Microbiology sampling plans

Microbiological sampling plans

- Define the probability of detecting microorganisms in a lot
- None can ensure the absence of a particular microorganism
- Should be economically feasible

- Sampling for microbiological analysis
 - sampling plan quality of batch release safe food

Types of microbiological sampling plans

- Variables plans
 - Non-grouped quantitative analytical results
 - Require distributional assumptions to be made (preliminary knowledge about the product)
- Attributes plans (two- and three-class plans)
 - Qualitative analytical results (presence/absence) or quantitative results that have been grouped (e.g. <10 cfu/g, 10 to 100 cfu/g, >100 cfu/g)
 - No preliminary idea about MO distribution

Choice of a microbiological sampling plan

Choice depends on

- The relative degree of risk for the quality of food or the health of the consumer on the basis of the information regarding the product microorganisms
- The expected number of destroyed, survivors or multiplied organisms during the technological operations to manufacture a food product

The two-class plan

- Samples into one of two classes: accept or reject
- Based on presence or absence of an organism or the numbers present
- Sampling plan is defined by:
 - n the number of sample units to be tested (chosen independently and randomly from the lot)
 - m the count above which the sample is considered defective; if acceptance or rejection is based on presence or absence, then m=0
 - c the maximum number of allowable positives or samples with counts above m

The two-class plan

Example: Criteria for cooked frozen crab meat:

- □ Staphylococcus aureus n=5 c=0 $m=10^3/g$ If all 5 samples contain 10^3 cfu/g or less, the batch is accepted.
- If 1 sample has more than 10³ cfu/g, the batch is rejected.

□ Salmonella spp. n=10 c=0 m=0

10 samples of 25 g are tested. If any of the samples is positive, the batch is rejected.

The two-class plan

Generally used for pathogens – three categories:

- Pathogens presenting a severe hazard
 - highly potent toxins with high mortality (Cl. botulinum) or
 - organisms causing infection with high mortality, low infective dose and which may spread (Salmonella typhi)
- Pathogens presenting a moderate hazard
 - with potentially extensive spread (Salmonella) (m=0)
 - with limited spread (not necessarily a hazards)
- Two-class plans may be used for indicators as well (E. coli as indicator for water supplies or shellfish)

- Product divided into three classes based on the numbers of organisms present
 - 0 to m
 - m to M
 - above M
- M the count above which the lot is unacceptable
- m the count which separates good quality from marginally acceptable quality
- c the number of samples with acceptable counts

Example: Aerobic plate count for pre-cooked breaded shrimp

c=2
$$m = 5 \times 10^5/g$$
 $M = 10^7/g$

$$M = 10^7/g$$

Sample	Count, cfu/g	Conclusion
1	6.3 x 10 ⁶	Two samples fall between m
2	4.8 x 10 ⁵	and M. All other samples are below m. As c=2, the
3	2.1 x 10 ⁵	batch is accepted.
4	5.9 x 10 ⁵	
5	3.6 x 10 ⁵	

Generally used for

- Organisms associated with general contamination and spoilage – no hazard to consumer (aerobic plate counts)
- Indicators no direct hazard to consumer, but significant numbers may indicate general process hygiene, post-process re-contamination or temperature abuse (Enterobacteriaceae – problems with general hygiene, E. coli – faecal contamination)
- Pathogens representing a moderate hazard with limited or no spread (Staphylococcus aureus)

- m defined by the level of contamination that can be attained by good manufacturing practice
- M numbers giving rise to detectable spoilage, unacceptably short storage life or a potential hazard

Aerobic count in pre-cooked breaded shrimps

n=3 c=2 $m=5\times10^5$ $M=10^7$

Batch	Sample	Count cfu/g	Conclusion
	1	4.0×10^4	MO count in all samples is below
1	1 2 3.2×10^5 $\frac{\text{m.}}{\text{The batch is accept}}$	m. The batch is accepted.	
	3	4.2×10^5	The batch is accepted.
2	1	6.3×10^6	MO count in two samples is
	2	2.1×10^{5}	between m и M. In 1 sample it is below m. Because c=2, the batch is <u>accepted</u> .
	3	5.9×10^5	
3	1	3.2×10^5	MO count in 1 sample is above M.
	2	7.8×10^{7}	The batch is <u>rejected</u> .
	3	4.8×10^{5}	

Plan stringency

Decisions should take into account

- Potential temperature abuse during storage, distribution and retailing
- Possible abuse by the consumer
- The target consumer
- Whether consumer will normally cook the food, type of cooking
- How much food is expected to be consumed

Choice of a sampling plan

- Purpose of control acceptance or rejection, quality assessment, determination of uniformity
- Nature of the lot size, dividing into sub-lots
- Nature of test material uniformity, size of units, price
- Nature of analytical procedures destructive or nondestructive, duration and price of analysis

- Collection of samples
- Transportation
- Sample preparation
- Analysis

Liquid samples

Samples from solid products

Samples from surfaces

- Liquid samples possible dilution, filtration
- Powder samples dilution
- Samples from solid products homogenization (blender, Stomacher)
- Choice of dilution solution
 - 0.1% peptone water (pH=6.8-7.0), phosphate buffer or Ringer solution; combination of or 0.1% peptone and 0.75% NaCl (ISO 6887:1983)
 - solutions for osmophilic and halophilic microorganisms

Dilution 10⁻¹

- ISO 7218: Microbiology of food and animal feeding stuffs -General requirements and guidance for microbiological examinations
- ISO 6887-1/2/3/4/5/6: Microbiology of food and animal feed
 Preparation of test samples, initial suspension and decimal dilutions for microbiological examination
- B.A.M. (Bacteriological Analytical Manual) FDA's laboratory procedures for microbiological analyses of foods and cosmetics (previous editions by Association of Official Analytical Chemists)