
1 Overview  

VPython is a programming language that is easy to learn and is well suited to creating 3D interactive models of 
physical systems.   
  
2 Your first program  

> Sign in at glowscript.org, then click to go to your program space. Click “Create New Program” and choose a 
name for your program; any spaces and underscores will be deleted from the name. 

> You will see a blank edit window with a header line that says “GlowScript X.Y VPython”.   

> As the second line of your program, type the following statement:  

sphere()  

  
3 Running the program  

> Now run your program by clicking “Run this program”. (You can also press Ctrl-1 to run the program in the same 
window, or click Ctrl-2 to run the program in a separate window.)  

When you run the program, you should see a white 3D sphere.  

 
 

> In the VPython window, hold down the left+right buttons on a two-button mouse (or the Alt key) and move the 
mouse. You should see that you are able to zoom into and out of the scene.  

> Now try holding down the right mouse button (or the Ctrl key). You should find that you are able to rotate around 
the sphere (you can tell that you are moving because the lighting changes).  

Keep in mind that you are moving a camera around the object. When you zoom and rotate you are moving the camera, 
not the object.  

4 Stopping the program  

Click “Edit this program” to return to editing. If you ran your program in a separate window by pressing Ctrl-2, you 
can kill that window by clicking the window’s close box, or you can just leave it open while you edit your program, 
and when you again press Ctrl-2 the new version will run in that window. GlowScript automatically saves your 
program as you make changes in it. 

5 A ball in a box  
The goal of the following activity is to give you experience in using the velocity to update the position of an object, to 
create a 3D animation. You will write a program to make a ball bounce around in a box, in 3D.  

To position objects in the display window we use their 3D coordinates. The origin of the coordinate system is at the 
center of the display window. The positive x axis runs to the right, the positive y axis runs up, and the positive z axis 
comes out of the screen, toward you.  
 



 
 

 

 

 
Start a new program like the following, which displays a ball and a wall (we’ve called it wallR because it is on the right 
side of the scene). Read the program carefully and make sure you understand the relationship between these 
statements, the coordinate system, and the display generated by the program.  
ball = sphere(pos=vector(-5,0,0), radius=0.5, color=color.cyan)  
wallR = box(pos=vector(6,0,0), size=vector(0.2,12,12), color=color.green)  

As with the sphere object, the pos attribute of the VPython box object positions the center of the box. The size attribute 
specifies the length (in x, to the right), height (in y, up), and width (in z, out of the screen). Since the length has been specified to be 
only 0.2, the box displays as a thin wall. There are 9 colors easily accessible by color.xxx: red, green, blue, yellow, magenta, 
cyan, orange, black, and white. It is possible to design your own colors.  
 
 
6 Updating the position of the ball  

We are going to make the cyan ball move across the screen and bounce off of the green wall. We can think of this as 
displaying “snapshots” of the position of the ball at successive times as it moves across the screen. To specify how far 
the ball moves, we need to specify its velocity and how much time has elapsed.  

We need to specify the velocity of the ball. We can make the velocity of the ball an attribute of the ball, by calling it 
ball.velocity. Since the ball can move in three dimensions, we must specify the x, y, and z components of the 
ball’s velocity. We do this by making ball.velocity a vector.  

> Add this statement to your program:  

ball.velocity = vector(25,0,0)  

We need to specify a time interval between “snapshots.” We’ll call this very short time interval “deltat” to represent 
t, where Greek uppercase delta means a change, and t means a change in t. In the context of the program, we are 
talking about virtual time (that is, time in our virtual world); a virtual time interval of 1 second may take much less 
than one second on a fast computer. To keep track of how much total time has elapsed, let’s also set a “stopwatch” time 
t to start from zero.  

> Add these statements to your program:  

deltat = 0.005  
t = 0  

If you run the program, nothing will happen, because we have not yet given instructions on how to use the velocity to 
update the ball’s position. We need to use the “position update” relationship among position, velocity, and time in-
terval, that the final (vector) position is the initial position plus the average velocity times the time interval:  
 
This relationship is valid if the velocity is nearly constant (both magnitude and direction) during the time interval t. If 
the velocity is changing (in magnitude and/or direction), you need to use a short enough time interval that the velocity 
at the start of the time interval is nearly the same as the average velocity during the whole time interval.  

We need to translate the standard notation r 

ball.pos = ball.pos + ball.velocity*deltat  



Just as velocity is a vector, so is the position of the ball, ball.pos. As in most programming languages, the equals 
sign means something different than it does in ordinary algebra notation. In VPython, the equals sign is used for 
assignment, not equality. That is, the statement assigns the vector ball.pos a new value, which is the current value 
of ball.pos plus the displacement ball.velocity*deltat, the change in the position. 

7 A 3D animation: Continuous updating of the position of the ball  
Your program should now look like this:  

ball = sphere(pos=vector(-5,0,0), radius=0.5, color=color.cyan)  
wallR = box(pos=vector(6,0,0), size=vector(0.2,12,12), color=color.green) 
ball.velocity = vector(25,0,0)  
deltat = 0.005  
t = 0  
ball.pos = ball.pos + ball.velocity*deltat  

> Run your program.  

Not much happens! The problem is that the program only took one time step; we need to take many steps. To 
accomplish this, we write a while loop. A while loop instructs the computer to keep executing a series of commands 
over and over again, until we tell it to stop.  

> Insert the following line just before your position update statement (that is, just before the last statement):  

while t < 3:  

Don’t forget the colon! Notice that when you press return, the cursor appears at an indented location after the while 
statement. The indented lines following a while statement are inside the loop; that is, they will be repeated over and 
over. In this case, they will be repeated as long as the “stopwatch” time t is less than 3 seconds.  

> Indent your position update statement under the while statement:  

ball.pos = ball.pos + ball.velocity*deltat  

Note that if you position your cursor at the end of the while statement, the text editor will automatically indent the 

next lines when you press ENTER. Alternatively, you can press TAB to indent a line. All indented statements after a 

while statement will be executed every time the loop is executed.  

> Also update the stopwatch time by adding deltat to  t for each passage through the loop:  

        t = t + deltat  

Your program should now look like this:  

ball = sphere(pos=vector(-5,0,0), radius=0.5, color=color.cyan)  
wallR = box(pos=vector(6,0,0), size=vector(0.2,12,12), color=color.green) 
ball.velocity = vector(25,0,0)  
deltat = 0.005  
t = 0  
ball.pos = ball.pos + ball.velocity*deltat 
while t < 3: 

ball.pos = ball.pos + ball.velocity*deltat t = t + deltat 
t = t + deltat  

> Run your program.  

Because computers are very fast, the ball moved so fast that you saw only a flash! Moreover, VPython by default tries 
to keep all of the objects visible, so as the ball moves far away from the origin, VPython moves the “camera” back, and 
the wall recedes into the distance. This is called “autoscaling”.  

> To slow down the animation, insert the following statement inside the loop (just after the while statement, 
indented as usual):  

rate(100)  



This specifies that the while loop will not be executed more than 100 times per second, even if your computer is 
capable of many more than 100 loops per second. (The way it works is that each time around the loop VPython checks 
to see whether 1/100 second has elapsed since the previous iteration. If not, VPython waits until that much time has 
gone by. This ensures that there are no more than 100 iterations performed in one second.) 
 

> Run your program.  

You should see the ball move to the right more slowly. However, it keeps on going right through the wall, off into 
empty space, because this is what it was told to do. VPython doesn’t know any physics! You have to tell it what to do.  
 
IMPORTANT: An animation loop must contain a rate statement (or sleep or waitfor statement). Otherwise the 
browser page will lock up with no possibility of updating the page. 

8 Making the ball bounce: Logical tests  

To make the ball bounce off the wall, we need to detect a collision between the ball and the wall. A simple approach is 
to compare the x coordinate of the ball to the x coordinate of the wall, and reverse the x component of the ball’s 
velocity if the ball has moved too far to the right. In VPython you can access the x, y, or z component of any vector by 
referring to the x, y, or z attribute of that vector. In the statements below, ball.pos is a vector, and ball.pos.x 
is the x component of that vector. Similarly, ball.velocity is a vector, and ball.velocity.x is the x 
component of that vector.  

> Insert these statements into your while loop, just before your position update statement (press Enter at the end of 
the preceding statement, or insert tabs before the new statements, or select both lines and press Tab):  

if ball.pos.x > wallR.pos.x: 
ball.velocity.x = -ball.velocity.x  

The indented statement after the if statement will be executed (and reverse the x component of velocity) only if the 
logical test in the previous line gives True for the comparison. If the result of the logical test is False (that is, if the 
x coordinate of the ball is not greater than the x coordinate of the wall), the indented line will be skipped. We want this 
logical test to be performed every time the ball is moved, so we need to indent both of these lines, so they are inside the 
whileloop.  

Your program should now look like this:  

ball = sphere(pos=vector(-5,0,0), radius=0.5,color=color.cyan)  
wallR = box(pos=vector(6,0,0), size=vector(0.2,12,12), color=color.green) 
ball.velocity = vector(25,0,0)  
deltat = 0.005  
t = 0  
ball.pos = ball.pos + ball.velocity*deltat 
while t < 3: 
    rate(100) 
    if ball.pos.x > wallR.pos.x: 
        ball.velocity.x = -ball.velocity.x  
    ball.pos = ball.pos + ball.velocity*deltat t = t + deltat 
    t = t + deltat 
 

> Run your program.  

You should observe that the ball moves to the right, bounces off the wall, and then moves to the left, continuing off 
into space. Note that our test is not very sophisticated; because ball.pos.x is at the center of the ball and 
wallR.pos.x is at the center of the wall, if you look closely you can see that the ball appears to penetrate the wall 
slightly. You could if you wish make the test more precise by using the radius of the ball and the thickness of the wall.  
 
  > Add another wall at the left side of the display, and give it the name wallL. Make the ball bounce off that wall 
also. 
 



 
 

You need to create a left wall near the beginning of the program, before the while loop. If you put the statement inside 
the loop, a new wall would be created every time the loop was executed. A very large number of walls would be 
created, all at the same location. While we wouldn’t be able to see them, the computer would try to draw them, and this 
would slow the program down considerably. 

  > Next, before the while loop, change the initial velocity to have a nonzero y component. 

ball.velocity = vector(25,5,0)  

When you run the program, the ball bounces even where there is no wall! Again, the issue is that VPython doesn’t know any physics. 
If we tell it to make the ball change direction when the ball’s position is to the right of the wall’s position, VPython goes ahead and 
does that, whether that makes physics sense or not. We’ll fix this later. 
 
9 Visualizing velocity  

We will often want to visualize vector quantities, such as the ball’s velocity. We can use an arrow object to visualize 
the velocity of the ball.  

> Before the while loop, but after the program statement that sets the ball’s velocity, create an arrow, which you 
will use to visualize the velocity vector for the ball. The tail of the arrow is at the location given by pos, and we 
choose that to be the location of the ball. The tip of the arrow is at the location that is a vector displacement axis 
away from the tip (in this case, the location of the ball plus the velocity of the ball).  

varr = arrow(pos=ball.pos, axis=ball.velocity, color=color.yellow)  

It is important to create the arrow before the while loop. If we put this statement in the indented code after the 
while, we would create a new arrow in every iteration. We would soon have a large number of arrows, all at the same 
location. This would make the program run very slowly.  

> Run your program.  

You should see a yellow arrow with its tail located at the ball’s initial position, pointing in the direction of the ball’s 
initial velocity. However, the arrow is huge, and it completely dominates the scene. The problem is that velocity in 
meters per second and position in meters are basically different kinds of quantities, and we need to scale the velocity in 
order to fit it into the diagram.  

Let’s scale down the size of the arrow, by multiplying by a “scalar”, a single number. Multiplying a scalar times a 
vector changes the magnitude of a vector but not its direction, since all components are scaled equally.  

> Change your arrow statement to use a scale factor to scale the axis, like this, then run the program:  

vscale = 0.1  
varr = arrow(pos=ball.pos, axis=vscale*ball.velocity, color=color.yellow)  

Run the program. Now the arrow has a reasonable size, but it doesn’t change when the ball moves. We need to update 
the position and axis of the arrow every time we move the ball.  

> Inside the while loop, update the position and axis attributes of the arrow named varr, so that the tail of the 
arrow is always on the ball, and the axis of the arrow represents the current vector velocity. Remember to use the 
scale factor vscale to scale the axis of the arrow. Run the program.  

The arrow representing the ball’s velocity should move with the ball, and should change direction every time the ball 



collides with a wall.  

 
 

10 Autoscaling  
By default, VPython “autoscales” the scene, by continually moving the camera forwards or backwards so that all of 
the scene is in view. If desired, you can turn off autoscaling after creating the initial scene.  
 
> Just before the while loop, after drawing the initial scene, turn off further autoscaling:  
    scene.autoscale = False   
 
11 Leaving a trail  

Often we are interested in the trajectory of a moving object, and would like to have it leave a trail. This can be done 
simply when creating the ball by specifying that make_trail be true: 
 
    ball = sphere(pos=vector(-5,0,0), radius=0.5, 
                  color=color.cyan, make_trail=True) 
 
 
12 How your program works  

In your while loop you continually change the position of the ball (ball.pos); you could also have changed its 
color or its radius. The rate(100) statement not only pauses as necessary to limit the animation speed to 100 iterations 
per second but also causes the scene to be redisplayed (“rendered”) about 60 times per second, with the current 
positions of the objects. With the scene rendered so often, the animation looks continuous. 

13 Making the ball bounce around inside a box  

With the program you’ve written so far, the ball escapes and bounces off nothing. To make a more realistic model of 
the motion, do the following:  

 Add top and bottom walls, and make the ball bounce off these walls.  
 Make the walls touch, forming part of a large box.  
 Add a back wall, and an “invisible” front wall, and make the ball bounce off these walls. Do not draw a front 

wall, but include an if statement to prevent the ball from coming through the front.  
 Give your ball a component of velocity in the z direction as well, so that it will bounce off the back and front 

walls. Make the initial velocity of the ball be this:  
              ball.velocity = vector(25,5,15)  

The completed program should include these features:  
 Complete box (except that the front is open).  
 Correct initial velocity.  
 Continuous display of velocity arrow that moves with the ball.  
 Ball leaves a trail.  

 
It is worth pointing out that this program represents a simple model of a gas in a container. The pressure on the walls of 
the container is due to the impacts of large numbers of gas molecules hitting the walls every second. 
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15 Playing around  

Here are some suggestions of things you might like to play with after completing your program.  
 

 You can make the program run much longer by changing to while t < 3e4: or you can make it run 
“forever” by changing to while True: since the condition is always True. 

 You might like to add some more balls, with different initial positions and initial velocities. Inside the loop 
you will need position updates for each ball.  

 You could make a “Pong” game by moving walls around under mouse control. See the sections on Mouse 
Events in the VPython Help.  

 You can design your own colors using fractional values for the amount of red, green, and blue. For example, 
if you specify color=vector(1, 0.7, 0.7) you get a kind of pink (100% red, 70% green, 70% blue). The 
example program Color-RGB-HSV lets you experiment with colors.  

 You could change the color of the ball or the wall whenever there is a collision. 
  

 
16 Example programs  

At glowscript.org, click “Example programs” to see a variety of 3D programs.  
 
 
 


