

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

Session 1420

The Relatively Simple CPU Simulator

John D. Carpinelli
New Jersey Institute of Technology

Abstract

The Relatively Simple CPU Simulator is an instructional aid for students studying computer
architecture and CPU design, typically at the junior or senior level. It simulates the Relatively
Simple CPU, a 16-instruction processor introduced in the textbook Computer Systems
Organization and Architecture1. Students first enter an assembly language program, which is
assembled by the simulator. After correcting any syntax errors, the user simulates the fetch,
decode, and execute cycles for each instruction in the program. The user may simulate the
execution of the program by clock cycle, by instruction, using breakpoints, or as a single,
continuous execution.

The simulator uses animation to give students a more intuitive understanding of how the CPU
fetches, decodes, and executes instructions. It shows the flow of data within the CPU’s register
section. A pop-up window animates data flow within the ALU whenever it is active. The control
unit highlights signals asserted by the control unit and used in the rest of the CPU. Users may
select either a hard-wired or microcoded control unit.

The Relatively Simple CPU simulator is coded as a platform-independent Java applet that can be
executed within any Java-enabled web browser. The simulator and its source code are freely
available under the GNU Public License.

1. Introduction

The goal of this simulation package is to actively engage students in the process of learning how a
CPU works. Students who take a passive approach to learning are less likely to learn the material
and are less likely to perform well in their courses. By illustrating the flow of data within a CPU as
it fetches, decodes, and executes instructions, this simulator will help students to learn the material
better.

Most textbooks for computer organization and architecture have some type of simulator
available2,3,4. (One notable exception5 does not offer a simulator.) However, these simulators only
accept program input and output results, such as the contents of registers after each instruction.
They show students what happens within a computer, but not the actions that cause each operation

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

to occur. They do not show how data moves from one place to another, only that it does so.

The Relatively Simple CPU Simulator uses visualization to illustrate the flow of data between
components in a CPU. Animating the flow of data within the system provides students with a more
intuitive understanding of how the CPU fetches, decodes, and executes instructions. As its name
implies, the processor simulated by this package is relatively simple, on the order of complexity of
Intel’s 8085 microprocessor. However, this is sufficient to teach students the basics of CPU
organization and design without burdening them with too many details.

This simulator is written in Java and is executed as an applet within any Java-enabled web
browser. The primary reason for doing this was to provide platform independence. The Relatively
Simple CPU Simulator can be executed on any Java-enabled web browser, regardless of the type
of computer used. By excluding proprietary extensions in the source code, the simulator realizes
the "write once run anywhere" mantra of Java developers. Using Java for all of the simulators
developed by the authors allows maximum reuse of code. The assembler for this simulator is also
used in another simulator which simulates a computer system incorporating the Relatively Simple
CPU. As an additional benefit, the authors have found little difficulty in attracting students to work
on this and other simulators. Java is a desirable skill for graduates entering the workforce, and
students seek to gain experience in Java programming. Projects of this type are exactly what these
students are looking for.

The rest of this paper is organized as follows. The specifications of the CPU simulated by this
package are described in the following section. The functions of the simulator are given in the next
section; finally, concluding remarks are presented.

2. CPU Specifications and Design

The Relatively Simple CPU is an 8-bit processor with a 64K address space. It interfaces to
memory and I/O devices via a 16-bit address bus and an 8-bit system data bus. The Relatively
Simple CPU uses memory-mapped I/O, so only Read and Write signals are included in the
system’s control bus. (Other control signals found in some CPUs, such as a READY signal, were
excluded to simplify the presentation of the processor.)

The instruction set architecture of the Relatively Simple CPU includes three registers that can be
controlled directly by the programmer. The accumulator, AC, is an 8-bit register. It receives the
result of any arithmetic or logical operation and provides one of the operands for arithmetic and
logical instructions that use two operands. Whenever data is loaded from memory, it is loaded in
to the accumulator; data stored to memory also comes from AC. Register R is an 8-bit general
purpose register. It supplies the second operand of all 2-operand arithmetic and logical instructions
and can also be used to store data. Finally, there is a 1-bit zero flag, Z, which is set whenever an
arithmetic or logical instruction is executed.

There are several other registers in this CPU which are not a part of the instruction set architecture,

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

but which the CPU uses to perform the internal operations necessary to fetch, decode, and execute
instructions. These registers are fairly standard, and are found in many CPUs. The Relatively
Simple CPU contains the following registers.

• A 16-bit Address Register, AR, which supplies an address to memory via address pins

A[15..0]
• A 16-bit Program Counter, PC, which contains the address of the next instruction to be

executed or the address of the next required operand of the instruction
• An 8-bit Data Register, DR, which receives instructions and data from memory and transfers

data to memory via data pins D[7..0]
• An 8-bit Instruction Register, IR, which stores the opcode fetched from memory
• An 8-bit Temporary Register, TR, which temporarily stores data during instruction execution

The registers within the Relatively Simple CPU are connected via a 16-bit internal bus. In
addition, there are a few direct connections between some components within the CPU. (This was
done to allow two data values to be transferred simultaneously.) The internal organization of the
register section of the Relatively Simple CPU is shown in the screen shot of the CPU Internal
Architecture window of the simulator, shown in Figure 1.

The arithmetic/logic unit for the Relatively Simple CPU is designed as two separate sections, one
of which processes arithmetic operations and the other for performing logical functions. The ALU
is shown in Figure 2.

The instruction set for this CPU contains 16 instructions. Although it is possible to encode these
instructions using only four bits, this CPU uses an 8-bit opcode. This was done because the
instruction set is expanded later in the textbook1 as other topics, such as interrupts, are introduced.
The instructions were chosen to represent instructions and instruction types commonly found in
processors of this level. The instruction set for the Relatively Simple CPU is shown in Table 1.

The LDAC, STAC, JUMP, JMPZ and JPNZ instructions all require a 16-bit memory address,
represented in the instruction code by Γ. Since each byte of memory is 8 bits wide, these
instructions each require three bytes in memory. The first byte contains the opcode for the
instruction and the last two bytes contain the address. Following the convention used by Intel’s
8085 microprocessor, the second byte contains the low-order 8 bits of the address and the third
byte contains the high-order 8 bits of the address.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

The Relatively Simple CPU can use either a hard-wired or microcoded control unit, either of
which can be simulated by this package. Figures 3 and 4 show the hardware implementations of
both control units.

Figure 1: Register section of the Relatively Simple CPU

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

Figure 2: Arithmetic/logic unit of the Relatively Simple CPU

Instruction Instruction Code Operation
NOP 0000 0000 No operation
LDAC 0000 0001 Γ AC = M[Γ]
STAC 0000 0010 Γ M[Γ] = AC
MVAC 0000 0011 R = AC
MOVR 0000 0100 AC = R
JUMP 0000 0101 Γ Goto Γ
JMPZ 0000 0110 Γ IF (Z=1) THEN Goto Γ
JPNZ 0000 0111 Γ IF (Z=0) THEN Goto Γ
ADD 0000 1000 AC = AC + R, If (AC + R = 0) Then Z = 1 Else Z = 0
SUB 0000 1001 AC = AC - R, If (AC - R = 0) Then Z = 1 Else Z = 0
INAC 0000 1010 AC = AC + 1, If (AC + 1 = 0) Then Z = 1 Else Z = 0
CLAC 0000 1011 AC = 0, Z = 1
AND 0000 1100 AC = AC ^ R, If (AC ^ R = 0) Then Z = 1 Else Z = 0
OR 0000 1101 AC = AC ∨ R, If (AC ∨ R = 0) Then Z = 1 Else Z = 0
XOR 0000 1110 AC = AC ⊕ R, If (AC ⊕ R = 0) Then Z = 1 Else Z = 0
NOT 0000 1111 AC = AC′, If (AC′ = 0) Then Z = 1 Else Z = 0

Table 1: Instruction set for a Relatively Simple CPU

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

Figure 3: Hard-wired control unit of the Relatively Simple CPU

Figure 4: Microcoded control unit of the Relatively Simple CPU

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

3. Simulator Functions

To use the simulator, the user first starts the simulator from within any Java-enabled web browser.
The simulator then presents the opening screen shown in Figure 5.

Figure 5: Opening screen of the Relatively Simple CPU Simulator

The user enters an assembly language program in the program text area and assembles the
program. The simulator lists any errors encountered, which can be corrected by the user. Once the
program has been assembled correctly, the user may view the contents of memory and the value at
the I/O device. The user may also modify the contents of both memory and the I/O port, for
example, to enter data to be used by the program. Because the Relatively Simple CPU executes its
conditional jump instructions slightly differently, depending on the type of control unit used, the
user may select either a hard-wired or microcoded control unit for the simulation.

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

After successfully assembling a program, the user executes the program from within the CPU
Internal Architecture window, shown in Figure 1. As with the Relatively Simple Computer System
Simulator, the user may execute the program in continuous mode, with or without breakpoints, or
by single stepping through each instruction or each clock cycle. To facilitate the testing of
programs for specific cases, the user may set the value of any register or memory location
whenever the simulation is stopped. Thus the user may set initial conditions, or change the value
of any register or memory location when the simulator is stopped between single steps or at a
breakpoint. The simulator animates the flow of data between components within the CPU using
dots that move along the buses and direct connections to show the direction of data flow. Active
control signals for the registers are highlighted in red. The flow of data is also animated within the
ALU, which is shown in a pop-up window whenever it is active. (The ALU window was
implemented as a pop-up window to simplify the screen presentation of the simulator.)

During program simulation, the control unit is also simulated. For the hard-wired control unit,
there is no data flow per se; the function of this control unit is shown by highlighting the active
signals within the control unit. For the microcoded control unit, the flow of data within the control
unit is animated, and active signals are highlighted in red.

4. Summary

The Relatively Simple CPU Simulator simulates the internal functions of its CPU as it processes
the instructions in its instruction set. By animating the flow of data within the CPU, the simulator
provides students with a more intuitive understanding of how the CPU fetches, decodes, and
executes instructions. It serves as a useful adjunct for students using the textbook Computer
Systems Organization and Architecture. Both the executable and source code for this simulator are
available at the book’s companion web sites6,7. The source code is available without cost under the
terms of the GNU Public License.

Acknowledgments

The author thanks Aamish Kapadia, Ray Bobrowski, Leo Hendriks, and Benedicto Catalan for
their efforts in coding this simulator.

Partial funding for student support for this program was provided through the Provost’s Challenge
Grant Program at NJIT. The authors also acknowledge the support of the Gateway Engineering
Educational Coalition.

Bibliography
1. Carpinelli, John D. Computer Systems Organization and Architecture. Reading, MA: Addison-Wesley (2001).
2. Patterson, David A. and John L. Hennessy. Computer Organization & Design: The Hardware/Software Interface,
2nd edition, San Francisco: Morgan Kaufmann Publishers (1998).
3. Stallings, William. Computer Organization and Architecture, 5th edition, Upper Saddle River, NJ: Prentice Hall
(2000).

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
 Copyright 2001, American Society for Engineering Education

4. Tanenbaum, Andrew S. Structured Computer Organization, 4th edition, Upper Saddle River, NJ: Prentice Hall
(1999).
5. Mano, M. Morris. Computer Systems Architecture, 3rd edition, Upper Saddle River, NJ: Prentice Hall (1993).
6. URL: www.awl.com/carpinelli; Companion web site for Computer Systems Organization and Architecture
7. URL: www.awl.com/info/carpinelli; Companion web site for Computer Systems Organization and Architecture

JOHN D. CARPINELLI
John D. Carpinelli is an associate professor of Electrical and Computer Engineering, and Computer and Information
Sciences, at New Jersey Institute of Technology. He received the B.E. in Electrical Engineering from Stevens Institute
of Technology in 1983, and the M.E. in Electrical Engineering and Ph.D. in Computer and Systems Engineering from
Rensselaer Polytechnic Institute in 1984 and 1987, respectively. Since 1986 he has been with the Department of
Electrical and Computer Engineering at the New Jersey Institute of Technology. He has served as the Associate
Director and Director of Computer Engineering, and as Acting Associate Chairperson of the ECE Department. Prof.
Carpinelli’s research interests include interconnection networks, computer architecture, parallel processing, distance
learning, and computer simulation. He has developed several simulation packages for use in undergraduate and
graduate courses, both for distance learning delivery and face-to-face instruction.

