμενο διάβασμα— only committed
records to be read, repeated reads of same record must return same
value (eg other transactions are not allowed to update the record
between the repeated reads). However, a transaction may not be
serializable – it may find some records inserted by a transaction but not
find others (eg when it searches for a conditionαl statement).

 Read committed Διάβασμα Ολοκληρωμένων — only committed
records can be read, but successive reads of record may return
different (but committed) values.

 Read uncommitted Διάβασμα μη Ολοκληρωμένων — even
uncommitted records may be read.

 Lower degrees of consistency useful for gathering approximate
information about the database

 Warning: some database systems do not ensure serializable schedules by
default
 E.g., Oracle and PostgreSQL by default support a level of consistency

called snapshot isolation (not part of the SQL standard)

©Silberschatz, Korth and Sudarshan 14.30 Database System Concepts - 6th Edition

Transaction Definition in SQL

 Data manipulation language must include a construct for
specifying the set of actions that comprise a transaction.

 In SQL, a transaction begins implicitly.
 A transaction in SQL ends by:

 Commit work commits current transaction and begins a
new one.

 Rollback work causes current transaction to abort.
 In almost all database systems, by default, every SQL

statement also commits implicitly if it executes successfully
 Implicit commit can be turned off by a database directive

 E.g. in JDBC, connection.setAutoCommit(false);

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

End of Chapter 14

http://www.db-book.com/
http://www.db-book.com/
http://www.db-book.com/

	Chapter 14: Transactions
	Outline
	Transaction Concept�(Θεωρία Συναλλαγών)
	Required Properties of a Transaction
	Required Properties of a Transaction (Cont.)
	Required Properties of a Transaction (Cont.)
	ACID Properties
	Transaction State
	Transaction State (Cont.)
	Concurrent Executions
	Schedules (Χρονοδιαγράμματα Εργασιών)
	Schedule 1
	Schedule 2
	Schedule 3
	Schedule 4
	Serializability (Σειριοποιησιμότητα)
	Simplified view of transactions
	Conflicting Instructions (Εντολές διένεξης)
	Conflict Serializability�(Διένεξη σειριοποιησιμότητας)
	Conflict Serializability (Cont.)
	Conflict Serializability (Cont.)
	Precedence Graph
	Testing for Conflict Serializability�(Έλεγχος Σειριοποιήσιμου ως προς τις Διενέξεις)
	Recoverable Schedules�(Χρονοδιαγράμματα με δυνατότητα Αποκατάστασης)
	Cascading Rollbacks (Διαδοχικές αναιρέσεις)
	Cascadeless Schedules (Χρονοδιαγράμματα χωρίς διαδοχικές αναιρέσεις)
	Concurrency Control (Σχήματα Ταυτόχρονου ελέγχου)
	Weak Levels of Consistency
	Levels of Consistency in SQL-92�Επίπεδα συνέπειας στην SQL
	Transaction Definition in SQL
	End of Chapter 14

