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Perceptions of the nature and role of mathematics held by 
our society have a major influence on the development of 
school mathematics curriculum, instruction, and research. The 
understanding of different conceptions of mathematics is as im
portant to the development and successful implementation of 
programs in school mathematics as it is to the conduct and 
interpretation of research studies. The literature of the reform 
movement in mathematics and science education (American 
Association for the Advancement of Science, 1989; Mathemati
cal Sciences Education Board, 1989, 1990; National Council of 
Teachers of MathematiCS, 1989) portrays mathematics as a dy
namiC, growing field of study. Other conceptions of the subject 
define mathematics as a static diScipline, with a known set of 
concepts, principles, and skills (Fisher, 1990). 

The rapid growth of mathematiCS and its applications over 
the past 50 years has led to a number of scholarly essays that 
examine its nature and its importance (Consortium for Mathe
matics and Its Applications, 1988; Committee on Support of 
Research in the Mathematical SCiences, 1969; Courant & Rob
bins, 1941; Davis & Hersh, 1980, 1986; Hardy, 1940; Hilton, 
1984; Saaty & Weyl, 1969; Steen, 1978; Stewart, 1987; Wilder, 
1968). This literature has woven a rich mosaic of conceptions 
of the nature of mathematiCS, ranging from axiomatic structures 
to generalized heuristics for solving problems. These diverse 
views of the nature of mathematics also have a pronounced 
impact on the ways in which our society conceives of mathe
matics and reacts to its ever-widening influence on our daily 
lives. Regarding this, Steen (1988) writes: 

Many educated persons, especially scientists and engineers, harbor an 
image of mathematics as akin to a tree of knowledge: formulas, the-

orems, and results hang like ripe fruits to be plucked by passing sci
entists to nourish their theories. Mathematicians, in contrast, see their 
field as a rapidly growing rain forest, nourished and shaped by forces 
outside mathematics while contributing to human civilization a rich 
and ever-changing variety of intellectual flora and fauna. These differ
ences in perception are due primarily to the steep and harsh terrain of 
abstract language that separates the mathematical rain forest from the 
domain of ordinary human activity (p. 611) 

Research shows that these differing conceptions have an 
influence on the ways in which both teachers and mathe
maticians approach the teaching and development of mathe
matics (Brown, 1985; Bush, 1982; Cooney, 1985; Good, Grouws, 
& Ebmeier, 1983; Kesler, 1985; McGalliard, 1983; Owens, 1987; 
Thompson, 1984). Some see mathematics as a static discipline 
developed abstractly. Others see mathematics as a dynamic 
diScipline, constantly changing as a result of new discover
ies from experimentation and application (Crosswhite et al., 
1986). These contrasting views of the nature and source of 
mathematical knowledge have provided a continuum for con
ceptions of mathematics since the age of the Greeks. The lack 
of a common philosophy of mathematics has serious rami
fications for both the practice and teaching of mathematics. 
This lack of consensus, some argue, is the reason that differ
ing philosophies are not even discussed. Others conjecture 
that these views are transmitted to students and help shape 
their ideas about the nature of mathematics (Brown, Cooney, 
& Jones, 1990; Cooney, 1987). What follows is an overview of 
these conceptions of mathematics and their current and po
tential impact on the nature and course of mathematics educa
tion. 

The author wishes to acknowledge the feedback and helpful suggestions made by Thomas Cooney, University of Georgia; Alan Osborne, Ohio 
State University; and Lynn Steen, St. Olaf College. 
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40 • OVERVIEW 

CONCEPTIONS OF MATHEMATICS 

Historical 

Discussions of the nature of mathematics date back to the 
fourth century B C. Among the first major contributors to 
the dialogue were Plato and his student, Aristotle. Plato took 
the position that the objects of mathematics had an existence of 
their own, beyond the mind, in the external world. In doing so, 
Plato drew clear distinctions between the ideas of the mind and 
their representations perceived in the world by the senses. This 
caused Plato to draw distinctions between arithmetic-the the
ory of numbers-and logistics-the techniques of computation 
required by businessmen. In the Republic (1952a), Plato argued 
that the study of arithmetic has a positive effect on individuals, 
compelling them to reason about abstract numbers. Plato con
sistently held to this view, showing indignation at technicians' 
use of physical arguments to "prove" results in applied settings. 
For Plato, mathematics came to "be identical with philosophy 
for modern thinkers, though they say that it should be studied 
for the sake of other things" (Aristotle, 1952, p. 510). This el
evated pOSition for mathematics as an abstract mental activity 
on externally existing objects that have only representations in 
the sensual world is also seen in Plato's discussion of the five 
regular solids in Timaeus (1952b) and his support and encour
agement of the mathematical development of Athens (Boyer, 
1968). 

Aristotle, the student, viewed mathematics as one of three 
genera into which knowledge could be divided: the physical, 
the mathematical, and the theological: 

[Mathematics is the one) which shows up quality with respect to forms 
and local motions, seeking figure, number, and magnitude, and also 
place, time, and similar things .... Such an essence falls, as it were, be
tween the other two, not only because it can be conceived both through 
the senses and without the senses. (Ptolemy, 1952, p. 5) 

This affirmation of the role of the senses as a source for 
abstracting ideas concerning mathematics was different from 
the view held by his teacher, Plato. Aristotle's view of mathe
matics was not based on a theory of an external, indepen
dent, unobservable body of knowledge. Rather it was based on 
experienced reality, where knowledge is obtained from experi
mentation, observation, and abstraction. This view supports the 
conception that one constructs the relations inherent in a given 
mathematical situation. In Aristotle's view, the construction of 
a mathematical idea comes through idealizations performed 
by the mathematician as a result of experience with objects. 
Thus, statements in applied mathematics are approximations 
of theorems in pure mathematics (Korner, 1960). Aristotle at
tempted to understand mathematical relationships through the 
collection and classification of empirical results derived from 
experiments and observations and then by deduction of a sys
tem to explain the inherent relationships in the data. Thus, the 
works and ideas of Plato and Aristotle molded two of the major 
contrasting themes concerning the nature of mathematics. 

By the Middle Ages, Aristotle's work became known for 
its contributions to logic and its use in substantiating scien
tific claims . .Although this was not contrary to the way in which 

Aristotle had employed his methods of logical reasoning, those 
who employed his principles often used them to argue against 
the derivation of evidence from empirical investigations. Aris
totle drew clear lines between the ideal fonns envisioned by 
Plato and their empirical realizations in worldly objects. 

The distinctions between these two schools of mathematical 
thought were further commented upon by Francis Bacon in 
the early 1500s when he separated mathematics into pure and 
mixed mathematics: 

To the pure mathematics are those sciences belonging which handle 
quantity determinate, merely severed from any axioms of natural phi
losophy. ... For many parts of nature can neither be invented with suf
ficient subtle£}; nor demonstrated with sufficient perspiCUity, nor ac
commodated untO use with sufficient dexterity, without the aid and 
intervening of the mathematics. (1952, p. 46) 

Similar discussions concerning the nature of mathematics were 
also echoed by Jean D'Alembert and other members of the 
French salon circle (Brown, 1988). 

Descartes worked to move mathematics back to the path of 
deduction from accepted axioms. Though experimenting him
self in biological matters, Descartes rejected input from exper
imentation and the senses in matters mathematical because it 
might possibly delude the perceiver. Descartes's conSideration 
of mathematics worked to separate it from the senses: 

For since the name "Mathematics" means exactly the same as "scientific 
study," ... we see that almost anyone who has had the slightest school
ing, can easily distinguish what relates to Mathematics in any question 
from that which belongs to the other sciences .... I saw consequently 
that there must be some general science to explain that element as 
a whole which gives rise to problems about order and measurement 
restricted as these are to no special subject matter. This, I perceived, 
was called "Universal Mathematics," not a far fetched deSignation, but 
one of long standing which has passed into current use, because in 
this science is contained everything on account of which the others 
are called parts of Mathematics. (1952, p. 7) 

This struggle between the rationalists and the experimentalists 
affected all branches of science throughout the 17th and 18th 
centuries. 

The German philosopher Immanuel Kant brought the dis
cussion of the nature of mathematics, most notably the nature 
of geometry, back in to central focus with his Critique of Pure 
Reason (1952). Whereas he affirmed that all axioms and the
orems of mathematics were truths, he held the view that the 
nature of perceptual space was Euclidean and that the contents 
of Euclidean geometry were a priori understandings of the hu
man mind. This was in direct opposition to the emerging un
derstandings of non-Euclidean geometry. 

The establishment of the consistency of non-Euclidean ge
ometry in the mid-1800s finally freed mathematiCS from the 
restrictive yoke of a single set of axioms thought to be the 
only model for the external world. The existence of consistent 
non-Euclidean geometries showed the power of man's mind to 
construct new mathematical structures, free from the bounds 
of an externally existing, controlling world (Eves, 1981; Kline, 
1972, 1985; Komer, 1960). This discovery, exciting as it was, 
brought with it a new notion of "truth," one buried in the ac
ceptance of an axiom or a set of axioms defining a model for 
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an area of investigation. Mathematicians immediately began to 
apply this new freedom and axiomatic method to the study of 
mathematics. 

Late 19th and Early 20th Century Views 

New investigations in mathematics, freed from reliance on 
experimentation and perception, soon encountered new prob
lems with the appearance of paradoxes in the real number 
system and the theory of sets. At this pOint, three new views 
of mathematics arose to deal with the perceived problems. 
The first was the school of logicism, founded by the German 
mathematician Gottlob Frege in 1884. This school, an out
growth of the Platonic school, set out to show that ideas of 
mathematics could be viewed as a subset of the ideas of logic. 
The proponents of logicism set out to show that mathematical 
propositions could be expressed as completely general propo
sitions whose truth followed from their form rather than from 
their interpretation in a specific contextual setting. A N. White
head and Bertrand Russell (1910-13) set out to show this in 
their landmark work, Principia Mathematica. This attempt was 
equivalent to trying to establish classical mathematics from the 
terms of the axioms of the set theory developed by Zermelo 
and Frankel. This approach, as that of Frege, was built on the 
acceptance of an externally existing mathematiCS, and hence 
was a direct outgrowth of the Platonic school. Whitehead and 
Russell's approach failed through its inability to establish the 
axioms of infinity and choice in a state of complete generality 
devoid of context. This Platonic approach also failed because 
of the paradoxes in the system. 

The followers of the Dutch mathematician L. E. J. Brouwer, 
on the other hand, did not accept the existence of arty idea 
of classical mathematics unless it could be constructed via a 
combination of clear inductive steps from first principles. The 
members of Brouwer's school of thought, called the intuition
ists, were greatly concerned with the appearance of paradoxes 
in set theory and their possible ramifications for all of classical 
mathematics. Unlike the logicists, who accepted the contents of 
classical mathematics, the intuitionists accepted only the mathe
matics that could be developed from the natural numbers for
ward through the mental activities of constructive proofs. This 
approach did not allow the use of the law of the excluded mid
dle. This logical form asserts that the statement PV - P is true 
and makes proof by contradiction possible. 

In many ways, the ideas put forth by Brouwer were based 
on a foundation not unlike that professed by Kant. Brouwer 
did not argue for the "inspection of external objeCts, but [for) 
'close introspection"' (Komer, 1960, p. 120). This conception 
portrayed mathematics as the objeCts resulting from "valid" 
demonstrations. Mathematical ideas existed only insofar as they 
were constructible by the human mind. The insistence on con
struction placed the mathematics of the intuitionists within the 
Aristotelian tradition. This view took logic to be a subset of 
mathematics. The intuitionists' labors resulted in a set of theo
rems and conceptions different from those of classical mathe
matics. Under their criteria for existence and validity, it is pos
sible to show that every real-valued function defined for all 
real numbers is continuous. Needless to say, this and other dif-

fererices from classical mathematics have not attracted a large 
number of converts to intuitionism. 

The third conception of mathematics to emerge near the be
ginning of the 20th century was that of formalism. This school 
was molded by the German mathematician David Hilbert. 
Hilbert's views, like those of Brouwer, were more in line with 
the Aristotelian tradition than with Platonism. Hilbert did not 
accept the Kantian notion that the structure of arithmetic and 
geometry existed as descriptions of a priori knowledge to the 
same degree that Brouwer did. However, he did see mathemat
ics as arising from intuition based on objeCts that could at least 
be considered as having concrete representations in the mind. 

Formalism was grounded in the attempts to characterize 
mathematical ideas in terms of formal axiomatic systems. This 
attempt to free mathematics from contradictions was built 
around the construction of a set of axioms for a branch of 
mathematics that allowed for the topic to be discussed in a 
first-order language. Considerable progress was made in sev
eral areas under the aegis of formalism before its demise as a 
result of Kurt GOdel's 1931 landmark paper. GOdel (1931) es
tablished that it is impossible in axiomatic systems of the type 
Hilbert proposed to prove formally that the system is free of 
contradictions. GOOel also demonstrated that it is impossible 
to establish the consistency of a system employing the usual 
logic and number theory if one uses only the major concepts 
and methods from traditional number theory. These findings 
ended the attempt to so formalize all of mathematiCS, though 
the formalist school has continued to have a strong impact on 
the development of mathematics (Benacerraf & Pumam, 1964; 
van Heijenoort, 1967; Snapper, 1979a, 1979b). 

The three major schools of thought created in the early 
1900s to deal with the paradoxes discovered in the late 19th 
century advanced the discussion of the nature of mathematiCS, 
yet none of them provided a widely adopted foundation for 
the nature of mathematics. All three of them tended to view 
the contents of mathematics as produCts. In logicism, the con
tents were the elements of the body of classical mathematics, 
its definitions, its postulates, and its theorems. In intuitionism, 
the contents were the theorems that had been constructed from 
first principles via "valid" patterns of reasoning. In formalism, 
mathematics was made up of the formal axiomatic structures 
developed to rid classical mathematics of its shortcomings. The 
influence of the Platonic and Aristotelian notions still ran as 
a strong undercurrent through these theories. The origin of 
the "product" -either as a pre-existing external object or as an 
object created through experience from sense perceptions or 
experimentation-remained an issue. 

Modern Views 

The use of a product orientation to characterize the nature 
of mathematics is not a settled issue among mathematicians. 
They tend to carry strong Platonic views about the existence of 
mathematical concepts outside the human mind. When pushed 
to make clear their conceptions of mathematics, most retreat to 
a formalist, or Aristotelian, position of mathematics as a game 
played with symbol systems according to a fixed set of so
ciallyaccepted rules (Davis & Hersh, 1980). In reality, however, 
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most professional mathematicians think little about the nature 
of their subject as they work within it. 

The formalist tradition retains a strong influence on the devel
opment of mathematics (Benacerraf & Putnam, 1964; Tymoczko, 
1986). Hersh (1986) argues that the search for the foundations 
of mathematics is misguided. He suggests that the focus be 
shifted to the study of the contemporary practice of mathemat
ics, with the notion that current practice is inherently fallible 
and, at the same time, a very public activity (Tymoczko, 1986). 
To do this, Hersh begins by describing the plight of the working 
mathematician. During the creation of new mathematics, the 
mathematician works as if the discipline describes an externally 
existing objective reality. But when discussing the nature of 
mathematics, the mathematician often rejects this notion and 
describes it as a meaningless game played with symbols. This 
lack of a commonly accepted view of the nature of mathematics 
among mathematicians has serious ramifications for the prac
tice of mathematics education, as well as for mathematics itself. 

The conception of mathematiCS held by the teacher has a 
strong impact on the way in which mathematics is approached 
in the classroom (Cooney, 1985). A teacher who has a formalist 
philosophy will present content in a structural format, calling 
on set theoretic language and conceptions (Hersh, 1986). Such 
a formalistic approach may be a good retreat for the individual 
who does not understand the material well enough to provide 
an insightful constructive view. Yet, if such formalism is not the 
notion carried by mathematicians, why should it dominate the 
presentation of mathematics in the classroom? To confront this 
issue, a discussion of the nature of mathematics must come to 
the foreground in mathematics education. 

Tymoczko and Hersh argue that what is needed is a new 
philosophy of mathematics, one that will serve as a basis for 
the working mathematician and the working mathematics ed
ucator. According to Hersh, the working mathematician is not 
controlled by constant attention to validating every step with 
an accepted formal argument. Rather, the mathematician pro
ceeds, guided by intuition, in exploring concepts and their in
teractions. Such a path places the focus on understanding as a 
guide, not long, formal derivations of carefully quantified re
sults in a formal language. 

This shift calls for a major change. Mathematics must be 
accepted as a human activity, an activity not strictly governed 
by any one school of thought (logicist, formalist, or construc
tivist). Such an approach would answer the question of what 
mathematics is by saying that: 

Mathematics deals v.ith ideas. Not pendl marks or chalk marks, not 
physical triangles or physical sets, but ideas (which may be repre
sented or suggested by physical objects). What are the main properties 
of mathematical activity or mathematical knowledge, as known to all 
of us from daily experience? 

1. Mathematical objects are invented or created by humans. 
2. They are created, not arbitrarily, but arise from activity with already 

existing mathematical objects, and from the needs of science and 
daily life. 

3. Once created, mathematical objects have properties which are well
determined, which we may have great difficulty in discovering, but 
which are possessed independently of our knowledge of them. 
(Hersh, 1986, p. 22) 

The development and acceptance of a philosophy of mathe
matics carries with it challenges for mathematics and mathe
matics education. A philosophy should call for experiences that 
help mathematician, teacher, and student to experience the in
vention of mathematics. It should call for experiences that al
low for the mathematization, or modeling, of ideas and events. 
Developing a new philosophy of mathematics requires discus
sion and communication of alternative views of mathematics to 
determine a valid and workable characterization of the disci
pline. 

TEACHERS' CONCEPTIONS 
OF MATHEMATICS 

The conception of mathematics held by the teacher may 
have a great deal to do with the way in which mathematics is 
characterized in classroom teaching. The subtle messages com
municated to children about mathematics and its nature may, 
in tum, affect the way they grow to view mathematics and its 
role in their world. 

Cooney (1987) has argued that substantive changes in the 
teaching of mathematics such as those suggested by the NCTM 
Standards (1989) will be slow in coming and difficult to achieve 
because of the basic beliefs teachers hold about the nature of 
mathematics. He notes that the most prevalent verb used by 
preservice teachers to describe their teaching is present. This 
conception of teaching embodies the notion of authority in that 
there is a presenter with a fixed message to send. Such a pOSi
tion assumes the external existence of a body of knowledge to 
be transmitted to the learners and is thus more Platonic than 
Aristotelian. The extension of this conception of how mathe
matics relates to education and its practice is an important one. 
The teacher's view of how teaching should take place in the 
classroom is strongly based on a teacher's understanding of 
the nature of mathematics, not on what he or she believes is 
the best way to teach (Hersh, 1986). To change the situation, 
one must construct alternative ways of conceptualizing the na
ture of mathematics and the implications of such conceptions 
for mathematics education. 

Cooney (1987) used the work of Goffree (1985) and Perry 
(1970) in his analyses of the nature of mathematics portrayed 
in classrooms and concluded that school mathematics is bound 
up in a formal and external view of mathematics. Goffree 
presented a model for the way textbooks are developed 
and how teachers might employ them in the classroom to 
portray the nature of mathematics. The four textbook models 
were (a) the mechanistiC, (b) the structuralist, (c) the empiriCist, 
and (d) the realistic or applied. Each of these methods of 
textbook development portrays a view of the nature of mathe
matics. Goffree then crossed these textual characteristiCS with 
three ways in which teachers employ textbooks in the classroom: 

Instrumental use-The teacher uses the textbook as an instrument, fol
lowing its sequence and using its suggestions for dealing with the 
content. 

Subjective use-The teacher uses the textbook as a guide, but pro
vides a constructive overview of the materials, followed by a further 
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discussion of the concepts/principles/procedures based on the 
teachers' experience. 

Fundamental use-At this level, the curriculum is developed from a 
constructive viewpoint. This approach is concerned with both the 
content and pedagogy involved in mathematics. (p. 26) 

In many classrooms, the prevailing model is mechanistic
instrumentaL Modern reform documents (NCTM, 1989) advo
cate a situation that is closer to realistic-fundamental. The enor
mous distance between these two models indicates the large 
role that the teacher's conception of the nature of mathematics 
can play in the teaching and learning process as it applies to 

school mathematics. 
In related work, Cooney (1985) and his students (Brown, 

1985; Bush, 1982; Kesler, 1985; McGalliard, 1983; Owens, 1987; 
Thompson, 1984) have also examined the nature of teachers' 
conceptions of mathematics using the levels of intellectual de
velopment created by William Perry (1970). Perry's model pro
vides a means to describe the way in which humans view the 
world about them. Perry's hierarchical scheme sees individuals 
passing through stages from dualism to multiplistic perspec
tives to relativistic perspectives. In the dualistic stage, the indi
vidual assumes that one functiOns in a bipolar world with such 
choices as good or bad, right or wrong. At this stage, prob
lems are resolved by an authority's ruling. The individual may 
grow to a stage where multiple perspectives are entertained; 
however, the perspectives are still viewed as discrete entities 
lacking structural relationships. Finally, a person may move to 
the stage of relativism, where a number of possible alternatives 
are considered relative to one another. At this stage, each of the 
alternatives is examined within its own frame of reference. 

Kesler (1985) and McGalliard (1983) conducted studies of 
secondary school algebra and geometry teachers' conceptions 
of mathematics by analyzing their classroom teaching. Kesler 
found that algebra teachers differed greatly in their orienta
tions. Some performed at the dualistic or multiplistic level 
of the hierarchy, whereas others showed signs of multiplistic
relativistic behaviors. McGalliard's study of geometry teachers 
showed that their view of mathematics was marked by dualism. 
These teachers viewed their task as one of presenting mathemat
ics. to their students. The teachers' main concern was in seeing 
that their students learned to perform easily the tasks required 
by their homework and tests. Thus, the learning of mathemat
ics was reduced to knowing how rather than knowing why. 
The fact that fewer teachers in geometry exceeded the dualistic 
level might be a reflection of their lack of geometric expe
rience. Cooney (1987) reflects on the predominance and im
plications of the presenting, or broadcast, mode for teaching. 
Presenting, by its very nature, involves authority. Such an orien
tation is not compatible with a style of classroom management 
and resource use that would promote student consideration of 
a number of perspectives on mathematics, its nature, and its 
use. These ideas, plus collaborating findings by Owens (1987) 
with preservice secondary teachers, suggest the great distance 
that must be covered to bring the classroom consideration of 
mathematics close to the fundamental-realistic combination en
visioned by Goffree. 

Owens's work, and that of Bush (1982), further indicated 
that many of the preservice teachers' dualistic or multiplistic 

views were strengthened by their experiences in upper-division 
mathematics content courses at the university leveL There, they 
were exposed to teaching that strongly reflected the formalist 
view of mathematics as an externally developed axiom system. 
This influence only reinforces the conception that mathematics 
exists externally. Through direct intervention, Myerson (1977) 
was able to move some students to view mathematics on a 
somewhat higher level. But many still thought that there were 
specific, set methods to address each classroom question, re
flecting the strong dualistic-multiplistic orientation of preser
vice teachers. 

The reaction of students is a strong factor influencing a 
teacher's portrayal of the nature of mathematics in class. Brown 
(1985) and Cooney (1985) studied the reactions of a first-year 
teacher in the classroom. The teacher entered the classroom 
with an orientation that reflected both multiplistic and relativis
tic characteristics. He attempted to initiate a classroom style in
volving a good deal of problem solVing and student activities 
aimed at providing a strong foundation for student learning. 
The students found these approaches threatening and their re
actions led to his eventual return to a presenting mode. Cooney 
(1987) concludes: "I suspect that students gravitate toward a 
mechanistic curriculum and appreciate teachers whose inter
pretations of the text are qUite predictable. If you believe the 
contrary, listen carefully to the negotiations that take place be
tween students and teacher when test time arrives" (p. 27). 

THE RELEVANCE OF CONCEPTIONS 
OF MATHEMATICS TO MATHEMATICS 

EDUCATION RESEARCH 

The focus on mathematics education and the growth of re
search in mathematics education in the late 1970s and the 1980s 
reflects a renewed interest in the philosophy of mathematics 
and its relation to learning and teaching. At least five concep
tions of mathematics can be identified in mathematics educa
tion literature 0. Sowder, 1989). These conceptions include two 
groups of studies from the external (Platonic) view of mathe
matics. The remaining three groups of studies take a more in
ternal (Aristotelian) view. 

External Conceptions 

The work of two groups of researchers treats mathematics 
as an externally existing, established body of concepts, facts, 
principles, and skills available in syllabi and curricular mate
rials. The work of the first group of researchers adopting the 
external view focuses on assisting teachers and schools to be 
more successful in conveying this knowledge to children. Their 
work takes a relatively fixed, static view of mathematics. 

Studies investigating the role of teachers in mathematics 
classrooms commonly focus on the actions and instructional 
methods of the teachers rather than on the mathematics be
ing taught or the methods by which that mathematics is being 
learned. Early studies of teacher actions by B. O. Smith and his 
coworkers (Smith, Meux, Coombs, Nuthall, & Precians, 1967) 
led to a number of studies of the relative efficacy of the use 



44 • OVERVIEW 

of logical discourse in the teaching of concepts and general
izations (Cooney, 1980; Cooney & Bradbard, 1976; L. Sowder, 
1980). Later research on effective teaching selected mathemat
ics classrooms as the site for data gathering (Brophy; 1986; Bro
phy & Evertson, 1981; Brophy & Good, 1986; Fisher & Berliner, 
1985; Good, Grouws, & Ebmeier, 1983; Medley & Mitzel, 1963; 
Rosenshine & Furst, 1973; Slavin & Karweit, 1984, 1985) and 
focused on how teachers used domain-specific knowledge, and 
how they organized, sequenced, and presented it in attempts to 
promote different types of student performance in classroom 
settings (Berliner et al., 1988). Other studies have centered on 
efforts to delineate the differences in decision making between 
"novice" and "expen" teachers in planning for teaching and in 
instruction (Leinhardt, 1988; Leinhardt & Greeno, 1986). These 
studies often focus on the teaching acts that differentiate the 
performances of expert and novice teachers with classification 
based on student performance on standardized achievement 
tests, topic-specific tests, or student growth over a period of 
time. Leinhardt and co-workers have investigated the teaching 
of fractions, examining the role of teacher decision making, use 
of scripts, and the role and type of explanations. Good, Grouws, 
and Ebmeier (1983) examined the role of active teaching by 
expen teachers and then developed a prototype lesson organi
zation that promoted student growth in mathematics. 

Shavelson, Webb, Stasz, and McAnhur (1988) provide warn
ings about the nature of findings from research based on the 
external conception point of view. First, the findings provide a 
picture of the existing situation, not a picture of what could be 
achieved under dramatically changed instruction. Second, the 
findings reflect the type of performance that was used to sep
arate the teachers into the different categories initially. That is, 
when teachers were selected as experts on the basis of specific 
criteria, the results reflect the teaching patterns of instruction 
related to those criteria. The conduct of the studies and the ex
ternal conception of the mathematiCS employed tend to direct 
the type of research questions asked, and those not asked. This 
research must include teachers with a wide variety of styles 
if findings generalizable to all teachers or all classrooms are 
desired. 

The second group of researchers adopting the external view 
espouse a more dynamic view of mathematics, but they focus 
on adjusting the curriculum to reflect this growth of the dis
cipline and to see how students acquire knowledge of the re
lated content and skills. The underlying focus is, however, still 
on student mastery of the curriculum or on the application of 
recent advances in technology or instructional technology to 
mathematics instruction. 

Thorpe (1989), in reviewing the nature of the teaching of 
algebra, states that "students have needed to learn pretty much 
the same algebra as did their parents and grandparents. But 
now something has changed. We have new tools" (p. 23). Kaput 
(1989) took this issue of the changing context for the teaching 
of algebra and provided a list of research questions concern
ing the role of linked representations in developing the symbol 
system of algebra. Thompson (1989) provided additional exam
ples for the development of meanings for topics in numeration 
and quantity. The work ofWearne and Hieben (1988) provides 
another example of such research in mathematics education. 

Taking the concepts and skills related to fractions as given, 
Wearne and Hieben looked at the ways in which students can 
come to understand and operate with decimal fractions and 
apply these learnings to situations calling for transfer of un
derstanding to procedural skill. Each of these studies assumes 
the mathematics as given, but also allows for it to take on new 
meanings as time passes. The issue at heart is how teacher in
struction or student understanding can be improved through 
research. The focus here is not on the creation of new con
tent, but on the growth of individual knowledge of an existing 
ponion of mathematics. 

Internal Conceptions 

The remaining three conceptions of mathematics found in 
mathematics education research focus on mathematics as a per
sonally constructed, or internal, set of knowledge. In the first of 
these, mathematics is viewed as a process. Knowing mathemat
ics is equated with doing mathematics. Research in this tradition 
focuses on examining the features of a given context that pro
motes the "doing." Almost everyone involved in the teaching 
and learning of mathematics holds that the learning of mathe
matics is a personal matter in which learners develop their 
own personalized notions of mathematics as a result of the ac
tivities in which they panicipate. Ernst von Glaserfeld (1987) 
described this conception of learning and teaching: 

[As we] come to see knowledge and competence as products of the 
individual's conceptual organization of the individual's experience, the 
teacher's role will no longer be to dispense "truth" but rather to help 
and guide the student in the conceptual organization of certain areas 
of experience. Two things are required for the teacher to do this: on 
the one hand, an adequate idea of where the student is and, on the 
other, an adequate idea of the destination. Neither is accessible to di
rect observation. What the student says and does can be interpreted 
in terms of a hypothetical model-and this is one area of educational 
research that every good teacher since Socrates has done intuitively. 
Today, we are a good deal closer to providing the teacher with a set of 
relatively reliable diagnostic tools. 

As for the helping and guiding, good teachers have always found 
ways and means of doing it because, consciously or unconsciously they 
realized that, although one can point the way with words and symbols, 
it is the student who has to do the conceptualizing and the operating. 
(p. 16) 

This emphasis on students doing mathematics is the hall
mark of this conceptualization of mathematics. It is the 
"doing"-the experimenting, abstracting, generalizing, and 
specializing-that constitutes mathematics, not a transmission 
of a well-formed communication. This approach to the learning 
of mathematics is reflected in the writing of Steffe (1988) and 
Romberg (1988), as well as in many of the emerging activity
oriented preschool and primary programs. This conception 
seems to be shared by George Polya as expressed in an ad
dress to the American Mathematical Society on his views on 
the learning of mathematics: 

It has been said by many people in many ways that learning should 
be active, not merely passive or receptive; merely by reading books or 
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listening to lectures or looking at moving pictures without adding some 
action of your own mind you can hardly learn anything and certainly 
you can not learn much. 

There is another often expressed (and closely related) opinion: The 
best way to learn anything is to discover it by yourself Lichtenberg ... 
adds an interesting point: What you have been obligated to discover by 
yourself leaves a path in your mind which you can use again when 
the need arises. (Polya, 1965, pp. 102-103) 

This personal construct approach to mathematics is a strong 
component of many of the recommendations of the NC1M 
Curriculum and Evaluation Standards for School Mathematics 
(1989) and has a strong history in mathematics education, in
cluding the work of Harold Fawcett (1938), the work of the Pro
gressive Education Association (1938), and the NC1M Agenda 
for Action (1980). 

A second personal, or internal, conceptualization of mathe
matics is based on the description of mathematical activities 
in terms of psychological models employing cognitive proce
dures and schemata. Larkin (1989) describes this approach in 
the following statement: 

The central technique of cognitive science is modeling problem-solving 
behavior in the following way: A problem is considered as a data struc
ture that includes whatever information is available about the problem. 
We then ask what kind of program could add information to that data 
structure to produce a solution to the problem. Because we want to 
have a model that explains human performance, we require that the 
model add information to the data struCture in orders consistent with 
the orders in which humans are observed to add information. (p. 120) 

This cognitive science approach to the study of mathematics 
can be found in the works and recommendations of Bransford, 
et al. (1988); Campione, Brown, and Connell (1988); Carpen
ter (1988); Chaiklin (1989); Hiebert (1986); Larkin (1989); Mar
shall (1988); Nesher (1988); Ohlsson (1988); Peterson (1988); 
Resnick (1987); and Wearne and Hiebert (1988). The diver
sity of this research adopting the cognitive modeling approach 
shows the apparent acceptance of it as a model for viewing 
the structure of mathematics learning. Its basic tenets are the 
identification of representations for mathematical knowledge, 
of operations individuals perform on that knowledge, and of 
the manner in which the human mind stores, transforms, and 
amalgamates that knowledge. 

The third internal conception of mathematics that surfaces in 
mathematics education research is one that views mathematics 
knowledge as resulting from social interactions. Here the learn
ing of mathematics is the acquiring of relevant facts, concepts, 
principles, and skills as a result of social interactions that rely 
heavily on context. The research describing this view (Bauers
feld, 1980; Bishop, 1985, 1988; Kieren, 1988; Lave, Smith, & 
Butler, 1988; Schoenfeld, 1988, 1989) focuses on building 
mathematics knowledge from learning in an apprentice mode, 
drawing on both the content and the context. Such an approach 
perhaps heightens the learner's ability to relate the mathematics 
to its applicatiOns and its potential use in problem-solving situ
ations. The distance between the theoretical aspects of the con
tent and the practical distinctions of applications is diminished. 
In social settings, the measurement of an individual's progress 
in mathematics is judged on the degree to which he or she has 

attained the content material transmitted. There is no measure 
of the cultural information transmitted or the relation of that 
material to the learn,er's position in life. 

Schoenfeld (1988) argues that the nature of mathematics 
perceived by students is a result of an intricate interaction of 
cognitive and social factors existing in the context of school
ing. If students are to learn and apply mathematiCS, they must 
come to see mathematics as having worth in social settings. 
Such "sense making" in the learning of mathematics calls for 
students to participate actively in "doing mathematics" to learn 
the skills of the diSCipline. Students must be called upon to 
participate aggreSSively in analyzing, conjecturing, structuring, 
and synthesizing numerical and spatial information in problem 
settings. These activities must also involve the students in see
ing how the results of such activities relate to the solution of 
problems in the social setting from which the problems origi
nated. Kieren (1988) Similarly argues for the careful integration 
of mathematics learning with the features of the social context 
in which the mathematics has meaning. 

Each of these three conceptions of the development and 
study of internal models for mathematics education provides 
important vantage points for research on the learning and 
teaching of mathematics. The election of one of these philoso
phies and its use in the design of research strongly influence 
the nature of the questions investigated, the manner in which 
relevant data are collected and analyzed, and the importance 
tied to the conclusions reached. Creators and users of research 
in mathematics education must pay closer attention to the role 
such philosophies play in the conduct of that research. To ig
nore this feature is to misinterpret findings and misapply the 
outcomes of such studies. 

SUMMARY 

The survey of the literature shows that conceptions of 
mathematics fall along an externally-internally developed 
continuum. Hersh's (1986) comments, along with others 
(Tymoczko, 1986), indicate that mathematicians behave like 
constructionalists until challenged. Similar findings may hold 
for mathematics teachers. The retreat to the external model 
to discuss their conceptions shows a strong predilection for 
Platonic views of mathematics. Such conceptions are strongly 
flavored by dualistic or multiplistic beliefs about mathemat
ics, allowing few teachers to reject an authoritarian teaching 
style. Even so, the leaders and profeSSional organizations in 
mathematics education are promoting a conception of mathe
matics that reflects a decidedly relativistic view of mathematics 
(Ernest, 1989). Steps to address the gaps between the philo
sophical bases for current mathematics instruction are impor
tant ones that must be addressed in the development and study 
of mathematics education at all levels. 

The emergence of a process view of mathematics embed
ded in the NC1M Standards (1989) and in the works of modern 
mathematical philosophers (Tymoczko, 1986) presents many 
new and important challenges. Teacher educators and curricu
lum developers must become aware of the features and ram
ifications of the internal and external conceptions, and their 
ramifications for curricular development and teacher actions. 
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Further, all involved in applying mathematics education re
search must recognize the important influences of each con
ception of mathematics on both the findings cited and on the 
interpretation and application of such findings. Mathematics ed-

ucators need to focus on the nature of mathematics in the de
velopment of research, curriculum, teacher training, instruc
tion, and assessment as they strive to understand its impact on 
the learning and teaching of mathematics. 
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