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ABSTRACT  

 

When we first published our study with street vendors (Carraher, Carraher, & 

Schliemann, 1982, 1985, 1988), we were surprised by the "bimodal distribution of 

reactions". Some people dismissed the mathematics of street vendors as limited 

and unimpressive. Others extolled the virtues of their computation routines, going 

so far as to recommend that a tidy part of early mathematics curriculum be 

allotted to self-invented algorithms. Apparently our findings were like Rorschach 

ink blots onto which readers projected their beliefs about social class, economic 

stratification, self-determination, and nature versus nurture. If so, findings from 

Everyday Mathematics were likely to be used to promote ideologies rather than to 

better understand how mathematics is learned, taught and employed in and out 

of school.  In this presentation we will discuss the relevance of Everyday 

Mathematics, keeping in view what mathematics as a formal discipline is all about 

 

Palavras-chave: everyday and school mathematics, concepts, invariants, symbols, 

situations. 

1 Everyday mathematics findings and contribution to education 

Everyday mathematics research has shown that specific cultural activities such as 

buying and selling promote mathematical learning that was thought to be only acquired 

through formal instruction.  Individuals with restricted schooling can come to master 

arithmetical operations, properties of integers and of the decimal system (Nunes, 

                                                
1 Most of the ideas discussed in this paper appear in papers previously published by the authors. 



Schliemann, & Carraher, 1993; T. N. Carraher, Carraher, & Schliemann, 1982, 1985, 1988; 

Saxe, 1991; Lave, 1977, 1988), proportional relations (Schliemann & Magalhães, 1990; 

Schliemann & Nunes, 1990), concepts and procedures related to measurement (T. N. 

Carraher, 1986; Gay & Cole, 1967; Saraswathi, 1988, 1989; Saxe & Moylan, 1982; Ueno & 

Saito, 1994), geometry (Abreu & Carraher, 1989; Acioly, 1993; Gerdes, 1986, 1988; Harris, 

1987, 1988; Millroy, 1992; Schliemann, 1985; Zaslavsky, 1973), permutations (Schliemann, 

1988), and probability (Acioly & Schliemann, 1989; Schliemann & Acioly, 1989). 

In retrospect, the finding that mathematical learning occurs out of school may seem 

obvious. Indeed one might wonder how anyone could have ever thought otherwise!  After all, 

commerce and crafts requiring rudimentary measurement skills have often flourished in 

societies where schooling has been infrequent or even nonexistent.  Furthermore, 

developmental psychological studies, particularly those of the Piagetian tradition, have long 

since documented that young children discover, for example, the commutative nature of 

addition well before entering school.   

However, when we initially investigated the mathematics of young street vendors in 

Brazil (Carraher, Carraher, & Schliemann, 1982), half of the students who entered first grade 

were not attending grade 2 one year later. At the time, the fact that children in public schools 

tended to fail in mathematics and drop out altogether came as no surprise to most Brazilian 

parents and educators of that period.  The children were considered undernourished and 

prone to disease and cognitive-developmental lags. Their parents were not strong supporters 

of education. They lived in communities where there the struggles of everyday life required a 

different set of priorities. Most elementary school teachers were under-prepared. And the 

school day itself lasted only three hours. When we found that street vendor youths could 

solve arithmetic problems at work, displaying significantly better performance than when 

"comparable" arithmetic tasks were administered as a school assignment, we realized that 

wide-spread beliefs about school failure required re-examination.  This was probably the 

main contribution of everyday mathematics studies to education:  children who were 

considered incapable of learning mathematics were in fact capable of mathematical 

reasoning using their own strategies to solve arithmetic problems.  

But how were they solving mathematical problems?  If children learning mathematics 

out of school were not following school-prescribed routines, but nonetheless producing 

correct answers, they must have alternative ways of representing and systematically solving 

problems.  Much of our work in everyday mathematics pursued this question.  It now seems 

fairly clear that many of the street vendors did not use a place value notational system when 

mentally solving problems.  Furthermore, they seemed to operate on measured quantities 

(such as 3 coconuts, 35 Brazilian cruzeiros) as opposed to pure numbers (3, 35).   In this 

manner they did not have to perform calculations on numbers and introduce the result of the 



computation back into the meaningful problem context.  Rather, they would always be 

working directly with countable quantities.   

The dramatic contrasts we encountered among Brazilian street vendors predisposed 

us to view informal mathematics as inherently more natural and more meaningful than school 

mathematics.  We showed that people attempt what appear to be nonsensical solutions in a 

school-context while they search for meaningful solutions when the problems are part of their 

work in everyday contexts (see Carraher, Carraher, & Schliemann, 1985, 1987; Grando, 

1988; Lave, 1977; Reed and Lave, 1979; Schliemann, 1985; and Schliemann and Nunes, 

1990).  The analysis of problem solving solutions in and out of schools suggests that 

students commonly learn algorithms for manipulating numerical values without reference to 

physical quantities, only reestablishing clear links to the problem context in the end when the 

units of measure are finally attached to the numbers.  By contrast, individuals solve problems 

in the workplace using mathematics as tools to achieve goals that are kept present 

throughout the solution processes, with continuous reference to the situation and the 

physical quantities involved.   As such, the problem solvers in the workplace are normally 

aware of how the quantities generated in the course of the computations are related to the 

problem at hand.  We also stressed that schools encourage memorization and repetitive 

practice, whereas at work street sellers solve problems through mental computation, using 

flexible strategies they develop and efficiently apply to achieve their goals as street sellers. 

As we came to document more and more instances of everyday mathematics—

among carpenters, cooks, farmers, lottery bookies and construction foremen—the more we 

realized, spurred by suggestions from Resnick’s (1986) work, that alternative mathematics, 

to be useful at all, would have to pay heed to some basic properties of arithmetic as additive 

composition and the commutative and associative laws of addition.  Once placed in this 

framework, we began to see informal mathematics and the mathematics of the school as 

more closely related than we had originally thought.   They both had to respect the many of 

same basic properties of arithmetic, such as the associative law, but they often did so 

through distinct routes.  For example, when subtracting 135 from 200, a street vendor might 

take away 100, then 30, then 5.  This strategy relies on the decomposition of 200 into 100 +  

(70 + 20 + 10); likewise, 135 is implicitly treated as the sum, 100 + 30 + 5.   Although the 

street vendors did not know how to explicitly express the associativity of addition they 

revealed their implicit use of the property through the transformations they made on the 

values given.  The standard school algorithm for column subtraction invokes the same 

general property but decomposes the givens in a somewhat different manner.  

If everyday mathematics is based on the same logico-mathematical relations implicit 

in the school procedures children should be learning in school, how could mathematics 

education benefit from the mathematics children have learned outside of schools?  



Observations from everyday mathematics do not provide straightforward answers to this 

question.  Further analysis of the characteristics, strengths, and weaknesses of mathematical 

knowledge may help gaining insights into the relevance of everyday mathematics to 

mathematics education.   

Here, Vergnaud's  theory of concepts and conceptual fields (Vergnaud, 1979,  1985) 

may help us understand the similarities and differences between everyday and school 

mathematics.  

2 Concepts: Invariants, Symbols and Situations  

Vergnaud (1979, 1985) views concepts as consisting of three components: invariants, 

symbols, and situations.  

Invariants refer to mathematical objects, properties, and relations.  As an invariant, a 

number is not a physical thing, but rather an idea connected to other ideas through its 

properties, relations, and operations.  On the other hand, symbols are closer to what is 

referred to in semiotics as "signifiers".  The distinction between invariant & symbol (roughly, 

signified and signifier) is very important in mathematics education research.  The symbol "8" 

is not a number but rather, a particular kind of signifier—a numeral—that stands for a 

signified, the idea eight. We have made similar points for the invariants function and equation 

(Carraher  et. al. 2007). The same point could be made with regard to any mathematical 

object.  Imagine a line drawn on a blackboard with numbers increasing in value from left to 

right.  The chalk line is not the number line mathematicians talk about: it has a thickness and 

a fixed length, whereas the real number line has no thickness and it extends to infinity in both 

directions.  And, given any two points chosen on the real number line, there is always an 

infinite number of points (and corresponding numbers) in between. 

Even in elementary mathematics, it is important that students shift their attention 

toward ideas, relations and structures not available to direct perception.  Otherwise they run 

the risk of confusing that which is drawn, written, or uttered with the things they are meant to 

stand for, namely, mathematical objects.   

Vergnaud employs the term symbol in the broad sense of semiotics. Symbols are 

signifiers that take on a variety of forms within and outside of mathematics. Symbol(ic) 

systems are structures that allow individual symbols to be composed, operated upon and 

interpreted within a set of conventions.   Just as it is naïve to equate invariants with concepts, 

it is wrong to equate symbols with concepts. And symbolization is only part of (although an 

important part of) conceptualization.  

Situations are the third component of concepts in Vergnaud's theory. This is the most 

difficult component to understand, and Vergnaud has provided no more than a fleeting 



sketch. Nonetheless they are critical to the present discussion.  One often discusses 

situations places or occasions where mathematics is applied or deployed in situations. In 

Vergnaud's theory, situations are actually an integral component of concepts. This is 

humorously evident in the early stages of learning, where irrelevant characteristics of 

situations are wedded to the concepts—for example, when young students believe that 

fractions are about pizzas or density is fundamentally about floating and sinking in water.   

3 Concepts in Everyday Mathematics 

When we first observed street vendors solving arithmetic problems in work settings 

we were tempted to conclude that we were witnessing a "different mathematics". But it soon 

became apparent that such a coarsely worded statement sheds little light. The street vendors 

were not operating directly on written symbols as pupils are taught to do in school. Maybe 

they were imagining actions involving currency and items purchased. But such a system of 

representation would be useless if they were not able to keep track of precise values or 

amounts—something very unlikely if they relied on mental images of physical objects.  

When we looked closely at the intermediate values involved in their mental 

computations, it became clear that the mental algorithms were not the same ones taught in 

school. In addition and subtraction, for example, one performs column-wise computations 

proceeding from right to left.  School addition required one to "carry" values from one column 

to the next if the total in a column surpassed 9; school subtraction required one to "borrow" 

from the column at the left in order to proceed.  Our street vendors did not use such 

algorithms.  They did compose and decompose amounts, but they did so in ways that did not 

quite match standard procedures taught in school.  And they often broke apart amounts 

opportunistically, in ways that made good use of the particular values at hand. For example, 

in subtracting 58 from 253, a vendor might appear to first decompose 58 into 53+5. He might 

then subtract 53 from 253, obtaining 200. Next, he might subtract the 5 (the remaining part of 

the subtrahend) from 200, reaching an answer of 195. The way chosen allowed the problem-

solver to pass, on the way to a solution, through the number 200. 

For street vendors "round numbers" such as 200 involved less cognitive overhead.  

Their mental representations of 200 did not contain three digits (Carraher, 1984a, b).  

Mentally, one only needs to represent the hundreds, of which there was a single amount, 

namely, two; there was no need to keep track of tens and units. It seemed that the number 

system of the street vendors was not a place value system at all!  So their mental arithmetic 

involved somewhat different symbolic representations from those taught in school.  

How it was possible for two different symbolic systems to consistently produce the 

same, correct answers to arithmetic problems.  This might have been obvious to those 



familiar with the history of mathematics. But it took some time for us to realize that each 

representational system would need to respect the same properties of arithmetic.  

Here is where the notion of invariant proved useful.  When talking about whole 

numbers and measures, addition does not depend on the order of the addends. That is, 

addition is commutative regardless of the values being used: A + B = B + A.  This simple 

law2, and others like it3, cannot be violated without wreaking havoc on the results.  But there 

are multiple ways to correctly enact arithmetic operations that respect the law.  Historically, 

there were also various methods for multiplying, including the Egyptian 'halving and doubling 

method', the Venetian grid methods, abacus-based methods, and of course our own column 

multiplication.   

Research suggests that the street vendors were comfortable with the commutative 

and associative properties of addition when doing oral mathematics. The difficulties they 

exhibited with school algorithms seemed to be more tied to the symbolic procedures 

themselves (or to other invariants). 

Concerning the situational aspect of mathematical concepts, much research has 

shown, in ways consistent with Piaget's description of cognitive development, that children 

learn mathematics through actions in the physical world and reflections on the results of 

those actions. Number is introduced through counting (things), rational numbers through the 

measurement of quantities.  Early mathematics instruction often relies on modeling, with a 

curious twist: instead of simply applying previously learned mathematical methods to 

represent phenomena in the physical world, children acquire knowledge of mathematics 

through making sense of worldly phenomena. But because mathematics is drawn to the 

increasingly abstract (Alexsandrov, 1989), children need to learn to extricate themselves 

from empirical observation, demonstration, trial and error methods, and the need to explain 

mathematics, at every turn, through appeal to extra-mathematical phenomena.  Mathematics 

must take on a life of its own, so to speak, and students need to develop an appreciation of 

validity independent of empirical corroboration.  Likewise, they need to be able to derive new 

symbolic expressions from existing expressions by treating the written forms as syntactical 

objects, without having to translate the forms into extra-mathematical terms.  How students 

make (or fail to make) such a transition is an important topic for research.  

4 Can Everyday Mathematics be the foundation for School Mathematics? 

We believe it would be a fundamental mistake to suggest that schools attempt to 

emulate out-of-school institutions.  After all, the goals and purposes of schools are not the 

                                                
2 Note that this law says nothing about procedures for adding two numbers.  A+B=B+A is not a method. 
3 They are the Field Axioms or more correctly, the commutative ring axioms (Bass, 2008).  



same as those of other institutions.  The specific everyday problems street sellers are asked 

to solve and the goals of their computations may hide important mathematical properties that 

should be part of the school curriculum.  Consider for instance the scalar approach so 

pervasive in everyday computation to solve multiplication problems.  This approach involves 

a linking of a unique y-value (price) to each value of x number of items) and, as such, 

captures the essential idea of a function and reveals an implicit understanding of 

proportionality.  It may therefore constitute a meaningful initial approach to solve 

multiplication and proportion problems.  But this understanding may be limited to 

mathematical principles that are relevant to the specific goals of the situation while principles 

that are not relevant to these goals are never considered.  The commutative property of 

multiplication as applied to repeated additions seems to be a case in point (Schliemann, 

Araujo, Cassundé, Macedo, and Nicéas, 1998).    

However we will overlook the most important contributions of life outside of school to 

mathematical learning if we restrict ourselves to the finished tools of mathematics: particular 

algorithms, material supports such as tables and graphs, notation systems and explicit 

mathematical terminology. Some of the most profound ideas in mathematics rest upon 

concepts learned in the physical and social world in what appear to be mathematics-free 

settings. Actions on physical objects—slicing modeling clay into several parts, joining 

multiple instances of elements, setting objects of one type in one to one correspondence with 

those of another type, nesting objects within others, dismantling toys—provide us with a wide 

range of experiences that later may prove crucial to understanding arithmetical and algebraic 

operations and relations among numbers, quantities, and variables. Commercial situations 

provide us with a wealth of knowledge about trading, profitability, interest, taxes, and so on 

that will prove necessary for understanding mathematics. The behavior of colliding objects, 

the exertion required to lift objects in different ways, judgments of the relative quickness of 

two automobiles and experimentation with how our eyes work provide us with elaborate 

knowledge and intuitions about dynamics and statics, velocity, acceleration and a host of 

other scientific concepts that ultimately play a major role in our making sense of advanced 

concepts in calculus, geometry, topology, and analysis. We repeat: they do not provide 

finished knowledge. However they provide rich repertoires of experience, data, and 

schematized understandings of how things work without which advanced mathematical 

understanding would be inconceivable. 

Everyday situations provide a foundation for constructing mathematical knowledge, 

but not a rock solid one onto which students can quickly erect, with scaffolding supplied by 

teachers and parents, mathematical skyscrapers. When construction proceeds at a rapid 

pace, as it typically does, school mathematics will occasionally wobble on its intuitive 

foundations.  For example, students may become puzzled when they discover that 



multiplying does not always make quantities grow bigger—a view long supported by their 

growing intuitions in elementary mathematics instruction. This fault can be superficially 

patched by telling the students that the old rules no longer apply (“rational numbers are 

different from integers”).  But a satisfactory fix of the problem requires examining the 

foundations and seeing how they can be accommodated to support the weight of new 

knowledge. For example, they may need to understand that fractions have both a 

multiplication- and division-like quality. The numerator of a fractional operator acts like a 

natural multiplier; the denominator acts like a natural divisor.  Their relative magnitude 

determines whether the result will be greater, less than or the equal to the original quantity.  

The construction site metaphor perhaps suggests that the upper floors will develop 

well once the foundations are solidly established. However, the relationship between intuition 

and new mathematical ideas is one of constant tension and readjustment.  The Greeks of 

antiquity had to adjust their intuitions about number when they realized that the diagonal of a 

unit square could not be expressed as an integer ratio of the side.  Similar tensions have 

arisen in the history of mathematics in the cases of Zeno’s paradoxes (“it takes a finite 

amount of time but an infinite number of steps to reach the tortoise”), negative quantities 

(“how can there be less than nothing?”) and Cantor’s infinities (“how can one infinite set be 

greater than another?”).   

It is comforting to believe that everyday mathematics is reconcilable with the 

mathematics of mathematicians. But there are times these approaches will clash and it is 

instructive for us and for students to become aware of these mismatches. We laugh when we 

hear that the average family has, say, 2.3 children or that we need 7.3 buses to transport a 

certain number of people because we know that children and buses come in whole numbers 

.  There is a sense in which even these “artificial” answers are true, and learning 

mathematics often requires temporarily suppressing common sense and traditional thinking 

in favor of following a stream of logic along its course.   

It is not easy to say how much children should be left to their own devices in solving 

mathematics problems. Proponents of laissez-faire pedagogy would go to great lengths to 

favor student inventiveness over the appropriation of conventional knowledge.  Some would 

go so far as to recommend that students create their own notational systems rather than be 

forced to adopt those created by others.  The French approach to the didactics of 

mathematics (see Laborde, 1989) makes a strong case for a distinctly opposing view.  

Although they would encourage children to generate their own solutions and choices, and 

recognize that mathematical knowledge grows around what are personal activities, they are 

also concerned that children become skilled in using conventional representational tools.  

There seems to be relatively little mathematical activity in children’s out-of-school 

activities and, when mathematics comes into play it does not seem to call for a deep 



understanding of mathematical relations. Cultural and social environments that support the 

construction of mathematical knowledge may nonetheless constrain and limit the knowledge 

children and adults will come to develop (Petito & Ginsburg, 1982; Schliemann & Carraher, 

1992; Schliemann, Araujo, Cassundé, Macedo, and Nicéas, 1998). Finally, once transposed 

to the classroom cultural setting the problem is no longer the same.  

In schools activities can be organized so that children will experience a wider range of 

situations and tools for using mathematical concepts and relations, thus allowing them to 

explicitly focus on mathematical concepts from different perspectives.  Schools can also 

engage children in using a variety of symbolic representations such as written symbols, 

diagrams, graphs, and explanations, which constitute opportunities to establish explicit links 

between situations and concepts that would otherwise remain unrelated.  Such are the 

activities that will allow children to understand mathematical concepts as belonging to, in 

Vergnaud’s (1990) terms, conceptual fields.   

5 Conclusions 

Is everyday mathematics really relevant to mathematics education?  Yes, but not as 

directly as many have thought. 

The idea that we can improve mathematics education by transporting everyday 

activities directly to the classroom is simplistic.  A buying-and-selling situation set up in a 

classroom is a stage on which a new drama unfolds, certainly one based on daily 

commercial transactions, but one that, as Burke (1962/1945) might have expressed it, has 

redefined the acts, settings, agents, tools, and purposes.  

Classroom goals are different from but no less complex nor cultural than goals in out 

of school settings. New situations challenge students to go beyond their everyday 

experience, to refine their intuitive understanding, and to express it in new ways.  In a school 

setting these situations are always to some extent contrived.  When the contrivances lead to 

playful puzzle-solving inquisitiveness and debate teachers are rightfully pleased.  When they 

fail to engage students, the situations present themselves as artificial.  Mathematics teachers 

cannot totally renounce the use of contrivance or, to use a less charged term, staging, 

because naturally occurring everyday situations are not sufficiently varied and provocative to 

capture the spectrum of mathematical inquiry.  This leaves teachers with immensely difficult 

dramaturgical problems, particularly when the students are leery of book knowledge and 

unfamiliar notational systems.    

The outstanding virtue of out of school situations lies not in realism but rather in 

meaningfulness.  Mathematics can and must engage students in situations both realistic and 

unrealistic from the student’s point of view.  But meaningfulness would seem to merit a 



consistently high position on the pedagogical pedestal.   One of the ways that everyday 

mathematics research has helped in this regard has been to document the variety of ways 

people represent and solve problems through self-invented means or through methods 

commonly used in special settings.  By explicitly recognizing these alternative methods of 

conceiving and solving problems teachers can hope to understand more clearly how 

students think and to appreciate the chasms they must sometimes cross to advance their 

present state of knowledge.  

Everyday Mathematics has contributed in important ways to long-standing debates 

about mathematical concepts, symbolic representation, and the role of contexts in thinking—

the latter topic reaching back at least as far as Kant's notion of scheme.  The descriptive 

work plays a role, of course. But it is only by making sense of the observations that science 

moves forward. If over time the expression Everyday Mathematics drops from usage, I would 

be neither surprised nor disappointed. Eventually the field needs to become absorbed into 

the mainstream traditions of research in mathematics education. However I would be 

disappointed if it is remembered only for its descriptive and proscriptive aspects, without 

recognizing the contributions to research, theory, and the cultural context of learning and 

thinking.     
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