Image of the Earth from a NASA satellite.
The sky appears bladk from out in space
because there are so few moleaules
to reflect light. (Why the sky
appears blue to us on
Earth has to do with
scattering of light by
moleaules of the
atmosphere, as
discussed in
Chapter 24.)
Note the
storm off

the coast
of Mexico.
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CHAPTER-OPENING QUESTIONS—Guess now! CONTENTS
1. How many cm? are in 1.0 m?? 1-1 The Nature of Science
(a) 10. (b) 100. (c) 1000. (d) 10,000. (e) 100,000. (f) 1,000,000. 1-2 Physics and its Relation to
Other Fields

2. Suppose you wanted to actually measure the radius of the Earth, at least
roughly, rather than taking other people’s word for what it is. Which response
below describes the best approach?

1-3 Models, Theories, and Laws

1-4 Measurement and Uncertainty;
Significant Figures

(a) Use an extremely long measuring tape. 1-5 Units, Standards, and
(b) Itis only possible by flying high enough to see the actual curvature of the Earth. the SI System
(¢) Use a standard measuring tape, a step ladder, and a large smooth lake. 1-6 Converting Units
(d) Use a laser and a mirror on the Moon or on a satellite. 1-7 Order of Magnitude:
(e) Give up; it is impossible using ordinary means. Rapid Estimating
*1-8 Dimensions and Dimensional

[We start each Chapter with a Question—sometimes two. Try to answer right away. Don’t worry about
getting the right answer now—the idea is to get your preconceived notions out on the table. If they
are misconceptions, we expect them to be cleared up as you read the Chapter. You will usually get
another chance at the Question(s) later in the Chapter when the appropriate material has been covered.
These Chapter-Opening Questions will also help you see the power and usefulness of physics.]

Analysis



FIGURE 1-1 Aristotle is the central

figure (dressed in blue) at the top of

the stairs (the figure next to him is
Plato) in this famous Renaissance
portrayal of The School of Athens,
painted by Raphael around 1510.
Also in this painting, considered
one of the great masterpieces in art,
are Fuclid (drawing a circle at the
lower right), Ptolemy (extreme
right with globe), Pythagoras,
Socrates, and Diogenes.
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Introduction,

structure of matter. The field of physics is usually divided into classical

physics which includes motion, fluids, heat, sound, light, electricity, and
magnetism; and modern physics which includes the topics of relativity, atomic
structure, quantum theory, condensed matter, nuclear physics, elementary particles, and
cosmology and astrophysics. We will cover all these topics in this book, beginning
with motion (or mechanics, as it is often called) and ending with the most recent
results in fundamental particles and the cosmos. But before we begin on the
physics itself, we take a brief look at how this overall activity called “science,”
including physics, is actually practiced.

P hysics is the most basic of the sciences. It deals with the behavior and

1-1 The Nature of Science

The principal aim of all sciences, including physics, is generally considered to be
the search for order in our observations of the world around us. Many people
think that science is a mechanical process of collecting facts and devising
theories. But it is not so simple. Science is a creative activity that in many
respects resembles other creative activities of the human mind.

One important aspect of science is observation of events, which includes
the design and carrying out of experiments. But observation and experiments
require imagination, because scientists can never include everything in a
description of what they observe. Hence, scientists must make judgments about
what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384-322 B.C;
Fig. 1-1) and Galileo (1564-1642; Fig. 2-18), interpreted motion along a hori-
zontal surface. Aristotle noted that objects given an initial push along the ground
{(or on a tabletop) always slow down and stop. Consequently, Aristotle argued,
the natural state of an object is to be at rest. Galileo, the first true experimen-
talist, reexamined horizontal motion in the 1600s. He imagined that if friction
could be eliminated, an object given an initial push along a horizontal surface
would continue to move indefinitely without stopping. He concluded that for an
object to be in motion was just as natural as for it to be at rest. By inventing a
new way of thinking about the same data, Galileo founded our modern view of
motion (Chapters 2, 3, and 4), and he did so with a leap of the imagination.
Galileo made this leap conceptually, without actually eliminating friction.

Measurement, Estimating



Observation, with careful experimentation and measurement, is one side of
the scientific process. The other side is the invention or creation of theories to
explain and order the observations. Theories are never derived directly from
observations. Observations may help inspire a theory, and theories are accepted
or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of human beings. For
example, the idea that matter is made up of atoms (the atomic theory) was not
arrived at by direct observation of atoms—we can’t see atoms directly. Rather,
the idea sprang from creative minds. The theory of relativity, the electromag-
netic theory of light, and Newton’s law of universal gravitation were likewise
the result of human imagination.

The great theories of science may be compared, as creative achievements,
with great works of art or literature. But how does science differ from these
other creative activities? One important difference is that science requires
testing of its ideas or theories to see if their predictions are borne out by exper-
iment. But theories are not “proved” by testing. First of all, no measuring
instrument is perfect, so exact confirmation is not possible. Furthermore, it is
not possible to test a theory for every possible set of circumstances. Hence a
theory cannot be absolutely verified. Indeed, the history of science tells us that
long-held theories can sometimes be replaced by new ones, particularly when
new experimental techniques provide new or contradictory data.

A new theory is accepted by scientists in some cases because its predictions
are quantitatively in better agreement with experiment than those of the older
theory. But in many cases, a new theory is accepted only if it explains a greater
range of phenomena than does the older one. Copernicus’s Sun-centered theory
of the universe (Fig. 1-2b), for example, was originally no more accurate than
Ptolemy’s Earth-centered theory (Fig. 1-2a) for predicting the motion of heav-
enly bodies (Sun, Moon, planets). But Copernicus’s theory had consequences
that Ptolemy’s did not, such as predicting the moonlike phases of Venus. A
simpler and richer theory, one which unifies and explains a greater variety of
phenomena, is more useful and beautiful to a scientist. And this aspect, as well
as quantitative agreement, plays a major role in the acceptance of a theory.

FIGURE 1-2 (a) Ptolemy’s geocentric view of the universe. Note at the center the four elements of the
ancients: Earth, water, air (clouds around the Earth), and fire; then the circles, with symbols, for the Moon,
Mercury, Venus, Sun, Mars, Jupiter, Saturn, the fixed stars, and the signs of the zodiac. (b) An early
representation of Copernicus’s heliocentric view of the universe with the Sun at the center. (See Chapter 5.)

SECTION 1-1

(b)
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An important aspect of any theory is how well it can quantitatively predict
phenomena, and from this point of view a new theory may often seem to be only
a minor advance over the old one. For example, Finstein’s theory of relativity
gives predictions that differ very little from the older theories of Galileo and
Newton in nearly all everyday situations. Its predictions are better mainly in the
extreme case of very high speeds close to the speed of light. But quantitative
prediction is not the only important outcome of a theory. Our view of the world
is affected as well. As a result of Einstein’s theory of relativity, for example, our
concepts of space and time have been completely altered, and we have come to
see mass and energy as a single entity (via the famous equation E = mc?).

1-2 Physics and its Relation to
Other Fields

For a long time science was more or less a united whole known as natural
philosophy. Not until a century or two ago did the distinctions between physics
and chemistry and even the life sciences become prominent. Indeed, the sharp
distinction we now see between the arts and the sciences is itself only a few
centuries old. It is no wonder then that the development of physics has both
influenced and been influenced by other fields. For example, the notebooks
(Fig. 1-3) of Leonardo da Vinci, the great Renaissance artist, researcher, and
engineer, contain the first references to the forces acting within a structure, a
subject we consider as physics today; but then, as now, it has great relevance to
architecture and building.

Early work in electricity that led to the discovery of the electric battery and
electric current was done by an eighteenth-century physiologist, Luigi Galvani
(1737-1798). He noticed the twitching of frogs’ legs in response to an electric spark
and later that the muscles twitched when in contact with two dissimilar metals
(Chapter 18). At first this phenomenon was known as “animal electricity,” but it
shortly became clear that electric current itself could exist in the absence of an animal.

Physics is used in many fields. A zoologist, for example, may find physics useful
in understanding how prairie dogs and other animals can live underground without
ﬂ] : suffocating. A physical therapist will be more effective if aware of the principles

of center of gravity and the action of forces within the human body. A know-
FIGURE 1-3 Studies on the forces  Jedge of the operating principles of optical and electronic equipment is helpful in a
in structures by Leonardo da Vinci  yariety of fields. Life scientists and architects alike will be interested in the nature
(1452-1519). of heat loss and gain in human beings and the resulting comfort or discomfort.
Architects may have to calculate the dimensions of the pipes in a heating system
or the forces involved in a given structure to determine if it will remain standing
(Fig. 1-4). They must know physics principles in order to make realistic designs
and to communicate effectively with engineering consultants and other specialists.

L *a
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FIGURE 1-4 (a) This bridge over the River Tiber in Rome was built 2000 years ago and still stands.
(b) The 2007 collapse of a Mississippi River highway bridge built only 40 years before.
~ 2 I,

(a) (b) &
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From the aesthetic or psychological point of view, too, architects must be
aware of the forces involved in a structure—for example instability, even if only
illusory, can be discomforting to those who must live or work in the structure.

The list of ways in which physics relates to other fields is extensive. In the
Chapters that follow we will discuss many such applications as we carry out our
principal aim of explaining basic physics.

1-3 Models, Theories, and Laws

When scientists are trying to understand a particular set of phenomena, they often
make use of a model. A model, in the scientific sense, is a kind of analogy or
mental image of the phenomena in terms of something else we are already familiar
with. One example is the wave model of light. We cannot see waves of light as we
can water waves. But it is valuable to think of light as made up of waves, because
experiments indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual
picture—something to hold on to—when we cannot see what actually is
happening. Models often give us a deeper understanding: the analogy to a known
system (for instance, the water waves above) can suggest new experiments to
perform and can provide ideas about what other related phenomena might
oceur.

You may wonder what the difference is between a theory and a model.
Usually a model is relatively simple and provides a structural similarity to the
phenomena being studied. A theory is broader, more detailed, and can give
quantitatively testable predictions, often with great precision. It is important, how-
ever, not to confuse a model or a theory with the real system or the phenomena
themselves.

Scientists have given the title law to certain concise but general statements
about how nature behaves (that electric charge is conserved, for example).
Often the statement takes the form of a relationship or equation between
quantities (such as Newton’s second law, F = ma).

Statements that we call laws are usually experimentally valid over a wide
range of observed phenomena. For less general statements, the term principle
is often used (such as Archimedes’ principle). We use “theory” for a more
general picture of the phenomena dealt with.

Scientific laws are different from political laws in that the latter are prescrip-
tive: they tell us how we ought to behave. Scientific laws are descriptive: they do
not say how nature should behave, but rather are meant to describe how nature
does behave. As with theories, laws cannot be tested in the infinite variety of
cases possible. So we cannot be sure that any law is absolutely true. We use the
term “law” when its validity has been tested over a wide range of cases, and
when any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories
were true. But they are obliged to keep an open mind in case new information
should alter the validity of any given law or theory.

1-4 Measurement and Uncertainty;
Significant Figures

In the quest to understand the world around us, scientists seek to find relation-
ships among physical quantities that can be measured.

Uncertain‘EX

Reliable measurements are an important part of physics. But no measurement is
absolutely precise. There is an uncertainty associated with every measurement.

SECTION 1-4 Measurement and Uncertainty; Significant Figures
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FIGURE 1-5 Measuring the width
of a board with a centimeter ruler.
Accuracy is about + 1 mm.

Among the most important sources of uncertainty, other than blunders, are the
limited accuracy of every measuring instrument and the inability to read an
instrument beyond some fraction of the smallest division shown. For example,
if you were to use a centimeter ruler to measure the width of a board (Fig. 1-5),
the result could be claimed to be precise to about 0.1 cm (1 mm), the smallest
division on the ruler, although half of this value might be a valid claim as well.
The reason is that it is difficult for the observer to estimate (or “interpolate”)
between the smallest divisions. Furthermore, the ruler itself may not have been
manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the
estimated uncertainty in the measurement. For example, the width of a board
might be written as 8.8 £ 0.1 cm. The £ 0.1 cm (“plus or minus 0.1 cm™) repre-
sents the estimated uncertainty in the measurement, so that the actual width
most likely lies between 8.7 and 8.9 cm. The percent uncertainty is the ratio of
the uncertainty to the measured value, multiplied by 100. For example, if the
measurement is 8.8 cm and the uncertainty about 0.1 cm, the percent uncertainty is

% X 100% = 1%,
where ~ means “is approximately equal to.”

Often the uncertainty in a measured value is not specified explicitly. In such

cases, the

uncertainty in a numerical value is assumed to be one or a few units in the
last digit specified.

For example, if a length is given as 8.8 cm, the uncertainty is assumed to be
about 0.1 cm or 0.2 cm, or possibly even 0.3 cm. It is important in this case that
you do not write 8.80 cm, because this implies an uncertainty on the order of
0.01 cm; it assumes that the length is probably between about 8.79cm and
8.81 cm, when actually you believe it is between about 8.7 and 8.9 cm.

CONCEPTUAL EXAMPLE 1-1| Is the diamond yours? A friend asks to
borrow your precious diamond for a day to show her family. You are a bit
worried, so you carefully have your diamond weighed on a scale which reads
8.17 grams. The scale’s accuracy is claimed to be & 0.05 gram. The next day you
weigh the returned diamond again, getting 8.09 grams. Is this your diamond?

RESPONSE The scale readings are measurements and are not perfect. They
do not necessarily give the “true” value of the mass. Each measurement could
have been high or low by up to 0.05gram or so. The actual mass of your
diamond lies most likely between 8.12 grams and 8.22 grams. The actual mass
of the returned diamond is most likely between 8.04 grams and 8.14 grams.
These two ranges overlap, so the data do not give you a strong reason to
doubt that the returned diamond is yours.

Significant Figures

The number of reliably known digits in a number is called the number of
significant figures. Thus there are four significant figures in the number 23.21 cm
and two in the number 0.062 cm (the zeros in the latter are merely place holders
that show where the decimal point goes). The number of significant figures may not
always be clear. Take, for example, the number 80. Are there one or two signifi-
cant figures? We need words here: If we say it is roughly 80 km between two
cities, there is only one significant figure (the 8) since the zero is merely a place
holder. If there is no suggestion that the 80 is a rough approximation, then we
can often assume (as we will in this book) that it has 2 significant figures: so it is
80 km within an accuracy of about 1 or 2 km. If it is precisely 80 km, to within
+ 0.1 or £ 0.2 km, then we write 80.0 km (three significant figures).
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When specifying numerical results, you should avoid the temptation to keep
more digits in the final answer than is justified: see boldface statement on previous
page. For example, to calculate the area of a rectangle 11.3cm by 6.8 cm, the result of
multiplication would be 76.84 cm?. But this answer can not be accurate to the implied
0.01 cm? uncertainty, because (using the outer limits of the assumed uncertainty for
each measurement) the result could be between 11.2 ¢cm X 6.7 cm = 75.04 cm? and
11.4cm X 6.9 cm = 78.66 cm®. At best, we can quote the answer as 77 cm?, which
implies an uncertainty of about 1 or 2 cm? The other two digits (in the number
76.84 cm?) must be dropped (rounded off) because they are not significant. As a
rough general “significant figure” rule we can say that

the final result of a multiplication or division should have no more digits than
the numerical value with the fewest significant figures.

In our example, 6.8 cm has the least number of significant figures, namely two. Thus
the result 76.84 cm? needs to be rounded off to 77 cm?.

EXERCISE A The area of a rectangle 4.5 cm by 3.25 em is correctly given by (a) 14.625 cm?;
(b) 14.63 cm?; (c) 14.6 cm?; (d) 15 cm?.

When adding or subtracting numbers, the final result should contain no more
decimal places than the number with the fewest decimal places. For example, the
result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly 36 + 8.2 = 44, not 44.2.

Be careful not to confuse significant figures with the number of decimal places.

EXERCISE B For each of the following numbers, state the number of significant
figures and the number of decimal places: (a) 1.23; (b) 0.123; (c) 0.0123.

Keep in mind when you use a calculator that all the digits it produces may
not be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and
not 0.666666666 as calculators give (Fig. 1-6a). Digits should not be quoted in a
result unless they are truly significant figures. However, to obtain the most
accurate result, you should normally keep one or more extra significant figures
throughout a calculation, and round off only in the final result. (With a calcu-
lator, you can keep all its digits in intermediate results.) Note also that
calculators sometimes give too few significant figures. For example, when you
multiply 2.5 X 3.2, a calculator may give the answer as simply 8. But the answer is
accurate to two significant figures, so the proper answer is 8.0. See Fig. 1-6b.

CONCEPTUAL EXAMPLE 1-2 | Significant figures. Using a protractor
(Fig. 1-7), you measure an angle to be 30°. (a) How many significant figures
should you quote in this measurement? (b) Use a calculator to find the cosine
of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision
with which you can measure an angle is about one degree (certainly not 0.1°).
So you can quote two significant figures, namely 30° (not 30.0°). (b) If you
enter cos30° in your calculator, you will get a number like 0.866025403.
But the angle you entered is known only to two significant figures, so its cosine
is correctly given by 0.87; you must round your answer to two significant figures.

NOTE Tiigonometric functions, like cosine, are reviewed in Chapter 3 and Appendix A.

Scientific Notation

We commonly write numbers in “powers of ten,” or “scientific” notation—for
instance 36,900 as 3.69 X 10*, or 0.0021 as 2.1 X 10>. One advantage of
scientific notation (reviewed in Appendix A) is that it allows the number of
significant figures to be clearly expressed. For example, it is not clear whether
36,900 has three, four, or five significant figures. With powers of 10 notation
the ambiguity can be avoided: if the number is known to three significant
figures, we write 3.69 X 10, but if it is known to four, we write 3.690 X 10

EXERCISE C Write each of the following in scientific notation and state the number of
significant figures for each: (a) 0.0258; (b) 42,300; (c) 344.50.

0.666666666
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(b)
FIGURE 1-6 These two calculations
show the wrong number of significant
figures. In (a), 2.0 was divided by 3.0.
The correct final result would be
0.67. In (b), 2.5 was multiplied by 3.2.
The correct result is 8.0.

PROBLEM SOLVING
Report only the proper number of
significant figures in the final result. But
keep extra digits during the calculation

FIGURE 1-7 Example 1-2.
A protractor used to measure an
angle.
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* Percent Uncertainty vs. Significant Figures

The significant figures rule is only approximate, and in some cases may under-
estimate the accuracy (or uncertainty) of the answer. Suppose for example we
divide 97 by 92:

97

0 1.05 = 1.1.
Both 97 and 92 have two significant figures, so the rule says to give the answer
as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of + 1 if no other
uncertainty is stated. Both 92 £ 1 and 97 £ 1 imply an uncertainty of
about 1% (1/92 ~ 0.01 = 1%). But the final result to two significant figures
is 1.1, with an implied uncertainty of + 0.1, which is an uncertainty of about 10%
(0.1/1.1 = 0.1 =~ 10%). Itis better in this case to give the answer as 1.05 (which
is three significant figures). Why? Because 1.05 implies an uncertainty of £ 0.01
which is 0.01/1.05 = 0.01 = 1%, just like the uncertainty in the original
numbers 92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncertainty

too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations

Much of physics involves approximations, often because we do not have the
means to solve a problem precisely. For example, we may choose to ignore air
resistance or friction in doing a Problem even though they are present in the
real world, and then our calculation is only an approximation. In doing Problems,
we should be aware of what approximations we are making, and be aware
that the precision of our answer may not be nearly as good as the number of
significant figures given in the result.

Accuracy vs. Precision

There is a technical difference between “precision” and “accuracy.” Precision in
a strict sense refers to the repeatability of the measurement using a given instru-
ment. For example, if you measure the width of a board many times, getting
results like 8.81 cm, 8.85cm, 8.78 cm, 8.82 ¢cm (interpolating between the 0.1 cm
marks as best as possible each time), you could say the measurements give a
precision a bit better than 0.1 cm. Accuracy refers to how close a measurement
is to the true value. For example, if the ruler shown in Fig. 1-5 was manufac-
tured with a 2% error, the accuracy of its measurement of the board’s width
(about 8.8cm) would be about 2% of 8.8cm or about * 0.2cm. Estimated
uncertainty is meant to take both accuracy and precision into account.

1-5 Units, Standards, and
the SI System

The measurement of any quantity is made relative to a particular standard or unit,
and this unit must be specified along with the numerical value of the quantity.
For example, we can measure length in British units such as inches,
feet, or miles, or in the metric system in centimeters, meters, or kilometers. To
specify that the length of a particular object is 18.6 is insufficient. The unit
must be given, because 18.6 meters is very different from 18.6inches or
18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time,
we need to define a standard which defines exactly how long one meter or one
second is. It is important that standards be chosen that are readily reproducible
so that anyone needing to make a very accurate measurement can refer to the
standard in the laboratory and communicate with other people.

Introduction, Measurement, Estimating



Length

The first truly international standard was the meter (abbreviated m) established
as the standard of length by the French Academy of Sciences in the 1790s. The
standard meter was originally chosen to be one ten-millionth of the distance
from the Earth’s equator to either pole,” and a platinum rod to represent this
length was made. (One meter is, very roughly, the distance from the tip of your
nose to the tip of your finger, with arm and hand stretched out horizontally.) In
1889, the meter was defined more precisely as the distance between two finely
engraved marks on a particular bar of platinum—iridium alloy. In 1960, t0 FIGURE 1-8 Some lengths:
provide even greater precision and reproducibility, the meter was redefined as  (a) viruses (about 10" m long)
1,650,763.73 wavelengths of a particular orange light emitted by the gas attacking a cell; (b) Mt. Everest’s
krypton-86. In 1983 the meter was again redefined, this time in terms of the height is on the order of 10*m
speed of light (whose best measured value in terms of the older definition of the (8850 m above sca level, to be precise).
meter was 299,792,458 m/s, with an uncertainty of 1 m/s). The new definition
reads: “The meter is the length of path traveled by light in vacuum during a
time interval of 1/299,792 458 of a second.”*

British units of length (inch, foot, mile) are now defined in terms of the
meter. The inch (in.) is defined as exactly 2.54 centimeters (cm; 1 cm = 0.01 m).
Other conversion factors are given in the Table on the inside of the front cover
of this book. Table 1-1 presents some typical lengths, from very small to very
large, rounded off to the nearest power of 10. See also Fig. 1-8. [Note that the
abbreviation for inches (in.) is the only one with a period, to distinguish it from
the word “in”.

Time

The standard unit of time is the second (s). For many years, the second was
defined as 1/86,400 of a mean solar day (24 h/day X 60 min/h X 60 s/min =
86,400 s/day). The standard second is now defined more precisely in terms of
the frequency of radiation emitted by cesium atoms when they pass between
two particular states. [Specifically, one second is defined as the time required
for 9,192,631,770 oscillations of this radiation.] There are, by definition, 60s in
one minute (min) and 60 minutes in one hour (h). Table 1-2 presents a range of
measured time intervals, rounded off to the nearest power of 10.

"Modern measurements of the Earth’s circumference reveal that the intended length is off by about
one-fiftieth of 1%. Not bad!

b
*The new definition of the meter has the effect of giving the speed of light the exact value of ®)
299,792,458 m/s.
TABLE 1-1 Some Typical Lengths or Distances TABLE 1-2 Some Typical Time Intervals
(order of magnitude) (order of magnitude)
Length (or Distance) Meters (approximate) Time Interval Seconds (approximate)
Neutron or proton (diameter) 10 m Lifetime of very unstable
Atom (diameter) 10-10m subatomic particle 107585
Virus [see Fig. 1-8a] 107 m Lifetime of radioactive elements 10725 to 10%s
Sheet of paper (thickness) 10* m Lifetime of muon 107 s
Finger width 102 m Time between human heartbeats 10° s (=15s)
Football field length 10> m One day 10° s
Height of Mt. Everest [see Fig. 1-8b] 10* m One year 3x 107 s
Earth diameter 107 m Human life span 2%x10° s
Earth to Sun 10" m Length of recorded history 101 s
Earth to nearest star 10 m Humans on Earth 101 s
Farth to nearest galaxy 102 m Age of Earth 107 s
Farth to farthest galaxy visible 10% m Age of Universe 4% 107 s
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TABLE 1-3 Some Masses

Kilograms

Object (approximate)
Electron 10 ¥ kg
Proton, neutron 1077 kg
DNA molecule 1077 kg
Bacterium 10 P kg
Mosquito 107 kg
Plum 107 kg
Human 102 kg
Ship 108 kg
Earth 6 X 10% kg
Sun 2 X 10%° kg
Galaxy 104 kg

PROBLEM SOLVING

Always use a consistent set of units

TABLE 1-4 Metric (Sl) Prefixes

Prefix  Abbreviation  Value

yotta
zetta
exa
peta
tera
giga
mega
kilo
hecto
deka
deci
centi
milli
microf
nano
pico
femto
atto
zepto

“ NP T BEEEBOAQARoRFZOSNYINK

yocto

1024
1021
1018
1015
1012
10°
106
10°

i is the Greek letter “mu
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Mass

The standard unit of mass is the kilogram (kg). The standard mass is a partic-
ular platinum—iridium cylinder, kept at the International Bureau of Weights
and Measures near Paris, France, whose mass is defined as exactly 1 kg. A range
of masses is presented in Table 1-3. [For practical purposes, 1 kg weighs about
2.2 pounds on Earth.]

When dealing with atoms and molecules, we usually use the unified atomic
mass unit (u or amu). In terms of the kilogram,

lu = 1.6605 X 10 kg.

Precise values of this and other useful numbers are given on page A-72.
The definitions of other standard units for other quantities will be given as
we encounter them in later Chapters.

Unit Prefixes

In the metric system, the larger and smaller units are defined in multiples of 10
from the standard unit, and this makes calculation particularly easy. Thus
1 kilometer (km) is 1000 m, 1 centimeter is 155 m, 1 millimeter (mm) is g m oOr 75 cm,
and so on. The prefixes “centi-,” “kilo-,” and others are listed in Table 1-4 and
can be applied not only to units of length but to units of volume, mass, or any
other unit. For example, a centiliter (cL) is & liter (L), and a kilogram (kg) is
1000 grams (g). An 8.2-megapixel camera has a detector with 8,200,000 pixels
(individual “picture elements”).
In common usage, 1 um (= 107°m) is called 1 micron.

Systems of Units

When dealing with the laws and equations of physics it is very important to use a
consistent set of units. Several systems of units have been in use over the years.
Today the most important is the Systéme International (French for International
System), which is abbreviated SI. In SI units, the standard of length is the meter,
the standard for time is the second, and the standard for mass is the kilogram.
This system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and
second are the standard units of length, mass, and time, as abbreviated in the title.
The British engineering system (although more used in the US. than Britain) has
as its standards the foot for length, the pound for force, and the second for time.

We use SI units almost exclusively in this book.

*Base vs. Derived Quantities

Physical quantities can be divided into two categories: base quantities and
derived quantities. The corresponding units for these quantities are called base
units and derived units. A base quantity must be defined in terms of a standard.
Scientists, in the interest of simplicity, want the smallest number of base quanti-
ties possible consistent with a full description of the physical world. This
number turns out to be seven, and those used in the SI are given in Table 1-5.

TABLE 1-5 Sl Base Quantities and Units

Quantity Unit Unit Abbreviation
Length meter m

Time second S

Mass kilogram kg

Electric current ampere A
‘Temperature kelvin K

Amount of substance mole mol
Luminous intensity candela cd
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All other quantities can be defined in terms of these seven base quantities,’ and
hence are referred to as derived quantities. An example of a derived quantity is
speed, which is defined as distance divided by the time it takes to travel that
distance. A Table on page A-73 lists many derived quantities and their units in
terms of base units. To define any quantity, whether base or derived, we can
specify a rule or procedure, and this is called an operational definition.

1-6 Converting Units

Any quantity we measure, such as a length, a speed, or an electric current,
consists of a number and a unit. Often we are given a quantity in one set of
units, but we want it expressed in another set of units. For example, suppose we
measure that a shelf is 21.5inches wide, and we want to express this in centi-
meters. We must use a conversion factor, which in this case is, by definition, exactly

lin. = 2.54cm
or, written another way,
1 = 2.54cm/in.

Since multiplying by the number one does not change anything, the width of our
shelf, in cm, is

21.5inches = (21.57n.) X (2.54 @) = 546cm.
8.
Note how the units (inches in this case) cancelled out (thin red lines). A Table

containing many unit conversions is found on page A-73. Let’s consider some
Examples.

EXAMPLE 1-3| The 8000-m peaks. There are only 14 peaks whose sum-
mits are over 8000m above sea level. They are the tallest peaks in the
world (Fig. 1-9 and Table 1-6) and are referred to as “eight-thousanders.”
What is the elevation, in feet, of an elevation of 8000 m? : o

highest peak, K2, whose summit is

APPROACH We need to convert meters to feet, and we can start with the . acidered the most difficult of the
conversion factor 1in. = 2.54 ¢cm, which is exact. That is, 1in. = 2.5400 cm  «g000-ers.” K2 is seen here from the
to any number of significant figures, because it is defined to be. south (Pakistan). Example 1-3.

SOLUTION One foot is 12 in., so we can write

FIGURE 1-9 The world’s second

f PHYSICS APPLIED
The world’s tallest peaks

1ft = (12m)<2.54§$> = 3048cm = 0.3048m,

which is exact. Note how the units cancel (colored slashes). We can rewrite
this equation to find the number of feet in 1 meter:

TABLE 1-6 The 8000-m Peaks

m = 0;;2 o = 3280841t ol Height (m)
(We could carry the result to 6 significant figures because 0.3048 is exact, Mt Everest 8850
0.304800 - --.) We multiply this equation by 8000.0 (to have five significant figures): K2 3611
ft Kangchenjunga 8586
8000.0m = (8000.0 ‘m)<3.28084 ‘m) = 26,247 ft. Lhotse 8516
An elevation of 8000 m is 26,247 ft above sea level. Makalu 8462
. . . . Cho Oyu 8201
NOTE We could have done the unit conversions all in one line: Dhaulagri 3167
8000.0m = (8000.0m.) ( 100 ar ) ( L in. ) ( 1 ) = 26247, ~ Manaslu 8136
1'm 2.54 car J\ 127, Nanga Parbat 8125
The key is to multiply conversion factors, each equal to one (= 1.0000), and  Annapurna 8091
to make sure which units cancel. Gasherbrum 1 8068
- Broad Peak 8047
"Some exceptions are for angle (radians—see Chapter 8), solid angle (steradian), and sound level Gasherbrum II 8035
(bel or decibel, Chapter 12). No general agreement has been reached as to whether these are base Shisha Pangma 8013

or derived quantities.
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% PROBLEM SOLVING
Conversion factors = 1

PROBLEM SOLVING

Unit conversion is wrong if
units do not cancel

12 CHAPTER 1 Introduction,

EXAMPLE 1-4| Apartment area. You have seen a nice apartment whose
floor area is 880 square feet (ft?). What is its area in square meters?

APPROACH We use the same conversion factor, 1in. = 2.54 cm, but this time
we have to use it twice.

SOLUTION Because 1in. = 2.54cm = 0.0254 m, then
112 = (12in.)%(0.0254 m/in.)*> = 0.0929 m?,

So
880 ft* = (880 ft)(0.0929 m?/ft?) ~ 82 m?

NOTE As a rule of thumb, an area given in ft? is roughly 10 times the number
of square meters (more precisely, about 10.8X).

EXAMPLE 1-5| Speeds. Where the posted speed limit is 55 miles per hour
(mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) in
kilometers per hour (km/h)?

APPROACH We again use the conversion factor lin. = 2.54cm, and we
recall that there are 5280 ft in a mile and 12 inches in a foot; also, one hour
contains (60 min/h) X (60s/min) = 3600 s/h.

SOLUTION (a) We can write 1 mile as

.. Tm. Im
(5280&()(12 it') (2.54 m><100‘cm>

= 1609 m.

1mi

We also know that 1 hour contains 3600 s, so

mi ™l m 1
S (55,h’><1609m><3600s>

= 25
S

where we rounded off to two significant figures.
(b) Now we use 1mi = 1609 m = 1.609 km; then

ss (55 m) (1.609 km )
h h ™
km
- 88 o

NOTE Each conversion factor is equal to one. You can look up most conver-
sion factors in the Table inside the front cover.

EXERCISE D Return to the first Chapter-Opening Question, page 1, and answer it
again now. Try to explain why you may have answered differently the first time.

EXERCISE E Would a driver traveling at 15m/s in a 35mi/h zone be exceeding the
speed limit? Why or why not?

When changing units, you can avoid making an error in the use of conver-
sion factors by checking that units cancel out properly. For example, in our
conversion of 1 mi to 1609 m in Example 1-5(a), if we had incorrectly used the
factor (11) instead of (m55s), the centimeter units would not have cancelled

out; we would not have ended up with meters.

Measurement, Estimating



1-7 Order of Magnitude:
Rapid Estimating

We are sometimes interested only in an approximate value for a quantity. This
might be because an accurate calculation would take more time than it is worth
or would require additional data that are not available. In other cases, we may
want to make a rough estimate in order to check a calculation made on a calcu-
lator, to make sure that no blunders were made when the numbers were entered.

A rough estimate can be made by rounding off all numbers to one significant
figure and its power of 10, and after the calculation is made, again keeping only
one significant figure. Such an estimate is called an order-of-magnitude estimate
and can be accurate within a factor of 10, and often better. In fact, the phrase
“order of magnitude” is sometimes used to refer simply to the power of 10.

Let’s do some Examples.

5]

........

(a)

EXAMPLE 1-6 | ESTIMATE | Volume of a lake. Estimate how much water
there is in a particular lake, Fig. 1-10a, which is roughly circular, about 1 km
across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume,
we can use a simple model of the lake as a cylinder: we multiply the average
depth of the lake times its roughly circular surface area, as if the lake were a
cylinder (Fig. 1-10b).

SOLUTION The volume V of a cylinder is the product of its height 4 times
the area of its base: V = hwr?, where r is the radius of the circular base.” The
radius 7 is km = 500m, so the volume is approximately

V = hmr? & (10m) X (3) X (5 X 10°m)* = 8 X 10°m® ~ 10" m?,

where 7 was rounded off to 3. So the volume is on the order of 107 m?,
ten million cubic meters. Because of all the estimates that went into this
calculation, the order-of-magnitude estimate (107 m3) is probably better to
quote than the 8 X 10° m® figure.

NOTE 'To express our result in U.S. gallons, we see in the Table on the inside

front cover that 1liter = 10°m® ~ }gallon. Hence, the lake contains
(8 x 10°m®)(1 gallon/4 X 103 m®) ~ 2 x 10° gallons of water.

fFormulas like this for volume, area, etc., are found inside the back cover of this book.

% PROBLEM SOLVING
How to make a rough estimate

(b)

FIGURE 1-10 Example 1-6. (a) How much water is in this
lake? (Photo is one of the Rae Lakes in the Sierra Nevada

of California.) (b) Model of the lake as a cylinder. [We could
go one step further and estimate the mass or weight of this
lake. We will see later that water has a density of 1000 kg/m?,
so this lake has a mass of about (10°kg/m?3)(10” m?®) ~ 101kg,
which is about 10 billion kg or 10 million metric tons.

(A metric ton is 1000kg, about 2200 Ib, slightly larger than a
British ton, 2000 1b.)]

A)PHYSICS APPLIED

Estimating the volume (or mass) of
a lake; see also Fig. 1-10

SECTION 1-7 Order of Magnitude: Rapid Estimating 13



FIGURE 1-11 Example 1-7.
Micrometer used for measuring
small thicknesses.

FIGURE 1-12 Example 1-8.
Diagrams are really useful!
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FIGURE 1-13 Enrico Fermi. Fermi
contributed significantly to both
theoretical and experimental physics,
a feat almost unique in modern times.
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EXAMPLE 1-7 | ESTIMATE | Thickness of a sheet of paper. Estimate the
thickness of a page of this book.

APPROACH At first you might think that a special measuring device, a
micrometer (Fig. 1-11), is needed to measure the thickness of one page since
an ordinary ruler can not be read so finely. But we can use a trick or, to put it in
physics terms, make use of a symmetry: we can make the reasonable assump-
tion that all the pages of this book are equal in thickness.

SOLUTION We can use a ruler to measure hundreds of pages at once. If you
measure the thickness of the first 500 pages of this book (page 1 to page 500),
you might get something like 1.5 cm. Note that 500 numbered pages, counted
front and back, is 250 separate picces of paper. So one sheet must have a
thickness of about

1.5¢cm

T o~ X -3 — X —2
750 sheets 6 X 107 cm 6 X 107 “mm,

or less than a tenth of a millimeter (0.1 mm).

It cannot be emphasized enough how important it is to draw a diagram
when solving a physics Problem, as the next Example shows.

EXAMPLE 1-8 | ESTIMATE | Height by triangulation. Estimate the height
of the building shown in Fig. 1-12, by “triangulation,” with the help of a bus-stop
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height
of the pole to be 3m. You next step away from the pole until the top of the
pole is in line with the top of the building, Fig. 1-12a. You are 5 ft 6in. tall, so
your eyes are about 1.5m above the ground. Your friend is taller, and when
she stretches out her arms, one hand touches you, and the other touches the
pole, so you estimate that distance as 2 m (Fig. 1-12a). You then pace off the
distance from the pole to the base of the building with big, 1-m-long steps, and
you get a total of 16 steps or 16 m.

SOLUTION Now you draw, to scale, the diagram shown in Fig. 1-12b using
these measurements. You can measure, right on the diagram, the last side of
the triangle to be about x = 13 m. Alternatively, you can use similar triangles
to obtain the height x:

15m  «x

2m  18m’
SO

x ~ 13im

Finally you add in your eye height of 1.5m above the ground to get your final
result: the building is about 15 m tall.

Another approach, this one made famous by Enrico Fermi (1901-1954,
Fig. 1-13), was to show his students how to estimate the number of piano tuners in
a city, say, Chicago or San Francisco. To get a rough order-of-magnitude estimate
of the number of piano tuners today in San Francisco, a city of about 800,000
inhabitants, we can proceed by estimating the number of functioning pianos,
how often each piano is tuned, and how many pianos each tuner can tune. To
estimate the number of pianos in San Francisco, we note that certainly not
everyone has a piano. A guess of 1 family in 3 having a piano would corre-
spond to 1 piano per 12 persons, assuming an average family of 4 persons.
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As an order of magnitude, let’s say 1 piano per 10 people. This is certainly % PROBLEM SOLVING
more reasonable than 1 per 100 people, or 1 per every person, so let’s  Estimating how many piano tuners
proceed with the estimate that 1 person in 10 has a piano, or about thereareinacity

80,000 pianos in San Francisco. Now a piano tuner needs an hour or two to

tune a piano. So let’s estimate that a tuner can tune 4 or 5 pianos a day. A piano

ought to be tuned every 6 months or a year—let’s say once each year.

A piano tuner tuning 4 pianos a day, 5 days a week, 50 weeks a year can tune about

1000 pianos a year. So San Francisco, with its (very) roughly 80,000 pianos,

needs about 80 piano tuners. This is, of course, only a rough estimate.” Tt tells

us that there must be many more than 10 piano tuners, and surely not as many

as 1000.

A Harder Example—But Powerful

EXAMPLE 1-9 | ESTIMATE | Estimating the radius of Earth. Believe it or
not, you can estimate the radius of the Earth without having to go into space
(see the photograph on page 1). If you have ever been on the shore of a large
lake, you may have noticed that you cannot see the beaches, piers, or rocks at
water level across the lake on the opposite shore. The lake seems to bulge out
between you and the opposite shore—a good clue that the Earth is round.
Suppose you climb a stepladder and discover that when your eyes are 10 ft (3.0m)
above the water, you can just see the rocks at water level on the opposite shore.
From a map, you estimate the distance to the opposite shore as d = 6.1 km. Use
Fig. 1-14 with & = 3.0 m to estimate the radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,

ct=a + b,

Center
where ¢ is the length of the hypotenuse of any right triangle, and a and b are of Earth
the lengths of the other two sides. FIGURE 1-14 Example 1-9, but

SOLUTION For the right triangle of Fig. 1-14, the two sides are the radius of ~not to scale. You can just barely see
the Earth R and the distance d = 6.1 km = 6100 m. The hypotenuse is approx- ~ Tocks at water level on the opposite

imately the length R + A, where A = 3.0m. By the Pythagorean theorem, shore of a lake 6.1 km wide if you
stand on a stepladder.

R*+ d* =~ (R + h)
~ R + 2hR + K.

We solve algebraically for R, after cancelling R? on both sides:

0~ 4> — Kk (6100m)> — (3.0m)?
T2 6.0m
6.2 X 10°m

6200 km.

NOTE Precise measurements give 6380 km. But look at your achievement!
With a few simple rough measurements and simple geometry, you made a
good estimate of the Earth’s radius. You did not need to go out in space, nor
did you need a very long measuring tape.

EXERCISE F Return to the second Chapter-Opening Question, page 1, and answer it
again now. Try to explain why you may have answered differently the first time.

A check of the San Francisco Yellow Pages (done after this calculation) reveals about 60 listings.
Each of these listings may employ more than one tuner, but on the other hand, each may also do
repairs as well as tuning. In any case, our estimate is reasonable.
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*1—8 Dimensions and

Dimensional Analysis

When we speak of the dimensions of a quantity, we are referring to the type of
base units or base quantities that make it up. The dimensions of area, for
example, are always length squared, abbreviated [Lz], using square brackets;
the units can be square meters, square feet, cm?, and so on. Velocity, on the
other hand, can be measured in units of km/h, m/s, or mi/h, but the dimen-
sions are always a length [L] divided by a time [7]: that is, [L/7].

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height A
is A = 1bh, whereas the area of a circle of radius 7 is A = 7#>. The formulas
are different in the two cases, but the dimensions of arca are always [12].

Dimensions can be used as a help in working out relationships, a procedure
referred to as dimensional analysis. One useful technique is the use of dimen-
sions to check if a relationship is incorrect. Note that we add or subtract
quantities only if they have the same dimensions (we don’t add centimeters
and hours); and the quantities on each side of an equals sign must have the
same dimensions. (In numerical calculations, the units must also be the same on
both sides of an equation.)

For example, suppose you derived the equation v = v, + 1at?, where v is
the speed of an object after a time , v, is the object’s initial speed, and the
object undergoes an acceleration a. Let’s do a dimensional check to see if this
equation could be correct or is surely incorrect. Note that numerical factors,
like the 3 here, do not affect dimensional checks. We write a dimensional
equation as follows, remembering that the dimensions of speed are [L/T] and
(as we shall see in Chapter 2) the dimensions of acceleration are [L/T?:

4[] [
L]

The dimensions are incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made
in the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is completely right. For example, a dimensionless numerical factor
(such as § or 277) could be missing.

Dimensional analysis can also be used as a quick check on an equation you
are not sure about. For example, consider a simple pendulum of length £. Suppose
that you can’t remember whether the equation for the period 7 (the time to make
one back-and-forth swing) is 1" = 27VI/g or 1" =27w\Vg/l, where g is the
acceleration due to gravity and, like all accelerations, has dimensions [L/T?].
(Do not worry about these formulas—the correct one will be derived in
Chapter 11; what we are concerned about here is a person’s recalling whether it
contains £/g or g/L.) A dimensional check shows that the former (£/g) is correct:

[L/TZ \% [T2 = [T]7

whereas the latter ( g/l is not:

The constant 27 has no dimensions and so Can’t be checked using dimensions.

[l

[l

*Some Sections of this book, such as this one, may be considered optional at the discretion of the
instructor, and they are marked with an asterisk (*). See the Preface for more details.
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| Summary

[The Summary that appears at the end of each Chapter in this book
gives a brief overview of the main ideas of the Chapter. The Summary
cannot serve fo give an understanding of the material, which can be
accomplished only by a detailed reading of the Chapter.]

Physics, like other sciences, is a creative endeavor. It is
not simply a collection of facts. Important theories are
created with the idea of explaining observations. To be
accepted, theories are “tested” by comparing their predictions
with the results of actual experiments. Note that, in general,
a theory cannot be “proved” in an absolute sense.

Scientists often devise models of physical phenomena.
A model is a kind of picture or analogy that helps to describe
the phenomena in terms of something we already know.
A theory, often developed from a model, is usually deeper
and more complex than a simple model.

A scientific law is a concise statement, often expressed in
the form of an equation, which quantitatively describes a
wide range of phenomena.

Measurements play a crucial role in physics, but can
never be perfectly precise. It is important to specify the

] Questions

uncertainty of a measurement either by stating it directly
using the * notation, and/or by keeping only the correct
number of significant figures.

Physical quantities are always specified relative to a
particular standard or unit, and the unit used should always
be stated. The commonly accepted set of units today is the
Systeme International (SI), in which the standard units of
length, mass, and time are the meter, kilogram, and second.

When converting units, check all conversion factors for
correct cancellation of units.

Making rough, order-of-magnitude estimates is a very
useful technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination
of base quantities that comprise it. Velocity, for example, has
dimensions of [length/time] or [L/T]. Working with only the
dimensions of the various quantities in a given relationship
(this technique is called dimensional analysis) makes it
possible to check a relationship for correct form.]

1. What are the merits and drawbacks of using a person’s
foot as a standard? Consider both (a) a particular
person’s foot, and (b) any person’s foot. Keep in mind
that it is advantageous that fundamental standards be
accessible (easy to compare to), invariable (do not
change), indestructible, and reproducible.

2. What is wrong with this road sign:
Memphis 7mi (11.263 km)?

3. Why is it incorrect to think that the more digits you
include in your answer, the more accurate it is?

| MisConceptual Questions

4. For an answer to be complete, the units need to be speci-
fied. Why?

5. You measure the radius of a wheel to be 4.16 cm. If you
multiply by 2 to get the diameter, should you write the
result as 8 cm or as 8.32 cm? Justify your answer.

6. Express the sine of 30.0° with the correct number of
significant figures.

7. List assumptions useful to estimate the number of car
mechanics in (¢) San Francisco, (b) your hometown, and
then make the estimates.

[List all answers that are valid.]

1. A student weighs herself on a digital bathroom scale as
117.41b. IT all the digits displayed reflect the true preci-
sion of the scale, then probably her weight is
(a) within 1% of 117.4 1b.

(b) exactly 117.41b.
(c) somewhere between 117.38 and 117.42 1b.
(d) roughly between 117.2 and 117.6 1b.

2. Four students use different instruments to measure the
length of the same pen. Which measurement implies the
greatest precision?

() 1600mm. (b) 160cm. (c) 0.160m. (d) 0.00016km.
(e) Need more information.

3. The number 0.0078 has how many significant figures?

() 1. (b) 2. (o) 3. (d) 4.
4. How many significant figures does 1.362 + 25.2 have?
(a) 2. (b) 3. (c) 4. (d) 5.

5. Accuracy represents
(a) repeatability of a measurement, using a given instrument.
(b) how close a measurement is to the true value.
(¢) an ideal number of measurements to make.
(d) how poorly an instrument is operating.

6. To convert from ft* to yd?, you should
(a) multiply by 3.
(b) multiply by 1/3.
(¢) multiply by 9.
(d) multiply by 1/9.
(e) multiply by 6.
(f) multiply by 1/6.
7. Which is not true about an order-of-magnitude estimation?
(a) It gives you a rough idea of the answer.
(b) It can be done by keeping only one significant figure.
(¢) It can be used to check if an exact calculation is
reasonable.
(d) It may require making some reasonable assumptions
in order to calculate the answer.
(e) Tt will always be accurate to at least two significant figures.

*8, [L?] represents the dimensions for which of the following?
(@) cm?.
(b) square feet.
(c) mZ.
(d) All of the above.
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For assigned homework and other learning materials, go to the MasteringPhysics website.

| Problems

[The Problems at the end of each Chapter are ranked 1, 11, or 111
according to estimated difficulty, with (I) Problems being easiest.
Level 111 are meant as challenges for the best students. The Prob-
lems are arranged by Section, meaning that the reader should
have read up to and including that Section, but not only that
Section—Problems often depend on earlier material. Next is
a set of “General Problems” not arranged by Section and not
ranked. Finally, there are “Search and Learn” Problems that require
rereading parts of the Chapter.]

1-4 Measurement, Uncertainty, Significant Figures
(Note: In Problems, assume a number like 6.4 is accurate to
+0.1; and 950 is £ 10 unless 950 is said to be “precisely” or
“very nearly” 950, in which case assume 950 £ 1.)

1. (I) How many significant figures do each of the following
numbers have: (a) 214, (b) 81.60, (¢) 7.03, (d) 0.03,
(e) 0.0086, (f) 3236, and (g) 87007

2. (I) Write the following numbers in powers of 10 notation:
(a) 1.156, (b) 21.8, (c) 0.0068, (d) 328.65, (e) 0.219, and (f) 444.

3. (I) Write out the following numbers in full with the
correct number of zeros: (a) 8.69 X 104, (b) 9.1 X 10°,
(c) 8.8 X 107}, (d) 4776 X 10%, and (e) 3.62 X 107,

4. (Il) The age of the universe is thought to be about
14 billion years. Assuming two significant figures, write
this in powers of 10 in (a) years, (b) seconds.

5. (II) What is the percent uncertainty in the measurement
548 £ 025m?

6. (II) Time intervals measured with a stopwatch typically have
an uncertainty of about 0.2 s, due to human reaction time at
the start and stop moments. What is the percent uncertainty of
a hand-timed measurement of (@) 5.5s, (b) 555, (¢) 5.5min?

7. (I) Add (92 x 10°s) + (8.3 x 10*s) + (0.008 x 10%s).

8. (II) Multiply 3.079 X 102m by 0.068 X 10~ m, taking into
account significant figures.

9. (II) What, approximately, is the percent uncertainty for
a measurement given as 1.57 m??

10. (III) What, roughly, is the percent uncertainty in the volume
of a spherical beach ball of radius r = 0.84 £ 0.04m?
11. (III) What is the area, and its approximate uncertainty, of

a circle of radius 3.1 X 10*cm?

1-5 and 1-6 Units, Standards, Sl, Converting Units

12. (I) Write the following as full (decimal) numbers without
prefixes on the units: (a) 286.6 mm, (b) 85 uV, (¢) 760mg,
(d) 62.1ps, (e) 22.5nm, (f) 2.50 gigavolts.

13. (I) Express the following using the prefixes of Table 1-4:
(@) 1 X 10%volts, (b) 2 X 10 % meters, (c) 6 X 10° days,
(d) 18 X 102 bucks, and (e) 7 X 1077 seconds.

14. (I) One hectare is defined as 1.000 X 10*m?. One acre is
4356 x 10*ft>. How many acres are in one hectare?

15. (IT) The Sun, on average, is 93 million miles from Earth.
How many meters is this? Express (a) using powers of
10, and () using a metric prefix (km).

16. (IT) Express the following sum with the correct number of
significant figures: 1.80m + 142.5cm + 534 X 10° pum.
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17. (I1) Determine the conversion factor between (@) km/h
and mi/h, (b) m/s and ft/s, and (c) km/h and m/s.

18. (II) A light-year is the distance light travels in one year (at
speed = 2.998 X 10°m/s). (¢) How many meters are
there in 1.00 light-year? (b) An astronomical unit (AU) is
the average distance from the Sun to Earth, 1.50 X 10%km.
How many AU are there in 1.00 light-year?

19. (IT) How much longer (percentage) is a one-mile race
than a 1500-m race (“the metric mile”)?

20. (II) American football uses a field that is 100.0yd long,
whereas a soccer field is 100.0m long. Which field is longer,
and by how much (give yards, meters, and percent)?

21. (IT) (@) How many seconds are there in 1.00 year? (b) How
many nanoseconds are there in 1.00 year? (¢) How many
years are there in 1.00 second?

22. (IT) Use Table 1-3 to estimate the total number of protons
or neutrons in (a) a bacterium, () a DNA molecule, (¢) the
human body, (d) our Galaxy.

23. (III) A standard baseball has a circumference of approxi-
mately 23 cm. If a baseball had the same mass per unit
volume (see Tables in Section 1-5) as a neutron or a proton,
about what would its mass be?

1-7 Order-of-Magnitude Estimating

(Note: Remember that for rough estimates, only round numbers

are needed both as input to calculations and as final results.)

24. (I) Estimate the order of magnitude (power of 10) of:
(@) 2800, (b) 86.30 X 103, (c) 0.0076, and (d) 15.0 X 108,

25. (II) Estimate how many books can be shelved in a college
library with 3500 m? of floor space. Assume 8 shelves high,
having books on both sides, with corridors 1.5m wide.
Assume books are about the size of this one, on average.

26. (II) Estimate how many hours it would take to run (at
10 km/h) across the U.S. from New York to California.

27. (II) Estimate the number of liters of water a human
drinks in a lifetime.

28. (II) Estimate how long it would take one person to mow
a football field using an ordinary home lawn mower
(Fig. 1-15). (State your assumption, such as the mower
moves with a 1-km /h speed, and has a 0.5-m width.)

L
) .
FIGURE 1-15
Problem 28.

29. (IT) Estimate the number of gallons of gasoline consumed by
the total of all automobile drivers in the U.S., per year.

30. (IT) Estimate the number of dentists () in San Francisco
and (b) in your town or city.

Introduction, Measurement, Estimating



31.

32.

(IID) T agree to hire you for 30 days. You can decide between
two methods of payment: either (1) $1000 a day, or (2) one
penny on the first day, two pennies on the second day and
continue to double your daily pay each day up to day 30.
Use quick estimation to make your decision, and justify it.
(IIT) Many sailboats are docked at a marina 4.4 km away on
the opposite side of a lake. You stare at one of the sailboats
because, when you are lying flat at the water’s edge, you
can just see its deck but none of the side of the sailboat.
You then go to that sailboat on the other side of the
lake and measure that the deck is 1.5m above
the level of the water. Using

Fig. 1-16, where 7 = 15m, -
estimate the radius R of the
Earth.

FIGURE 1-16 Problem 32.
You see a sailboat across a
lake (not to scale). R is the
radius of the Earth. Because
of the curvature of the Earth,
the water “bulges out” between

you and the boat. Earth center

| General Problems

*1-8 Dimensions

*33.

*34.

*35.

(I) What are the dimensions of density, which is mass per
volume?

(IT) The speed v of an object is given by the equation
v = Af? — Bt, where [ refers to time. (@) What are the
dimensions of A and B? (b) What are the SI units for the
constants A and B?

(IIT) The smallest meaningful measure of length is called the
Planck length, and is defined in terms of three fundamental
constants in nature: the speed of light ¢ = 3.00 X 10%m/s,
the gravitational constant G = 6.67 X 10" m?/kg-s? and
Planck’s constant & = 6.63 X 107 kg-m?/s. The Planck
length {fp is given by the following combination of these
three constants:

Show that the dimensions of {p are length [L], and find the
order of magnitude of {p. [Recent theories (Chapters 32
and 33) suggest that the smallest particles (quarks, leptons)
are “strings” with lengths on the order of the Planck length,
107 m. These theories also suggest that the “Big Bang,”
with which the universe is believed to have begun, started
from an initial size on the order of the Planck length.]

36.

37.

38.

Global positioning satellites (GPS) can be used to determine
your position with great accuracy. If one of the satellites is
20,000 km from you, and you want to know your position to
+ 2 m, what percent uncertainty in the distance is required?
How many significant figures are needed in the distance?
Computer chips (Fig. 1-17) are etched on circular silicon
wafers of thickness 0.300 mm that are sliced from a solid
cylindrical silicon crystal of length 25 cm. If each wafer can
hold 400 chips, what is the maximum number of chips
that can be produced from one entire cylinder?

FIGURE 1-17 Problem 37.
The wafer held by the hand
is shown below, enlarged
and illuminated by colored
light. Visible are rows of
integrated circuits (chips).

A typical adult human lung contains about 300 million
tiny cavities called alveoli. Estimate the average diameter
of a single alveolus.

39.

40.

41.

If you used only a keyboard to enter data, how many years
would it take to fill up the hard drive in a computer that can
store 1.0terabytes (1.0 X 10'2 bytes) of data? Assume 40-hour
work weeks, and that you can type 180 characters per minute,
and that one byte is one keyboard character.

An average family of four uses roughly 1200 L (about
300 gallons) of water per day (1L = 1000 cm3). How much
depth would a lake lose per year if it covered an area of
50 km? with uniform depth and supplied a local town with
a population of 40,000 people? Consider only population
uses, and neglect evaporation, rain, creeks and rivers.
Estimate the number of

jelly beans in the jar of

Fig. 1-18.

FIGURE 1-18
Problem 41. Estimate
the number of jelly
beans in the jar.

19

General Problems



42.

43.

4.

45.

46.

47.

48.

How big is a ton? That is, what is the volume of something
that weighs a ton? To be specific, estimate the diameter of
a 1-ton rock, but first make a wild guess: will it be 11t
across, 3 ft, or the size of a car? [Hint: Rock has mass per
volume about 3 times that of water, which is 1kg per liter
(103 cm?) or 62 Ib per cubic foot.]

A certain compact disc (CD) contains 783.216 megabytes
of digital information. Each byte consists of exactly & bits.
When played, a CD player reads the CD’s information
at a constant rate of 1.4 megabits per second. How many
minutes does it take the player to read the entire CD?
Hold a pencil in front of your eye at a position where its
blunt end just blocks out the Moon (Fig. 1-19). Make
appropriate measurements

to estimate the diameter o
of the Moon, given that (,,.-—-—’-‘: ____
the Earth—Moon distance - iy

is 3.8 X 10° km. -

FIGURE 1-19 5
Problem 44. How big
is the Moon?

A storm dumps 1.0 cm of rain on a city 6 km wide and 8 km
long in a 2-h period. How many metric tons (1 metric ton =
103 kg) of water fell on the city? (1 cm® of water has a mass
of 1g = 10"kg) How many gallons of water was this?
Estimate how many days it would take to walk around
the Farth, assuming 12 h walking per day at 4 km/h.

A watch manufacturer claims that its watches gain or lose
no more than 8 seconds in a year. How accurate are these
watches, expressed as a percentage?

An angstrom (symbol A) is a unit of length, defined as
10719 m, which is on the order of the diameter of an atom.
(a) How many nanometers are in 1.0 angstrom? (b) How
many femtometers or fermis (the common unit of length
in nuclear physics) are in 1.0 angstrom? (c¢) How many
angstroms are in 1.0m? (d) How many angstroms are in
1.0 light-year (see Problem 18)?

|Search and Learn

49.

50.

51.

52.

53.

54.

55.

Jim stands beside a wide river and wonders how wide it
is. He spots a large rock on the bank directly across from
him. He then walks upstream .
65 strides and judges that A
the angle between him and :
the rock, which he can still :
see, is now at an angle of | \
I
I
I
I
I
I
I

o

\

-

30° downstream (Fig. 1-20).

Jim measures his stride

Y\ 30°!
to be about 0.8m long \\\/",
Estimate the width of the N\
river. | AL

| A
FIGURE 1-20 A )
Problem 49. 65 Strides

Determine the percent uncertainty in #, and in siné,
when (a) 0 = 15.0° £ 0.5°, (b) 0 = 75.0° £ 0.5°.

If you walked north along one of Earth’s lines of longi-
tude until you had changed latitude by 1minute of arc
(there are 60minutes per degree), how far would you
have walked (in miles)? This distance is a nautical mile.
Make a rough estimate of the volume of your body (in m?).
One mole of atoms consists of 6.02 X 102 individual atoms.
If a mole of atoms were spread uniformly over the Earth’s
surface, how many atoms would there be per square meter?
The density of an object is defined as its mass divided by its
volume. Suppose a rock’s mass and volume are measured to
be 6 g and 2.8325 cm?. To the correct number of significant
figures, determine the rock’s density (mass/volume).
Recent findings in astrophysics suggest that the observ-
able universe can be modeled as a sphere of radius
R = 13.7 X 10° light-years = 13.0 X 10® m with an aver-
age total mass density of about 1 X 10" kg/m? Only
about 4% of total mass is due to “ordinary” matter (such as
protons, neutrons, and electrons). Estimate how much
ordinary matter (in kg) there is in the observable universe.
(For the light-year, see Problem 18.)

1.

2.

ANSWERS TO EXERCISES

A
B:

C:

Galileo is to Aristotle as Copernicus is to Ptolemy. See
Section 1-1 and explain this analogy.

Using the French Academy of Sciences’ original defini-
tion of the meter, determine Earth’s circumference and
radius in those meters.

. 'To the correct number of significant figures, use the infor-

mation inside the front cover of this book to determine
the ratio of (a) the surface area of Earth compared to the
surface area of the Moon; (b) the volume of Farth
compared to the volume of the Moon.

(d).

All three have three significant figures; the number of
decimal places is (a) 2, (b) 3, (¢) 4.

(@) 2.58 X 1072, 3; (b) 423 X 10*, 3 (probably);

() 3.4450 x 107 5.

TEe

2 (f).

No: 15m/s ~ 34mi/h.
(¢).
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Describing Motion:

The space shuttle has released
a parachute to reduce its
speed quickly. The directions
of the shuttle’s velocity and
acceleration are shown by the
green (V) and gold (a) arrows.

Motion is described using
the concepts of velocity and
acceleration. In the case
shown here, the velocity v is
to the right, in the direction
of motion. The acceleration a
is in the opposite direction
from the velocity v, which
means the object is slowing
down.

We examine in detail motion
with constant acceleration,
including the vertical motion
of objects falling under gravity.

Kinematics in One Dimension

CHAPTER-OPENING QUESTION—Guess now!

[Don’t worry about getting the right answer now—you will get another chance later in the

Chapter. See also p. 1 of Chapter 1 for more explanation.)
Two small heavy balls have the same diameter but one weighs twice as much as
the other. The balls are dropped from a second-story balcony at the exact same
time. The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.

(b) longer for the lighter ball, but not twice as long.

(¢) twice as long for the heavier ball as for the lighter one.

(d) longer for the heavier ball, but not twice as long.

(e) nearly the same for both balls.

and Moon—is an obvious part of everyday life. It was not until the

sixteenth and seventeenth centuries that our modern understanding of
motion was established. Many individuals contributed to this understanding,
particularly Galileo Galilei (1564-1642) and Isaac Newton (1642-1727).

The study of the motion of objects, and the related concepts of force and energy,
form the field called mechanics. Mechanics is customarily divided into two parts:
kinematics, which is the description of how objects move, and dynamics, which
deals with force and why objects move as they do. This Chapter and the next deal
with kinematics.

The motion of objects—baseballs, automobiles, joggers, and even the Sun

CONTENTS
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2-2
2-3
2-4
2-5

2-6
2-7
2-8

Reference Frames and
Displacement

Average Velocity
Instantaneous Velocity
Acceleration

Motion at Constant
Acceleration

Solving Problems
Freely Falling Objects

Graphical Analysis of
Linear Motion
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FIGURE 2-1 A falling pinecone
undergoes (a) pure translation;
(b) it is rotating as well as translating.

FIGURE 2-3 Standard set of xy

coordinate axes, sometimes called

“rectangular coordinates.”

Ty

-y

+Xx

For now we only discuss objects that move without rotating (Fig. 2—1a).
Such motion is called translational motion. In this Chapter we will be concerned
with describing an object that moves along a straight-line path, which is one-
dimensional translational motion. In Chapter 3 we will describe translational
motion in two (or three) dimensions along paths that are not straight. (Rotation,
shown in Fig. 2—1b, is discussed in Chapter 8.)

We will often use the concept, or model, of an idealized particle which is
considered to be a mathematical point with no spatial extent (no size). A point
particle can undergo only translational motion. The particle model is useful in
many real situations where we are interested only in translational motion and
the object’s size is not significant. For example, we might consider a billiard ball,
or even a spacecraft traveling toward the Moon, as a particle for many purposes.

2—1 Reference Frames and Displacement

Any measurement of position, distance, or speed must be made with respect to a
reference frame, or frame of reference. For example, while you are on a train
traveling at 80 km/h, suppose a person walks past you toward the front of the
train at a speed of, say, 5Skm/h (Fig. 2-2). This 5km/h is the person’s speed
with respect to the train as frame of reference. With respect to the ground,
that person is moving at a speed of 80 km/h + Skm/h = 85km/h. It is always
important to specify the frame of reference when stating a speed. In everyday
life, we usually mean “with respect to the Earth” without even thinking about it,
but the reference frame must be specified whenever there might be confusion.

FIGURE 2-2 A person walks toward the front of a train at 5 km/h.
The train is moving 80 km/h with respect to the ground, so the
walking person’s speed, relative to the ground, is 85 km/h.

When specifying the motion of an object, it is important to specify not only
the speed but also the direction of motion. Often we can specity a direction by
using north, east, south, and west, and by “up” and “down.” In physics, we
often draw a set of coordinate axes, as shown in Fig. 2-3, to represent a frame
of reference. We can always place the origin 0, and the directions of the x and
y axes, as we like for convenience. The x and y axes are always perpendicular
to each other. The origin is where x = 0, y = (. Objects positioned to the right
of the origin of coordinates (0) on the x axis have an x coordinate which we
almost always choose to be positive; then points to the left of 0 have a negative
x coordinate. The position along the y axis is usually considered positive when
above 0, and negative when below 0, although the reverse convention can be used
if convenient. Any point on the plane can be specified by giving its x and y coor-
dinates. In three dimensions, a z axis perpendicular to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along
which the motion takes place. Then the position of an object at any moment is
given by its x coordinate. If the motion is vertical, as for a dropped object, we
usually use the y axis.
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We need to make a distinction between the distance an object has traveled
and its displacement, which is defined as the change in position of the
object. That is, displacement is how far the object is from ils starting point.
To see the distinction between total distance and displacement, imagine a person
walking 70 m to the east and then turning around and walking back (west) a
distance of 30m (see Fig. 2—-4). The total distance traveled is 100m, but the
displacement is only 40 m since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such
quantities are called vectors, and are represented by arrows in diagrams. For
example, in Fig. 2—4, the blue arrow represents the displacement whose magni-
tude is 40 m and whose direction is to the right (east).

We will deal with vectors more fully in Chapter 3. For now, we deal only with
motion in one dimension, along a line. In this case, vectors which point in one direc-
tion will be positive (typically to the right along the x axis). Vectors that point
in the opposite direction will have a negative sign in front of their magnitude.

Consider the motion of an object over a particular time interval. Suppose that
at some initial time, call it £;, the object is on the x axis at the position x; in the
coordinate system shown in Fig. 2-5. At some later time, 7,, suppose the object
has moved to position x,. The displacement of our object is x, — x;, and is
represented by the arrow pointing to the right in Fig. 2-5. It is convenient to write

Ax = x, — xq,
where the symbol A (Greek letter delta) means “change in.” Then Ax means
“the change in x,” or “change in position,” which is the displacement. The change in

any quantity means the final value of that quantity, minus the initial value.
Suppose x; = 10.0m and x, = 30.0m, as in Fig. 2-5. Then

Ax = x;—x = 300m — 10.0m = 20.0m,
so the displacement is 20.0 m in the positive direction, Fig. 2-5.
Now consider an object moving to the left as shown in Fig. 2—6. Here the

object, a person, starts at x; = 30.0m and walks to the left to the point
X, = 10.0m. In this case her displacement is

100m — 300m = -20.0m,

and the blue arrow representing the vector displacement points to the left. For
one-dimensional motion along the x axis, a vector pointing to the right is
positive, whereas a vector pointing to the left has a negative sign.

Ax = x,—x; =

EXERCISE A An ant starts at x = 20cm on a piece of graph paper and walks along
the x axis to x = —20cm. It then turns around and walks back to x = —10cm.
Determine (a) the ant’s displacement and (b) the total distance traveled.

2-2 Average Velocity

An important aspect of the motion of a moving object is how fast it is
moving—its speed or velocity.

The term “speed” refers to how far an object travels in a given time interval,
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we say
its average speed was 80 km/h. In general, the average speed of an object is
defined as the ftotal distance traveled along its path divided by the time it takes to
travel this distance:

distance traveled
time elapsed

average speed = 2-1)

The terms “velocity” and “speed” are often used interchangeably in ordi-
nary language. But in physics we make a distinction between the two. Speed is
simply a positive number, with units. Velocity, on the other hand, is used to
signify both the magnitude (numerical value) of how fast an object is moving
and also the direction in which it is moving. Velocity is therefore a vector.

dcecauTion

The displacement may not equal the
total distance traveled

y
70 m
________ ~—— X
West 0 40m 30m East
H_/
Displacement

FIGURE 2-4 A person walks 70 m
cast, then 30m west. The total distance
traveled is 100 m (path is shown dashed
in black); but the displacement, shown
as a solid blue arrow, is 40m to the east.

FIGURE 2-5 The arrow represents
the displacement x; — x;.
Distances are in meters.

=4 } X
10 20 30 40
Distance (m)

FIGURE 2-6 For the displacement
Ax = x; — x; = 10.0m — 30.0m,
the displacement vector points left.

y
X2 X1
L Ax 4

0 ey + } X
10 20 30 4

Distance (m)
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DdcauTion
Average speed is not necessarily
equal to the magnitude of the
average velocity

%PROBLEM SOLVING

+ or — sign can signify the direction
for linear motion

DdcauTion
Time interval = elapsed time

FIGURE 2-7 Example 2-1.

A person runs from x; = 50.0m
to x; = 30.5m. The displacement
is —19.5m.

y
Finish  Start
(Xz) (JC1)
A Ax;’
0 } } <= ¥ X
10 20 30 40 50 60
Distance (m)

There is a second difference between speed and velocity: namely, the average
velocity is defined in terms of displacement, rather than total distance traveled:
displacement final position — initial position

average velocity = — = -
& y time elapsed time elapsed

Average speed and average velocity have the same magnitude when the
motion is all in one direction. In other cases, they may differ: recall the walk we
described earlier, in Fig. 2—4, where a person walked 70 m east and then 30 m west.
The total distance traveled was 70m + 30 m = 100 m, but the displacement was
40 m. Suppose this walk took 70s to complete. Then the average speed was:

distance ~ 100m
time elapsed 70s

= l1l4m/s.

The magnitude of the average velocity, on the other hand, was:

displacement  40m
time elapsed 70

= 0.57m/s.

To discuss one-dimensional motion of an object in general, suppose that at
some moment in time, call it f;, the object is on the x axis at position x; in a
coordinate system, and at some later time, ¢,, suppose it is at position x,. The
elapsed time (= change in time) is At¢ = {, — {;; during this time interval the
displacement of our object is Ax = x; — x;. Then the average velocity,
defined as the displacement divided Dy the elapsed time, can be written

_ Xy — X1 Ax .

v P— AL [average velocity] (2-2)
where v stands for velocity and the bar () over the v is a standard symbol
meaning “average.”

For one-dimensional motion in the usual case of the +x axis to the right,
note that if x, is less than x;, the object is moving to the left, and then
Ax = x5 — x; is less than zero. The sign of the displacement, and thus of the
average velocity, indicates the direction: the average velocity is positive for an
object moving to the right along the x axis and negative when the object
moves to the left. The direction of the average velocity is always the same as
the direction of the displacement.

It is always important to choose (and state) the elapsed tirme, or time interval,
1, — 1;, the time that passes during our chosen period of observation.

EXAMPLE 2-1| Runner's average velocity. The position of a runner is
plotted as moving along the x axis of a coordinate system. During a 3.00-s time
interval, the runner’s position changes from x; = 50.0m to x, = 30.5m, as
shown in Fig. 2—-7. What is the runner’s average velocity?

APPROACH We want to find the average velocity, which is the displacement
divided by the clapsed time.
SOLUTION The displacement is

Ax = x,—x;

= 30.5m —500m = —19.5m.

The elapsed time, or time interval, is given as A7 = 3.00s. The average velocity
(Eq.2-2) is

_ Ax —-19.5m

= — = — = -650 .

YT A T 3005 m/s
The displacement and average velocity are negative, which tells us that the
runner is moving to the left along the x axis, as indicated by the arrow in Fig.2-7.
The runner’s average velocity is 6.50 m/s to the left.
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EXAMPLE 2-2| Distance a cyclist travels. How far can a cyclist travel in
2.5 h along a straight road if her average velocity is 18 km /h?

APPROACH We want to find the distance traveled, so we solve Eq.2-2 for Ax.
SOLUTION In Eq.2-2, v = Ax/At, we multiply both sides by At and obtain
Ax = vAr = (18km/h)(2.5h) = 45km.

EXAMPLE 2-3| Car changes speed. A car travels at a constant 50 km/h for
100 km. It then speeds up to 100 km/h and is driven another 100 km. What is
the car’s average speed for the 200-km trip?

APPROACH At 50 km/h, the car takes 2.0h to travel 100 km. At 100 km/h it
takes only 1.0 h to travel 100 km. We use the defintion of average velocity, Eq. 2-2.
SOLUTION Average velocity (Eq.2-2) is
Ax  100km + 100 km
Ar ~ 20h+10h

NOTE Averaging the two speeds, (50 km/h + 100 km/h)/2 = 75 km/h, gives
a wrong answetr. Can you see why? You must use the definition of v, Eq.2-2.

o=

= 67km/h.

2-3 Instantaneous Velocity

If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of
your average velocity is 75 km/h. It is unlikely, though, that you were moving
at precisely 75km/h at every instant. To describe this situation we need the
concept of instantaneous velocity, which is the velocity at any instant of time.
(Its magnitude is the number, with units, indicated by a speedometer, Fig. 2-8.)
More precisely, the instantaneous velocity at any moment is defined as the

average velocity over an infinitesimally short time interval. That is, Eq.2-2 is to be w 53 gk EIOD

evaluated in the limit of At becoming extremely small, approaching zero. We can 2] #0110

write the definition of instantancous velocity, v, for one-dimensional motion as 083265/ kmih MPH
v = lim i—f [instantaneous velocity] (2-3)

The notation lim,,_,, means the ratio Ax/Af is to be evaluated in the limit of [GURE 2-8 Car speedometer

At approaching zero.” showing mi/h in white, and km/h

For instantancous velocity we use the symbol v, whereas for average in orange.
velocity we use v, with a bar above. In the rest of this book, when we use the
term “velocity” it will refer to instantaneous velocity. When we want to speak of
the average velocity, we will make this clear by including the word “average.”
Note that the instantaneous speed always equals the magnitude of the
instantanecous velocity. Why? Because distance traveled and the magnitude of FIGURE 2-9 Velocity of a car as a
the displacement become the same when they become infinitesimally small. function of time: (a) at constant velocity;
If an object moves at a uniform (that is, constant) velocity during a partic-  (b) With velocity varying in time.
ular time interval, then its instantaneous velocity at any instant is the same as its = 604+
average velocity (see Fig. 2-9a). But in many situations this is not the case. For S 40
example, a car may start from rest, speed up to 50 km/h, remain at that velocity . +
for a time, then slow down to 20 km/h in a traffic jam, and finally stop at its 8 207
destination after traveling a total of 15 km in 30 min. This trip is plotted on the E 0 — ,
graph of Fig. 2-9b. Also shown on the graph is the average velocity (dashed 0 01 02 03 04 0.
line), which is » = Ax/Af = 15km/0.50 h = 30 km /h. (a) Time (h)
Graphs are often useful for analysis of motion; we discuss additional insights
graphs can provide as we go along, especially in Section 2-8.

m/h

[ox)
<

B
o

Average velocity

EXERCISE B What is your instantaneous speed at the instant you turn around to move
in the opposite direction? (a) Depends on how quickly you turn around; (b) always zero;
(c) always negative; (d) none of the above.

Velocity (km/h)
[\=)
o

<

Il Il ]
T T T T
0 01 02 03 04 05
"We do not simply set At = 0 in this definition, for then Ax would also be zero, and we would have (b) Time (h)
an undetermined number. Rather, we consider the ratio Ax/At, as a whole. As we let At approach
zero, Ax approaches zero as well. But the ratio Ax/Af approaches some definite value, which is the
instantaneous velocity at a given instant. SECTION 2-3 25



FIGURE 2-10 Example 2—4. The car
is shown at the start with v; = 0 at
t1 = 0. The car is shown three more
times, at { = 1.0s, = 2.0s, and at

the end of our time interval, #, = 5.0s.

The green arrows represent the
velocity vectors, whose length
represents the magnitude of the
velocity at that moment. The
acceleration vector is the orange
arrow, whose magnitude is constant
and equals 15km/h/s or 42 m/s?
(see top of next page). Distances are
not to scale.
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2—-4 Acceleration

An object whose velocity is changing is said to be accelerating. For instance, a car
whose velocity increases in magnitude from zero to 80 km/h is accelerating.
Acceleration specifies how rapidly the velocity of an object is changing.

Awerage acceleration is defined as the change in velocity divided by the
time taken to make this change:

change of velocity
time elapsed

In symbols, the average acceleration, a, over a time interval At = f, — f;, during
which the velocity changes by Av = v, — v, is defined as

_ Vy — Wy Av

a = =1 - —~.

L— 1 At
We saw that velocity is a vector (it has magnitude and direction), so acceleration
is a vector too. But for one dimensional motion, we need only use a plus or minus
sign to indicate acceleration direction relative to a chosen coordinate axis.
(Usually, right is +, leftis —.)
The instantaneous acceleration, a, can be defined in analogy to instantancous

velocity as the average acceleration over an infinitesimally short time interval at
a given instant:

average acceleration =

[average acceleration] (2-4)

Av

a = lim —- [instantaneous acceleration] (2-5)
A0 At

Here Aw is the very small change in velocity during the very short time interval Af.

EXAMPLE 2-4| Average acceleration. A car accelerates on a straight road from
rest to 75 km /h in 5.0 s, Fig. 2—-10. What is the magnitude of its average acceleration?

APPROACH Average acceleration is the change in velocity divided by the elapsed
time, 5.0 s. The car starts from rest, so »; = 0. The final velocity is v, = 75 km /h.

SOLUTION From Eq.2-4, the average acceleration is

_ Vy — Vg 75km/h — Okm/h

tz - tl 50 S S
This is read as “fifteen kilometers per hour per second” and means that, on
average, the velocity changed by 15km/h during each second. That is, assuming
the acceleration was constant, during the first second the car’s velocity increased
from zero to 15 km/h. During the next second its velocity increased by another

15km/h, reaching a velocity of 30 km/h at ¢ = 2.0's, and so on. See Fig. 2-10.

=0 Acceleration
1
7 =0
e « = 15k
at 1 = 10s
v = 15km/h
Sl e
at 1 = 20s
v = 30km/h

- Gle

at[zlz = 50s
v =1, = 75km/h
e —o—g

Kinematics in One Dimension



Our result in Example 2—4 contains two different time units: hours and seconds.
We usually prefer to use only seconds. To do so we can change km/h to m/s
(see Section 1-6, and Example 1-5):

Fm. \ /1000 m 1k
75km/h = (75 = )(1‘1&&)(36003) = 21 m/s.
Then
. 2lm/s —0.0m/s _ m/s m
a = 50 = 42 s = 42 &

We almost always write the units for acceleration as m/s’ (meters per
second squared) instead of m/s/s. This is possible because:

mis _ om _om
s  s's g
Note that acceleration tells us how quickly the velocity changes, whereas
velocity tells us how quickly the position changes.

CONCEPTUAL EXAMPLE 2-5 | Velocity and acceleration. (a) If the velocity
of an object is zero, does it mean that the acceleration is zero? (b) If the
acceleration is zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration
is zero, nor does a zero acceleration mean that the velocity is zero. (a) For
example, when you put your foot on the gas pedal of your car which is at rest,
the velocity starts from zero but the acceleration is not zero since the velocity
of the car changes. (How else could your car start forward if its velocity weren’t
changing—that is, accelerating?) (b) As you cruise along a straight highway at
a constant velocity of 100 km/h, your acceleration is zero: a = 0, v # 0.

EXAMPLE 2-6| Car slowing down. An automobile is moving to the right
along a straight highway, which we choose to be the positive x axis (Fig. 2—11).
Then the driver steps on the brakes. If the initial velocity (when the driver hits
the brakes) is v; = 15.0m/s, and it takes 5.0's to slow down to v, = 5.0m/s,
what was the car’s average acceleration?

APPROACH We put the given initial and final velocities, and the elapsed
time, into Eq.2-4 for a.
SOLUTION In Eq. 2—4, we call the initial time ¢, = 0, and set ¢, = 5.0s:

50m/s — 15.0m/s
50s

The negative sign appears because the final velocity is less than the initial velocity.
In this case the direction of the acceleration is to the left (in the negative x direc-
tion)—even though the velocity is always pointing to the right. We say that the
acceleration is 2.0 m/s? to the left, and it is shown in Fig. 2—11 as an orange arrow.

a = = —2.0m/s%.

Deceleration

When an object is slowing down, we can say it is decelerating. But be careful:
deceleration does not mean that the acceleration is necessarily negative. The
velocity of an object moving to the right along the positive x axis is positive;
if the object is slowing down (as in Fig. 2-11), the acceleration is negative. But
the same car moving to the left (decreasing x), and slowing down, has positive
acceleration that points to the right, as shown in Fig. 2—12. We have a decelera-
tion whenever the magnitude of the velocity is decreasing; thus the wvelocity
and acceleration point in opposite directions when there is deceleration.

EXERCISE C A car moves along the x axis. What is the sign of the car’s acceleration if
it is moving in the positive x direction with (@) increasing speed or (b) decreasing
speed? What is the sign of the acceleration if the car moves in the negative x direction
with (¢) increasing speed or (d) decreasing speed?

DdcauTion

Distinguish velocity from
acceleration

DdcauTion
If v or ais zero, is the other zero too?

Acceleration
at [1 =0 5
vy = 150m/s ~ a=—20m/s
- ete
at [2 =50s
vy = 5.0 m/s

B

FIGURE 2-11 Example 2-6,

showing the position of the car at
times #; and £,, as well as the car’s
velocity represented by the green
arrows. The acceleration vector
(orange) points to the left because the
car slows down as it moves to the right.

FIGURE 2-12 The car of

Example 2-6, now moving to the left
and decelerating. The acceleration is
a = (v, — vy)/At, or

(=5.0m/s) — (—15.0m/s)

5.0s
_ —50m/s + 15.0m/s _ 2
= 305 = +2.0m/s"
vy = =5.0m/s v; = —15.0m/s
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FIGURE 2-13 An accelerating
motorcycle.

dcauTion

Avwerage velocity, but only if
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a = constant

2-5 Motion at Constant Acceleration

We now examine motion in a straight line when the magnitude of the acceleration
is constant. In this case, the instantaneous and average accelerations are equal.
We use the definitions of average velocity and acceleration to derive a set of
valuable equations that relate x, v, a, and ¢t when a is constant, allowing us to
determine any one of these variables if we know the others. We can then solve
many interesting Problems.

Notation in physics varies from book to book; and different instructors use
different notation. We are now going to change our notation, to simplify it a bit
for our discussion here of motion at constant acceleration. First we choose the
initial time in any discussion to be zero, and we call it fy. That is, #; = f, = 0.
(This is effectively starting a stopwatch at #;.) We can then let #, = ¢ be the
elapsed time. The initial position (x;) and the initial velocity (v;) of an object
will now be represented by x, and vy, since they represent x and v at £ = 0. At
time ¢ the position and velocity will be called x and » (rather than x, and v,).
The average velocity during the time interval ¢ — #, will be (Eq.2-2)

Ax X=Xy _ X~ Xg

At -1 t

since we chose f, = 0. The acceleration, assumed constant in time, is @ = Av/Af
(Eq.2-4), so

'E:

vV — Y
3
A common problem is to determine the velocity of an object after any elapsed

time 7, when we are given the object’s constant acceleration. We can solve such
problems’ by solving for v in the last equation: first we multiply both sides by ¢,

a =

at = v — Y or v — vy, = at.
Then, adding v, to both sides, we obtain

v = vy + at. [constant acceleration] (2—6)
If an object, such as a motorcycle (Fig. 2-13), starts from rest (vo = O) and
accelerates at 4.0m/s?, after an elapsed time ¢ = 6.0s its velocity will be
v=0+a = (40m/s*)(6.0s) = 24m/s.

Next, let us see how to calculate the position x of an object after a time f when

it undergoes constant acceleration. The definition of average velocity (Eq. 2-2)
is v = (x - xo) /t, which we can rewrite by multiplying both sides by :

X = Xy + vi. -7
Because the velocity increases at a uniform rate, the average velocity, v, will be
midway between the initial and final velocities:
Vg T v

2

(Careful: Equation 2—-8 is not necessarily valid if the acceleration is not constant.)
We combine the last two Equations with Eq. 2—-6 and find, starting with Eq. 2-7,

v = [constant acceleration] (2—8)

X = Xxy + vt

Vg T v
XO+ 2 {

’UOJF’UOJF(/U
O el |

or
x = xo + vt + dat’ [constant acceleration] (2-9)

Equations 2-6, 2-8, and 2-9 are three of the four most useful equations for
motion at constant acceleration. We now derive the fourth equation, which is useful

fAppendix A—4 summarizes simple algebraic manipulations.



in situations where the time ¢ is not known. We substitute Eq. 2-8 into Eq. 2-7:

_ v+ v
X = xo +t vt = x5 + f.

2
Next we solve Eq. 2—6 for 1, obtaining (see Appendix A—4 for a quick review)
vV — Y
—Q

{ =

and substituting this into the previous equation we have

3 L tm (v +v2—v§
X = Xy ) a = Xy 24

We solve this for ©* and obtain

vt = i+ Za(x - xo), [constant acceleration] (2-10)

which is the other useful equation we sought.

We now have four equations relating position, velocity, acceleration, and
time, when the acceleration a is constant. We collect these kinematic equations
for constant acceleration here in one place for future reference (the tan background
screen emphasizes their usefulness):

= o + at [a = constant] (2-11a)

= xg + vl + 3af’ [a = constant] (2-11b)

2 = v} + 2a(x — x) [a = constant] (2-11c)
J’_

v = LT % [a = constant] (2-11d)

2

These useful equations are not valid unless a is a constant. In many cases we
can set x; = 0, and this simplifies the above equations a bit. Note that x repre-
sents position (not distance), also that x — x, is the displacement, and that { is the
elapsed time. Equations 2-11 are useful also when a is approximately constant
to obtain reasonable estimates.

EXAMPLE 2-7 | Runway design. You are designing an airport for small
planes. One kind of airplane that might use this airfield must reach a speed
before takeoff of at least 27.8 m/s (100 km /h), and can accelerate at 2.00 m/s?.
{(a) If the runway is 150 m long, can this airplane reach the required speed for
takeoff? (b) If not, what minimum length must the runway have?

APPROACH Assuming the plane’s acceleration is constant, we use the kinematic
equations for constant acceleration. In (a), we want to find », and what we are
given is shown in the Table in the margin.

SOLUTION (a) Of the above four equations, Eq. 2—11¢ will give us v when
we know v, a, x, and x,:

2 = 0} + 2a(x — x)
0 + 2(2.00m/s?)(150m) = 600 m?/s?

\/ 600 m?/s? = 24.5m/s.

This runway length is not sufficient, because the minimum speed is not reached.
{b) Now we want to find the minimum runway length, x — x, for a plane to reach
v =278m/s, given a = 2.00 m/s>. We again use Eq. 2—11c, but rewritten as

v* — v} (27.8m/s)* — 0
— = = = 193 m.
(v = ) 2a 2(2.00 m/s?) "

A 200-m runway is more appropriate for this plane.

v

NOTE We did this Example as if the plane were a particle, so we round off
our answer to 200 m.

Kinematic equations
for constant acceleration

(we’ll use them a lot)

* PHYSICS APPLIED
Airport design

Known Wanted
Xg = 0 v
Vo = 0
x = 150 m
4 =200m/s

%PROBLEM SOLVING

Equations 2-11 are valid only when
the acceleration is constant, which we

assume in this Example

SECTION 2-5 Motion at Constant Acceleration
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EXERCISE D A car starts from rest and accelerates at a constant 10m/s” during a
imile (402m) race. How fast is the car going at the finish line? (a) 8040 m/s;
(b) 90m/s; (c) 81 m/s; (d) 804 m/s.

2—-6 Solving Problems

Before doing more worked-out Examples, let us look at how to approach problem
solving. First, it is important to note that physics is not a collection of equations to
be memorized. Simply searching for an equation that might work can lead you
to a wrong result and will not help you understand physics (Fig. 2—14).
A better approach is to use the following (rough) procedure, which we present as
a special “Problem Solving Strategy.” (Other such Problem Solving Strategies

will be found throughout the book.)

FIGURE 2-14 Read the book, study
carefully, and work the Problems using
your reasoning abilities.

LVI
:l‘/ 1. Read and reread the whole problem carefully before equation that involves only known quantities and
0 trying to solve it. one desired unknown, solve the equation alge-
O 2. Decide what object (or objects) you are going to bra1cally for the .unknown. Sometqnes several
« study, and for what time interval. You can often sequential calculations, or a combination of equa-
©  Cchoose the initial time to be 1 = 0. tions, may be needed. It is often preferable to solve
algebraically for the desired unknown before
3. Draw a diagram or picture of the situation, with 8 Y W

coordinate axes wherever applicable. [You can place
the origin of coordinates and the axes wherever you
like to make your calculations easier. You also choose
which direction is positive and which is negative.
Usually we choose the x axis to the right as positive.]

. Write down what quantities are “known” or “given,”

and then what you want to know. Consider quan-
tities both at the beginning and at the end of the
chosen time interval. You may need to “translate”
language into physical terms, such as “starts from
rest” means vy = 0.

. Think about which principles of physics apply in

this problem. Use common sense and your own
experiences. Then plan an approach.

. Consider which equations (and/or definitions) relate

the quantities involved. Before using them, be sure
their range of validity includes your problem (for
example, Eqgs. 2-11 are valid only when the accel-
eration is constant). If you find an applicable

putting in numerical values.

. Carry out the calculation if it is a numerical problem.

Keep one or two extra digits during the calculations,
but round off the final answer(s) to the correct number
of significant figures (Section 1-4).

. Think carefully about the result you obtain: Is it

reasonable? Does it make sense according to your
own intuition and experience? A good check is to
do a rough estimate using only powers of 10, as
discussed in Section 1-7. Often it is preferable to
do a rough estimate at the start of a numerical
problem because it can help you focus your
attention on finding a path toward a solution.

. A very important aspect of doing problems is keep-

ing track of units. An equals sign implies the units on
each side must be the same, just as the numbers must.
If the units do not balance, a mistake has been
made. This can serve as a check on your solution
(but it only tells you if you’re wrong, not if you're
right). Always use a consistent set of units.

30
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EXAMPLE 2-8| Acceleration of a car. How long does it take a car to cross
a 30.0-m-wide intersection after the light turns green, if the car accelerates from
rest at a constant 2.00 m/s%?

APPROACH We follow the Problem Solving Strategy on the previous page,

step by step.

SOLUTION

1. Reread the problem. Be sure you understand what it asks for (here, a time
interval: “how long does it take”).

2. The object under study is the car. We need to choose the time interval
during which we look at the car’s motion: we choose ¢ = 0, the initial time,
to be the moment the car starts to accelerate from rest (v, = 0); the time ¢
is the instant the car has traveled the full 30.0-m width of the intersection.

3. Draw a diagram: the situation is shown in Fig. 2-15, where the car is shown
moving along the positive x axis. We choose x, = 0 at the front bumper of
the car before it starts to move.

4, The “knowns” and the “wanted” information are shown in the Table in the
margin. Note that “starting from rest”means » = 0 at ¢ = 0; thatis, v, = 0.
The wanted time ¢ is how long it takes the car to travel 30.0 m.

5. The physics: the car, starting from rest (at ty = O), increases in speed as it
covers more distance. The acceleration is constant, so we can use the kine-
matic equations, Eqgs. 2—-11.

6. Equations: we want to find the time, given the distance and acceleration;
Eq. 2-11b is perfect since the only unknown quantity is £. Setting v, = 0
and x, = 0 in Eq.2-11b (x = x; + vyl + 3ar®), we have

x = lar’.
We solve for ¢ by multiplying both sides by %:
2x
a

= 1%

Taking the square root, we get £:

[2x
a

7. The calculation:
2(30.0m)

[2¢ _ j=50Um)
a 2.00m/s’

This is our answer. Note that the units come out correctly.

8. We can check the reasonableness of the answer by doing an alternate calcu-
lation: we first find the final velocity

(2.00m/s?)(5.485s) =
and then find the distance traveled
x = xp+ v = 0+3(1096m/s + 0)(5.48s) =
which checks with our given distance.
9. We checked the units in step 7, and they came out correctly (seconds).

{ =

t = = 548s.

v = at = 10.96 m/s,

30.0m,

NOTE In steps 6 and 7, when we took the square root, we should have written
t = £\/2x/a = +548s. Mathematically there are two solutions. But the
second solution, 1 = —548s, is a time before our chosen time interval and
makes no sense physically. We say it is “unphysical” and ignore it.

We explicitly followed the steps of the Problem Solving Strategy in
Example 2-8. In upcoming Examples, we will use our usual “Approach” and
“Solution” to avoid being wordy.

%PROBLEM SOLVING

“Starting from rest” means
v=0att=0 [ie,vy=0]

a =2.00 m/s?

a =2.00m/s?

Xo = 0 X =
25=0 30.0m
FIGURE 2-15 Example 2-8.
Known Wanted
Xg = 0 t
x = 30.0m
4 =200m/s
Vo = 0

%PROBLEM SOLVING
Check your answer

% PROBLEM SOLVING
“Unphysical” solutions

SECTION 2-6 Solving Problems 31



FIGURE 2-16 Example 2-9:

stopping distance for a
braking car.

* PHYSICS APPLIED

ol T
RS

Travel during — (@Rt

,reaction time
I

Travel during
l braking
T |
constant = 14 m/s v decreases from 14 m/s to zero

0.50s a =—-6.0m/s?
0

v =
=
a =

EXAMPLE 2-9 | ESTIMATE | Braking distances. Estimate the minimum

Car stopping distances

Part 1: Reaction time

Known Wanted
t=050s X
v = 14m/s
v =14m/s
a=0
Xo = 0
Part 2: Braking
Known Wanted
xg = 7.0m X
vy = 14m/s
v=0
4= —6.0m/s?

stopping distance for a car, which is important for traffic safety and traffic design.
The problem is best dealt with in two parts, two separate time intervals. (1) The
first time interval begins when the driver decides to hit the brakes, and ends
when the foot touches the brake pedal. This is the “reaction time” during which
the speed is constant, so a = 0. (2) The second time interval is the actual
braking period when the vehicle slows down (a # 0) and comes to a stop. The
stopping distance depends on the reaction time of the driver, the initial speed of
the car (the final speed is zero), and the deceleration of the car. For a dry road
and good tires, good brakes can decelerate a car at a rate of about 5m/ s% to
8 m/s’. Calculate the total stopping distance for an initial velocity of 50 km/h
(= 14m/s ~ 31 mi/h) and assume the acceleration of the car is —6.0 m/s*
(the minus sign appears because the velocity is taken to be in the positive
x direction and its magnitude is decreasing). Reaction time for normal drivers
varies from perhaps 0.3 s to about 1.0 s; take it to be 0.50 s.

APPROACH During the “reaction time,” part (1), the car moves at constant
speed of 14 m/s, so a = 0. Once the brakes are applied, part (2), the acceler-
ationis @ = —6.0m/s* and is constant over this time interval. For both parts
a is constant, so we can use Eqs. 2—11.

SOLUTION Part (1). We take x, = 0 for the first time interval, when the driver
is reacting (0.50s): the car travels at a constant speed of 14m/s so a = 0.
See Fig. 2-16 and the Table in the margin. To find x, the position of the car
at = 0.50s (when the brakes are applied), we cannot use Eq.2-11c because
x is multiplied by a, which is zero. But Eq. 2—11b works:

x = yt +0 = (14m/s)(0.50s) = 7.0m.
Thus the car travels 7.0 m during the driver’s reaction time, until the instant
the brakes are applied. We will use this result as input to part (2).
Part (2). During the second time interval, the brakes are applied and the car is
brought to rest. The initial position is x, = 7.0m (result of part (1)), and other
variables are shown in the second Table in the margin. Equation 2—11a doesn’t
contain x; Eq. 2-11b contains x but also the unknown f. Equation 2-11c,
v? — v} = 2a(x — x;), is what we want; after setting x, = 7.0m, we solve
for x, the final position of the car (when it stops):

3 N v? — v}
X = Xo 24
0 — (14m/s)? - 2/g2
= 7.Om+7( /5) = 7.0m-i-7196m/S
2(-6.0m/s?) —12m/s?

FIGURE 2-17 Example 2-9.
Graph of v vs. {.

70m + 16m = 23m.
The car traveled 7.0 m while the driver was reacting and another 16 m during

%‘2‘2 | the braking period before coming to a stop, for a total distance traveled of
glg: i 23m. Figure 2—17 shows a graph of v vs. f: » is constant from ¢ = 0 until
= 6 ! t = 0.50s, and after ¢ = 0.50 s it decreases linearly to zero.

41 : NOTE From the equation above for x, we see that the stopping distance after

21 T T the driver hit the brakes (= x — x,) increases with the square of the initial

O 05 10 15 20 25

speed, not just linearly with speed. If you are traveling twice as fast, it takes
1(s) four times the distance to stop.
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FIGURE 2-18 Painting of Galileo demonstrating to the Grand Duke of Tuscany
his argument for the action of gravity being uniform acceleration. He used an inclined
plane to slow down the action. A ball rolling down the plane still accelerates.
Tiny bells placed at equal distances along the inclined plane would ring at shorter
time intervals as the ball “fell,” indicating that the speed was increasing.

2-7 Freely Falling Objects

One of the most common examples of uniformly accelerated motion is that of
an object allowed to fall freely near the Earth’s surface. That a falling object is
accelerating may not be obvious at first. And beware of thinking, as was widely
believed before the time of Galileo (Fig. 2—18), that heavier objects fall faster
than lighter objects and that the speed of fall is proportional to how heavy the
object is. The speed of a falling object is not proportional to its mass.

Galileo made use of his new technique of imagining what would happen in
idealized (simplified) cases. For free fall, he postulated that all objects would
fall with the same constant acceleration in the absence of air or other resistance.
He showed that this postulate predicts that for an object falling from rest, the
distance traveled will be proportional to the square of the time (Fig. 2—19); that
is, d o< 2. 'We can see this from Eq.2-11b for constant acceleration; but Galileo
was the first to derive this mathematical relation.

To support his claim that falling objects increase in speed as they fall,
Galileo made use of a clever argument: a heavy stone dropped from a height of
2m will drive a stake into the ground much further than will the same stone
dropped from a height of only 0.2 m. Clearly, the stone must be moving faster
in the former case.

Galileo claimed that all objects, light or heavy, fall with the same accel-
eration, at least in the absence of air. If you hold a piece of paper flat and
horizontal in one hand, and a heavier object like a baseball in the other, and
release them at the same time as in Fig. 2—20a, the heavier object will reach the
ground first. But if you repeat the experiment, this time crumpling the paper
into a small wad, you will find (see Fig. 2-20b) that the two objects reach the floor
at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have
a large surface area. But in many ordinary circumstances this air resistance is
negligible. In a chamber from which the air has been removed, even light
objects like a feather or a horizontally held piece of paper will fall with the
same acceleration as any other object (see Fig. 2-21). Such a demonstration in
vacuum was not possible in Galileo’s time, which makes Galileo’s achievement
all the greater. Galileo is often called the “father of modern science,” not only
for the content of his science (astronomical discoveries, inertia, free fall) but
also for his new methods of doing science (idealization and simplification, mathe-
matization of theory, theories that have testable consequences, experiments to test
theoretical predictions).

FIGURE 2-19 Multiflash photograph
of a falling apple, at equal time
intervals. The apple falls farther
during each successive interval,
which means it is accelerating.

() @8 ()

FIGURE 2-20 (a) A ball and a light
piece of paper are dropped at the
same time. (b) Repeated, with the
paper wadded up.

FIGURE 2-21 A rock and a feather
are dropped simultaneously
(a) in air, (b) in a vacuum.
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Air-filled tube Evacuated tube
(a) (b)
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%PROBLEM SOLVING

You can choose y to be positive
either up or down

FIGURE 2-22 Example 2-10. (a) An
object dropped from a tower falls
with progressively greater speed

and covers greater distance with
each successive second. (See also
Fig.2-19.) (b) Graph of y vs. 1.

(After 1.00 s)

¥,=19.6m
(After 2.00 s)

*y3=44.1m
(After 3.00 s)

+y

Galileo’s specific contribution to our understanding of the motion of falling
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all
objects fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity at the surface of the
Earth, and we give it the symbol g. Its magnitude is approximately

g = 980m/s. [acceleratlon due to grav1ty]

at surface of Earth

In British units g is about 32 ft/s*. Actually, g varies slightly according to lati-
tude and elevation on the Earth’s surface, but these variations are so small that
we will ignore them for most purposes. (Acceleration of gravity in space beyond
the Earth’s surface is treated in Chapter 5.) The effects of air resistance are
often small, and we will neglect them for the most part. However, air resistance
will be noticeable even on a reasonably heavy object if the velocity becomes
large.” Acceleration due to gravity is a vector, as is any acceleration, and its
direction is downward toward the center of the Earth.

When dealing with freely falling objects we can make use of Eqs. 2-11,
where for a we use the value of g given above. Also, since the motion is vertical
we will substitute y in place of x, and y, in place of x,. We take y, = 0 unless
otherwise specified. It is arbitrary whether we choose y to be positive in the
upward direction or in the downward direction; but we must be consistent about
it throughout a problem’s solution.

EXERCISE E Return to the Chapter-Opening Question, page 21, and answer it again
now, assuming minimal air resistance. Try to explain why you may have answered
differently the first time.

EXAMPLE 2-10 | Falling from a tower. Suppose that a ball is dropped
(vo = 0) from a tower. How far will it have fallen after a time # = 1.00s,
1, = 2.00s, and 1; = 3.00s? Ignore air resistance.

APPROACH Let us take y as positive downward, so the acceleration is
a=g=+980m/s’. Weset v, =0 and y, = 0. We want to find the posi-
tion y of the ball after three different time intervals. Equation 2-11b, with
x replaced by y, relates the given quantities (7, a, and v,) to the unknown y.

SOLUTION Weset ¢t = t; = 1.00s in Eq.2-11b:
v = vl + iaf}
= 0 + sar} = $(9.80m/s?)(1.00s)> = 4.90m.

The ball has fallen a distance of 4.90 m during the time interval ¢ = 0 to
t; = 1.00s. Similarly, after 2.00 s (= tz), the ball’s position is

v = 3at} = 3(980m/s?)(2.00s)* = 19.6m.
Finally, after 3.00 s (= 13), the ball’s position is (see Fig. 2-22)
y; = tatk = 1(980m/s*)(3.005)> = 44.1m.

NOTE Whenever we say “dropped,” it means v, = 0. Note also the graph of
vy vs. I (Fig. 2-22b): the curve is not straight but bends upward because y is
proportional to 2.

"The speed of an object falling in air (or other fluid) does not increase indefinitely. If the object falls
far enough, it will reach a maximum velocity called the terminal velocity due to air resistance.
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EXAMPLE 2-11| Thrown down from a tower. Suppose the ball in
Example 2-10 is thrown downward with an initial velocity of 3.00 m/s, instead of
being dropped. (a) What then would be its position after 1.00 s and 2.00 s?
(b) What would its speed be after 1.00s and 2.00s? Compare with the speeds
of a dropped ball.

APPROACH Again we use Eq. 2-11b, but now v, is not zero, it is
vy = 3.00m/s.

SOLUTION (a) At 1, = 1.00s, the position of the ball as given by Eq.2-11b is
y = vl + 3at? = (3.00m/s)(1.00s) + 3(9.80m/s?)(1.00s)> = 7.90m.
At 1, = 2.00s (time interval { = 0 to { = 2.00s), the position is
y = vl + 3a* = (3.00m/s)(2.00s) + 3(9.80m/s?)(2.00s)> = 256m.

As expected, the ball falls farther each second than if it were dropped with
Vy = 0.
(b) The velocity is obtained from Eq.2-11a:

v = v + oat
= 3.00m/s + (9.80m/s?)(1.00s)
= 3.00m/s + (9.80m/s?)(2.00s)

128m/s [att; = 1.005]
226m/s. [att, 2.005]

In Example 2-10, when the ball was dropped (v, = 0), the first term () in
these equations was zero, so

v =0+ at
= (9.80m/s?)(1.00s) = 9.80m/s [atf; = 1.005]
= (9.80m/s?)(2.00s) = 19.6m/s. [at, = 2.00s]

FIGURE 2-23 An object thrown
NOTE For both Examples 2-10 and 2—11, the speed increases linearly in time by  into the air leaves the thrower’s

9.80 m/s during each second. But the speed of the downwardly thrown ball at  hand at A, reaches its maximum
any instant is always 3.00 m/s (its initial speed) higher than that of a dropped ball.  height at B, and returns to the

— original position at C.

Examples 2-12, 2-13, 2-14, and 2-15.

EXAMPLE 2-12| Ball thrown upward. A person throws a ball upward
into the air with an initial velocity of 15.0 m/s. Calculate how high it goes. Ignore
air resistance.

B(v=0)

APPROACH We are not concerned here with the throwing action, but only
with the motion of the ball after it leaves the thrower’s hand (Fig. 2-23) and
until it comes back to the hand again. Let us choose y to be positive in the
upward direction and negative in the downward direction. (This is a different
convention from that used in Examples 2—10 and 2-11, and so illustrates our
options.) The acceleration due to gravity is downward and so will have a nega-
tive sign, a = —g = —9.80m/s>. As the ball rises, its speed decreases until it 7)|
reaches the highest point (B in Fig. 2-23), where its speed is zero for an

instant; then it descends, with increasing speed.

SOLUTION We consider the time interval from when the ball leaves the
thrower’s hand until the ball reaches the highest point. To determine the
maximum height, we calculate the position of the ball when its velocity equals
zero (v = 0 at the highest point). At { = 0 (point A in Fig. 2-23) we have
o =0, v,=150m/s, and a = —9.80m/s’. At time { (maximum height),
v =0, a= —9.80m/s’, and we wish to find y. We use Eq. 2-11c, replacing x
with y: v? = v} 4+ 2ay. We solve this equation for y:

05
(= e o — —
B —
=2

et e O =

4

v — v} 0 — (15.0m/s)?
y = S L~ 115m.
2a 2(—9.80 m/s?)

The ball reaches a height of 11.5m above the hand.
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FIGURE 2-23 (Repeated.)

An object thrown into the air leaves
the thrower’s hand at A, reaches its
maximum height at B, and returns
to the original position at C.

Examples 2-12, 2-13, 2-14, and 2-15.

DdcauTion

Quadratic equations have two
solutions. Sometimes only one
corresponds to reality,
sometimes both

dcecauTion

(1) Velocity and acceleration are
not always in the same direction;
the acceleration (of gravity) always
points down

(2) a # 0 even at the highest point
of a trajectory

EXAMPLE 2-13| Ball thrown upward, II. In Fig.2-23, Example 2—12, how
long is the ball in the air before it comes back to the hand?

APPROACH We need to choose a time interval to calculate how long the
ball is in the air before it returns to the hand. We could do this calculation
in two parts by first determining the time required for the ball to reach its
highest point, and then determining the time it takes to fall back down.
However, it is simpler to consider the time interval for the entire motion from
A to B to C (Fig.2-23) in one step and use Eq.2—11b. We can do this because
y is position or displacement, and not the total distance traveled. Thus, at both
points A and C, y = 0.

SOLUTION We use Eq.2-11b with @ = —9.80m/s’ and find
y = y + vt + %atz
0 =0+ (150m/s)t + 3(—9.80m/s?)1%
This equation can be factored (we factor out one f):
(150m/s — 490m/s’ 1)t = 0.
There are two solutions:
15.0m/s
490m/s*
The first solution (¢ = 0) corresponds to the initial point (A) in Fig. 2-23,
when the ball was first thrown from y = 0. The second solution, ¢ = 3.06s,

corresponds to point C, when the ball has returned to y = 0. Thus the ball is
in the air 3.06s.

NOTE We have ignored air resistance in these last two Examples, which could
be significant, so our result is only an approximation to a real, practical situation.

t =0 and ¢ = = 3.06s.

We did not consider the throwing action in these Examples. Why? Because during
the throw, the thrower’s hand is touching the ball and accelerating the ball at a
rate unknown to us—the acceleration is not g. We consider only the time when
the ball is in the air and the acceleration is equal to g.

Every quadratic equation (where the variable is squared) mathematically
produces two solutions. In physics, sometimes only one solution corresponds to
the real situation, as in Example 2-8, in which case we ignore the “unphysical”
solution. But in Example 2-13, both solutions to our equation in £* are physi-
cally meaningful: 7+ = 0 and ¢ = 3.06s.

CONCEPTUAL EXAMPLE 2-14 | Two possible misconceptions. Give
examples to show the error in these two common misconceptions: (1) that
acceleration and velocity are always in the same direction, and (2) that
an object thrown upward has zero acceleration at the highest point (B in
Fig.2-23).

RESPONSE Both are wrong. (1) Velocity and acceleration are not necessarily
in the same direction. When the ball in Fig. 2-23 is moving upward, its
velocity is positive (upward), whereas the acceleration is negative (down-
ward). (2) At the highest point (B in Fig. 2-23), the ball has zero velocity for
an instant. Is the acceleration also zero at this point? No. The velocity near
the top of the arc points upward, then becomes zero for an instant (zero time) at
the highest point, and then points downward. Gravity does not stop acting, so
a=—g=—980m/s’ even there. Thinking that a = () at point B would lead
to the conclusion that upon reaching point B, the ball would stay there: if the
acceleration (= rateof change of velocity) were zero, the velocity would stay
zero at the highest point, and the ball would stay up there without falling,
Remember: the acceleration of gravity always points down toward the Earth, even
when the object is moving up.
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EXAMPLE 2-15| Ball thrown upward, III. Let us consider again the ball
thrown upward of Examples 2—12 and 2-13, and make more calculations. Calculate
{a) how much time it takes for the ball to reach the maximum height (point B in
Fig.2-23), and (b) the velocity of the ball when it returns to the thrower’s hand
(point C).

APPROACH Again we assume the acceleration is constant, so we can use
Eqgs.2-11. We have the maximum height of 11.5 m and initial speed of 15.0 m/s
from Example 2—12. Again we take y as positive upward.

SOLUTION (a) We consider the time interval between the throw (1 = 0,
v = 15.0m/s) and the top of the path (y = +11.5m, » = 0), and we want
to find 7. The acceleration is constant at a = —g = —9.80m/s’. Both
Egs. 2-11a and 2-11b contain the time ¢ with other quantities known. Let us
use Eq.2-11a with @ = —9.80m/s?, v, = 15.0m/s, and v = 0:

v = vy + at;
setting v = 0 gives 0 = vy + af, which we rearrange to solve for i af = —wv,
or
)
t=-=
a
15.0m/s
= ——/2 = 1.53s.
—9.80m/s

This is just half the time it takes the ball to go up and fall back to its original
position [3.06s, calculated in Example 2—13]. Thus it takes the same time to
reach the maximum height as to fall back to the starting point.

(b) Now we consider the time interval from the throw (1 = 0, v, = 15.0m/s)
until the ball’s return to the hand, which occurs at ¢ = 3.06s (as calculated in
Example 2-13), and we want to find v when 1 = 3.06s:

v o= vy + oat
150m/s — (9.80m/s*)(3.06s) = —15.0m/s.

NOTE The ball has the same speed (magnitude of velocity) when it returns to
the starting point as it did initially, but in the opposite direction (this is the
meaning of the negative sign). And, as we saw in part (a), the time is the same
up as down. Thus the motion is symmetrical about the maximum height.

The acceleration of objects such as rockets and fast airplanes is often given as
a multiple of g = 980m/s’. For example, a plane pulling out of a dive
(see Fig. 2-24) and undergoing 3.00g’s would have an acceleration of
(3.00)(9.80 m/s?) = 29.4m /s>

%PROBLEM SOLVING

Acceleration in g’s

FIGURE 2-24 Several planes, in
formation, are just coming out of a
downward dive.
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FIGURE 2-25 Example 2-16.
(a) A person stands on the edge
of a cliff. A ball is thrown upward,
then falls back down past the
thrower to the base of the cliff,
50.0m below. (b) The y vs.{ graph.

dcauTion

Sometimes a solution to a
quadratic equation does not
apply to the actual physical
conditions of the Problem

EXERCISE F Two balls are thrown from a cliff. One is thrown directly up, the other
directly down. Both balls have the same initial speed, and both hit the ground below the
cliff but at different times. Which ball hits the ground at the greater speed: (a) the ball
thrown upward, (b) the ball thrown downward, or (c) both the same? Ignore air resistance.

Additional Example—Using the Quadratic Formula

EXAMPLE 2-16 | Ball thrown upward at edge of cliff. Suppose that the
person of Examples 2-12, 2-13, and 2-15 throws the ball upward at
15.0 m/s while standing on the edge of a cliff, so that the ball can fall to the
base of the cliff 50.0 m below, as shown in Fig. 2-25a. (a) How long does it
take the ball to reach the base of the cliff? (b) What is the total distance trav-
eled by the ball? Ignore air resistance (likely to be significant, so our result is an
approximation).

APPROACH We again use Eq.2-11b, with y as + upward, but this time we set
y = —50.0m, the bottom of the cliff, which is 50.0 m below the initial position
(¥, = 0); hence the minus sign.

SOLUTION (a) We use Eq. 2-11b with a = —9.80m/s’, v, = 15.0m/s,
Yo =0, and y = —50.0m:

y = ¥ t+ vt + %a[z
—500m = 0 + (15.0m/s)t — 3(9.80m/s?)1>

To solve any quadratic equation of the form
at* + bt +¢ =0,

where a, b, and ¢ are constants (a is not acceleration here), we use the quadratic
formula (see Appendix A—4):

b+ /B~ dac

[:
2a

We rewrite our y equation just above in standard form, at*> + bt + ¢ = 0:
(490 m/s?) 1> — (15.0m/s)t — (50.0m) = 0.
Using the quadratic formula, we find as solutions

t=507s

and

t=-201s.

The first solution, ¢ = 5.07s, is the answer we are seeking: the time it takes
the ball to rise to its highest point and then fall to the base of the cliff. To rise
and fall back to the top of the cliff took 3.06s (Example 2—-13); so it took
an additional 2.01 s to fall to the base. But what is the meaning of the other
solution, t = —2.01s? This is a time before the throw, when our calculation
begins, so it isn’t relevant here. It is outside our chosen time interval, and so is
an unphysical solution (also in Example 2-8).

(b) From Example 2-12, the ball moves up 11.5m, falls 11.5m back down to
the top of the cliff, and then down another 50.0 m to the base of the cliff, for a
total distance traveled of 73.0m. [Note that the displacement, however, was
—50.0 m.] Figure 2-25b shows the y vs. ¢ graph for this situation.
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2—8 Graphical Analysis of Linear Motion

Velocity as Slope

Analysis of motion using graphs can give us additional insight into kinematics.
Let us draw a graph of x vs.f, making the choice that at ¢ = 0, the position of an
objectis x = 0, and the object is moving at a constant velocity, v = v = 11 m/s
(40 km/h). Our graph starts at x = 0, ¢t = 0 (the origin). The graph of the
position increases linearly in time because, by Eq. 2-2, Ax = v Af and v is a
constant. So the graph of x vs. ¢ is a straight line, as shown in Fig. 2-26. The
small (shaded) triangle on the graph indicates the slope of the straight line:

Ax

At

We see, using the definition of average velocity (Eq. 2-2), that the slope of the
x vs. t graph is equal to the velocity. And, as can be seen from the small triangle
on the graph, Ax/Af = (11m)/(1.0s) = 11 m/s, which is the given velocity.

If the object’s velocity changes in time, we might have an x vs. ¢ graph like
that shown in Fig. 2-27. (Note that this graph is different from showing the
“path” of an object on an x vs. y plot.) Suppose the object is at position x;
at time #;, and at position x, at time #,. P; and P, represent these two points on
the graph. A straight line drawn from point P;(x;, ;) to point P(x,, )
forms the hypotenuse of a right triangle whose sides are Ax and Af. The
ratio Ax/At is the slope of the straight line P;P,. But Ax/Af is also the
average velocity of the object during the time interval At = 1, — ;. Therefore,
we conclude that the average velocity of an object during any time interval
At = 1, — 1y is equal to the slope of the straight line (or chord) connecting the two
points (x, ;) and (x,, 1,) on an x vs.  graph.

Consider now a time intermediate between ¢, and 1, , call it 75, at which moment
the object is at x5 (Fig.2-28). The slope of the straight line P; P; is less than the slope
of P;P,. Thus the average velocity during the time interval #; — £; is less than
during the time interval t, — ;.

slope =

X

Next let us take point P; in Fig. 2-28 to be closer and closer to point P;.
That is, we let the interval i3 — {;, which we now call Az, to become smaller and
smaller. The slope of the line connecting the two points becomes closer and
closer to the slope of a line tangent’ to the curve at point P;. The average
velocity (equal to the slope of the chord) thus approaches the slope of
the tangent at point P;. The definition of the instantanecous velocity (Eq.2-3) is
the limiting value of the average velocity as Afr approaches zero. Thus the
instantaneous velocity equals the slope of the tangent to the curve of x vs. t at any
chosen point (which we can simply call “the slope of the curve” at that point).

"The tangent is a straight line that touches the curve only at the one chosen point, without passing
across or through the curve at that point.
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FIGURE 2-26 Graph of position vs.
time for an object moving at a
constant velocity of 11 m/s.

FIGURE 2-27 Graph of an object’s
position x vs. time ¢. The slope of
the straight line P; P, represents the
average velocity of the object during
time interval At =, — ;.

the

X2

X1
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FIGURE 2-28 Same position vs. time curve
as in Fig. 2-27. Note that the average
velocity over the time interval 3 — #;
(which is the slope of Py P3) is less than the
average velocity over the time interval

t; — t;. The slope of the line tangent

to the curve at point Py equals the
instantaneous velocity at time f;.

locity equals slope of

x vs. t graph at any instant
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FIGURE 2-29 Same x vs.f curve as in

Figs. 2-27 and 2-28, but here showing the slope

at four different points: At P, the slope is zero,

so v = 0. At Ps the slope is negative, so v < 0. X

FIGURE 2-30 A graph of velocity v
vs. time ¢. The average acceleration
over a time interval Af =1, — f; is
the slope of the straight line Py P;:
a = Av/At. The instantaneous
acceleration at time £, is the slope of
the v vs. f curve at that instant.

Slope of P, P, is average
acceleration during Ar =1, - 1;

Slope of tangent
is instantaneous
acceleration at £

Uy

V) +-——

t(s)

2 4 6 & 10

| Summary

%)

We can obtain the velocity of an object at any instant from its graph of x vs. .
For example, in Fig. 2-29 (which shows the same graph as in Figs.2—-27 and 2-28), as
our object moves from x; to x,, the slope continually increases, so the velocity is
increasing. For times after ¢, , the slope begins to decrease and reaches zero (v = 0)
where x has its maximum value, at point P, in Fig. 2-29. Beyond point P,, the
slope is negative, as for point Ps. The velocity is therefore negative, which
makes sense since x is now decreasing—the particle is moving toward decreasing
values of x, to the left on a standard xy plot.

Slope and Acceleration

We can also draw a graph of the velocity, v, vs. time, £, as shown in Fig.2-30. Then the
average acceleration over a time interval Af = f, — f; is represented by the slope
of the straight line connecting the two points P; and P, as shown. [Compare this to
the position vs. time graph of Fig. 2-27 for which the slope of the straight line
represents the average velocity.] The instantaneous acceleration at any time, say 1,
is the slope of the tangent to the v vs. f curve at that time, which is also shown in
Fig. 2-30. Using this fact for the situation graphed in Fig. 2-30, as we go from
time {; to time £, the velocity continually increases, but the acceleration (the rate at
which the velocity changes) is decreasing since the slope of the curve is decreasing.

CONCEPTUAL EXAMPLE 2-17 | Analyzing with graphs. Figure 2-31
shows the velocity as a function of time for two cars accelerating from 0 to
100 km/h in a time of 10.0 s. Compare (a) the average acceleration; (b) the
instantaneous acceleration; and (c) the total distance traveled for the two cars.

RESPONSE (a) Average acceleration is Av/At. Both cars have the same
Av (100 km/h) over the same time interval At = 10.0s, so the average acceleration
is the same for both cars. (b) Instantaneous acceleration is the slope of the tangent
to the » vs. ¢ curve. For the first 4 s or so, the top curve (car A) is steeper than the
bottom curve, so car A has a greater acceleration during this interval. The
bottom curve is steeper during the last 6 s, so car B has the larger acceleration
for this period. (¢) Except at { = 0 and { = 10.0s, car A is always going
faster than car B. Since it is going faster, it will go farther in the same time.

[The Summary that appears at the end of each Chapter in this book
gives a brief overview of the main ideas of the Chapter. The Summary
cannot serve fo give an understanding of the material, which can be
accomplished only by a detailed reading of the Chapter.]

Kinematics deals with the description of how objects
move. The description of the motion of any object must
always be given relative to some particular reference frame.

The displacement of an object is the change in position of
the object.

Average speed is the distance traveled divided by the elapsed
time or time interval, A (the time period over which we choose
to make our observations). An object’s average velocity over
a particular time interval is
Ax
At
where Ax is the displacement during the time interval A¢.

The instantaneous velocity, whose magnitude is the same
as the instantaneous speed, is defined as the average velocity
taken over an infinitesimally short time interval.

2-2)
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Acceleration is the change of velocity per unit time. An
object’s average acceleration over a time interval Af is

- Av
A’
where Awv is the change of velocity during the time interval Af.
Instantaneous acceleration is the average acceleration taken
over an infinitesimally short time interval.

If an object has position x; and velocity vy at time ¢ = 0 and
moves in a straight line with constant acceleration, the velocity v
and position x at a later time ¢ are related to the acceleration 4,
the initial position xg, and the initial velocity vy by Eqs. 2-11:

@-9

= 1 + at,
¥ = x¢ + vl + tat?,
v? = vf + 2a(x — xq), (2-11)
_ v+ Y
v = 5

]| Questions

Objects that move vertically near the surface of the Farth,
either falling or having been projected vertically up or down,
move with the constant downward acceleration due to gravity,

whose magnitude is g = 9.80m/s? if air resistance can be

ignored. We can apply Eqs. 2—-11 for constant acceleration to
objects that move up or down freely near the FEarth’s surface.
The slope of a curve at any point on a graph is the slope
of the tangent to the curve at that point. On a graph of posi-
tion vs. time, the slope is equal to the instantaneous velocity.
On a graph of velocity vs. time, the slope is the acceleration.

1. Does a car speedometer measure speed, velocity, or both?
Explain.

2. When an object moves with constant velocity, does its
average velocity during any time interval differ from its
instantaneous velocity at any instant? Explain.

3. If one object has a greater speed than a second object,
does the first necessarily have a greater acceleration?
Explain, using examples.

4. Compare the acceleration of a motorcycle that accelerates
from 80 km /h to 90 km/h with the acceleration of a bicycle
that accelerates from rest to 10 km/h in the same time.

5. Can an object have a northward velocity and a southward
acceleration? Explain.

6. Can the velocity of an object be negative when its accel-
eration is positive? What about vice versa? If yes, give
examples in each case.

7. Give an example where both the velocity and acceleration
are negative.

8. Can an object be increasing in speed as its acceleration
decreases? If so, give an example. If not, explain.

9. Two cars emerge side by side from a tunnel. Car A is trav-

eling with a speed of 60 km/h and has an acceleration of

40 km/h/min. Car B has a speed of 40 km/h and has an

acceleration of 60 km/h/min. Which car is passing the other

as they come out of the tunnel? Explain your reasoning.

A baseball player hits a ball straight up into the air. It

leaves the bat with a speed of 120 km/h. In the absence of

air resistance, how fast would the ball be traveling when it is
caught at the same height above the ground as it left the
bat? Explain.

As a freely falling object speeds up, what is happening to

its acceleration—does it increase, decrease, or stay the

same? (a) Ignore air resistance. (b) Consider air resistance.

. You travel from point A to point B in a car moving at a

constant speed of 70 km/h. Then you travel the same
distance from point B to another point C, moving at a
constant speed of 90 km/h. Is your average speed for the
entire trip from A to C equal to 80 km/h? Explain why or
why not.

10.

11.

 (m/s)

13. Can an object have zero velocity and nonzero accelera-

tion at the same time? Give examples.

14. Can an object have zero acceleration and nonzero

velocity at the same time? Give examples.

15. Which of these motions is not at constant acceleration:
a rock falling from a cliff, an elevator moving from the
second floor to the fifth floor making stops along the way,

a dish resting on a table? Explain your answers.

16. Describe in words the motion plotted in Fig. 2-32 in
terms of velocity, acceleration, etc. [Hint: First try to dupli-

cate the motion plotted by walking or moving your hand.]
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FIGURE 2-32 Question 16.

17. Describe in words the motion of the object graphed in
Fig. 2-33.
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FIGURE 2-33 Question 17.
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| MisConceptual Questions

[List all answers that are valid.]

1. Which of the following should be part of solving any prob- 7. A ball is dropped from the top of a tall building. At the

lem in physics? Select all that apply:

(a) Read the problem carefully.

(b) Draw a picture of the situation.

(¢) Write down the variables that are given.

(d) Think about which physics principles to apply.

(e) Determine which equations can be used to apply the
correct physics principles.

(f) Check the units when you have completed your
calculation.

(g) Consider whether your answer is reasonable.

. In which of the following cases does a car have a negative
velocity and a positive acceleration? A car that is traveling
in the

(a) —x direction at a constant 20 m/s.

(b) —x direction increasing in speed.

(¢) +x direction increasing in speed.

(d) —x direction decreasing in speed.

(e) +x direction decreasing in speed.

. At time ¢ = 0 an object is traveling to the right along the

+x axis at a speed of 10.0 m/s with acceleration —2.0 m/s>.

Which statement is true?

(a) The object will slow down, eventually coming to a
complete stop.

(b) The object cannot have a negative acceleration and
be moving to the right.

(¢) The object will continue to move to the right, slowing
down but never coming to a complete stop.

(d) The object will slow down, momentarily stopping,
then pick up speed moving to the left.

. A ball is thrown straight up. What are the velocity and
acceleration of the ball at the highest point in its path?
(a)v=0, a=0.

Bv=0, a=98m/s’up.

(¢)v =0, a =9.8m/s* down.

(dyv=98m/sup, a =0.

(e) v = 9.8 m/sdown, a = 0.

. You drop a rock off a bridge. When the rock has fallen 4m,

you drop a second rock. As the two rocks continue to fall,

what happens to their velocities?

(a) Both increase at the same rate.

(b) The velocity of the first rock increases faster than the
velocity of the second.

(¢) The velocity of the second rock increases faster than
the velocity of the first.

(d) Both velocities stay constant.

. You drive 4km at 30km/h and then another 4km at
50 km/h. What is your average speed for the whole 8-km
trip?

(a) More than 40 km /h.

(b) Equal to 40 km/h.

(¢) Less than 40 km/h.

(d) Not enough information.

same instant, a second ball is thrown upward from

ground level. When the two balls pass one another, one on

the way up, the other on the way down, compare the magni-
tudes of their acceleration:

(a) The acceleration of the dropped ball is greater.

(b) The acceleration of the ball thrown upward is greater.

(¢) The acceleration of both balls is the same.

(d) The acceleration changes during the motion, so you
cannot predict the exact value when the two balls
pass each other.

(e) The accelerations are in opposite directions.

. A ball is thrown downward at a speed of 20 m/s. Choosing

the +y axis pointing up and neglecting air resistance, which
equation(s) could be used to solve for other variables? The
acceleration due to gravity is g = 9.8m/s’ downward.
(@) v =(20m/s) — gt.

(b)y = yo + (—20m/s)t — (1/2)gr*

(c) v* = (20m/s)* = 2g(y — w).

(d) (20m/s) = (v + 14)/2.

(e) All of the above.

. A car travels along the x axis with increasing speed. We

don’t know if to the left or the right. Which of the graphs
in Fig. 2-34 most closely represents the motion of the
car?
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FIGURE 2-34
MisConceptual —
Question 9. (e)
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For assighed homework and other learning materials, go to the MasteringPhysics website.

| Problems

[The Problems at the end of each Chapter are ranked 1, 11, or 111
according to estimated difficulty, with level 1 Problems being easiest.
Level 111 are meant as challenges for the best students. The Prob-
lems are arranged by Section, meaning that the reader should
have read up to and including that Section, but not only that
Section—Problems often depend on earlier material. Next is
a set of “General Problems” not arranged by Section and not
ranked. Finally, there are “Search and Learn” Problems that require
rereading parts of the Chapter and sometimes earlier Chapters. |

(Note: In Problems, assume a number like 6.4 is accurate to
£ 0.1; and 950 is = 10 unless 950 is said to be “precisely” or “very
nearly” 950, in which case assume 950 £ 1. See Section 1-4.)

2-1 to 2-3 Speed and Velocity

1. (I) If you are driving 95 km/h along a straight road and
you look to the side for 2.0 s, how far do you travel during
this inattentive period?

2. (I) What must your car’s average speed be in order to
travel 235km in 2.75 h?

3. (I) A particle at {{ = —2.0s is at x; = 4.8cm and at
I =45s is at x; = 85cm. What is its average velocity
over this time interval? Can you calculate its average speed
from these data? Why or why not?

4. (I) A rolling ball moves from x; = 84cm to x; = —42cm
during the time from #; = 3.0s to £, = 6.1s. What is its
average velocity over this time interval?

5. (I) A bird can fly 25 km/h. How long does it take to fly
3.5km?

6. (Il) According to a rule-of-thumb, each five seconds
between a lightning flash and the following thunder gives
the distance to the flash in miles. () Assuming that the
flash of light arrives in essentially no time at all, estimate
the speed of sound in m/s from this rule. (b) What would
be the rule for kilometers?

7. (Il) You are driving home from school steadily at
95 km/h for 180 km. It then begins to rain and you slow
to 65 km/h. You arrive home after driving 4.5 h. (a) How
far is your hometown from school? (b) What was your
average speed?

8. (Il) A horse trots away from its trainer in a straight
line, moving 38 m away in 9.0s. It then turns abruptly
and gallops halfway back in 1.8 s. Calculate (a) its average
speed and (b) its average velocity for the entire trip, using
“away from the trainer” as the positive direction.

9. (Il) A person jogs eight complete laps around a 400-m
track in a total time of 14.5min. Calculate (@) the average
speed and (b) the average velocity, in m/s.

10. (II) Every year the Earth travels about 10° km as it orbits the
Sun. What is Earth’s average speed in km/h?

11. (IT) A car traveling 95 km/h is 210 m behind a truck trav-
eling 75 km/h. How long will it take the car to reach the
truck?

12. (IT) Calculate the average speed and average velocity of a
complete round trip in which the outgoing 250km is
covered at 95 km/h, followed by a 1.0-h lunch break, and
the return 250 km is covered at 55 km/h.

13. (II) Two locomotives approach each other on parallel
tracks. Each has a speed of 155 km/h with respect to the
ground. If they are initially 8.5 km apart, how long will it
be before they reach each other? (See Fig.2-35.)

~—8.5km—

v = v =
155 km/h

FIGURE 2-35 Problem 13.

14. (IT) Digital bits on a 12.0-cm diameter audio CD are encoded
along an outward spiraling path that starts at radius
Ry =25cm and finishes at radius R, = 5.8cm. The
distance between the centers of neighboring spiral-
windings is 1.6 um (= 1.6 X 10°m). (@) Determine the
total length of the spiraling path. [Hint: Imagine “unwinding”
the spiral into a straight path of width 1.6 um, and note
that the original spiral and the straight path both occupy
the same area.] (b) To read information, a CD player
adjusts the rotation of the CD so that the player’s readout
laser moves along the spiral path at a constant speed of
about 1.2 m/s. Estimate the maximum playing time of such
a CD.

15. (IIT) A bowling ball traveling with constant speed hits the
pins at the end of a bowling lane 16.5m long. The bowler
hears the sound of the ball hitting the pins 2.80 s after the
ball is released from his hands. What is the speed of the
ball, assuming the speed of sound is 340 m/s?

16. (IIT) An automobile traveling 95 km/h overtakes a 1.30-km-
long train traveling in the same direction on a track parallel
to the road. If the train’s speed is 75 km/h, how long does
it take the car to pass it, and how far will the car have
traveled in this time? See Fig. 2-36. What are the results
if the car and train are traveling in opposite directions?

| 1.30 km |
v = 75km/h

L T R : !
g U — 95 km/h

FIGURE 2-36 Problem 16.

2-4 Acceleration

17. (I) A sports car accelerates from rest to 95 km/h in 4.3 s.
What is its average acceleration in m/s*?

18. (I) A sprinter accelerates from rest to 9.00 m/s in 1.38s.
What is her acceleration in (2) m/s?; (b) km/h??

19. (IT) A sports car moving at constant velocity travels 120 m
in 5.0s. If it then brakes and comes to a stop in 4.0's, what
is the magnitude of its acceleration (assumed constant) in
m/s’, andin g’s (g = 9.80m/s?)?
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20.

21.

(IT) At highway speeds, a particular automobile is capable
of an acceleration of about 1.8 m/s%. At this rate, how long
does it take to accelerate from 65 km/h to 120 km/h?
(IT) A car moving in a straight line starts at x = 0 at { = 0.
It passes the point x = 25.0m with a speed of 11.0 m/s
at { = 3.00s. It passes the point x = 385m with a speed
of 45.0m/s at t = 20.0s. Find (@) the average velocity,
and (b) the average acceleration, between { = 3.00s and
t =200s.

2-5 and 2-6 Motion at Constant Acceleration

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

(D) A car slows down from 28 m/s to rest in a distance of
88 m. What was its acceleration, assumed constant?

(D) A car accelerates from 14 m/s to 21 m/s in 6.0 s. What
was its acceleration? How far did it travel in this time?
Assume constant acceleration.

(D A light plane must reach a speed of 35 m/s for takeoff.
How long a runway is needed if the (constant) accelera-
tion is 3.0 m/s2?

(I) A baseball pitcher throws a baseball with a speed of
43m/s. Estimate the average acceleration of the ball
during the throwing

motion. In throwing ‘ 3.5m

the baseball, the pitcher m:, e

accelerates it through _w #h

a displacement of about - -
35m, from behind ) §

the body to the point V 4 \ J..‘f }
where it is released & o s

(Fig. 2-37).
FIGURE 2-37 Problem 25.

(IT) A world-class sprinter can reach a top speed (of about
11.5 m/s) in the first 18.0m of a race. What is the average
acceleration of this sprinter and how long does it take her
to reach that speed?

(II) A car slows down uniformly from a speed of 28.0 m/s
to rest in 8.00s. How far did it travel in that time?

(II) In coming to a stop, a car leaves skid marks 65 m long
on the highway. Assuming a deceleration of 4.00m/s?,
estimate the speed of the car just before braking.

(IT) A car traveling 75 km/h slows down at a constant
0.50 m/s* just by “letting up on the gas.” Calculate (z) the
distance the car coasts before it stops, (b) the time it
takes to stop, and (c¢) the distance it travels during the
first and fifth seconds.

(I) Determine the stopping distances for an automobile
going a constant initial speed of 95 km/h and human reac-
tion time of 0.40s: (a) for an acceleration a = —3.0m/s%;
(b) for a = —6.0m/s’.

(IT) A driver is traveling 18.0m/s when she sees a red
light ahead. Her car is capable of decelerating at a rate of
3.65m/s%. If it takes her 0.350's to get the brakes on and
she is 20.0m from the intersection when she sees the light,
will she be able to stop in time? How far from the beginning
of the intersection will she be, and in what direction?

32. (II) A 75-m-long train begins uniform acceleration from
rest. The front of the train has a speed of 18 m/s when it
passes a railway worker who is standing 180 m from where
the front of the train started. What will be the speed of the
last car as it passes the worker? (See Fig. 2-38.)

} 75 m |

L

i

i o o o ) o i

FIGURE 2-38 Problem 32.

33. (IT) A space vehicle accelerates uniformly from 85m/s
at t =0 to 162m/s at ¢t = 10.0s. How far did it move
between t = 2.0s and f = 6.0s?

34. (III) A fugitive tries to hop on a freight train traveling at a
constant speed of 5.0 m/s. Just as an empty box car passes
him, the fugitive starts from rest and accelerates at
4 =14m/s? to his maximum speed of 6.0 m/s, which he
then maintains. (¢) How long does it take him to catch up
to the empty box car? (b) What is the distance traveled to
reach the box car?

35. (III) Mary and Sally are in a foot race (Fig. 2-39). When
Mary is 22 m from the finish line, she has a speed of 4.0 m/s
and is 5.0m behind Sally, who has a speed of 5.0 m/s. Sally
thinks she has an easy win and so, during the remaining
portion of the race, decelerates at a constant rate of
0.40 m/s? to the finish line. What constant acceleration does
Mary now need during the remaining portion of the race, if
she wishes to cross the finish line side-by-side with Sally?

Mary Sally @i’

e40m/s  _50m/s
s 3

[ |
[«~—5.0 m— |
| |
[ 22 m !
FIGURE 2-39 Problem 35.

»

36. (IIT) An unmarked police car traveling a constant 95 km/h
is passed by a speeder traveling 135 km/h. Precisely 1.00s
after the speeder passes, the police officer steps on the
accelerator; if the police car’s acceleration is 2.60 m/s%,
how much time passes before the police car overtakes the
speeder (assumed moving at constant speed)?

2-7 Freely Falling Objects (neglect air resistance)
37. (I) A stone is dropped from the top of a cliff. It is seen to
hit the ground below after 3.55s. How high is the cliff?

38. (I) Estimate (@) how long it took King Kong to fall
straight down from the top of the Empire State Building
(380 m high), and (b) his velocity just before “landing.”
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39.

40.

41.

42.

43.

4.

45.

46.

47.

48.

(II) A ball player catches a ball 3.4s after throwing it
vertically upward. With what speed did he throw it, and
what height did it reach?

(IT) A baseball is hit almost straight up into the air with a
speed of 25 m/s. FEstimate (4) how high it goes, (b) how
long it is in the air. (¢) What factors make this an estimate?

(IT) The best rebounders in basketball have a vertical leap
(that is, the vertical movement of a fixed point on their
body) of about 120cm. (¢) What is their initial “launch”
speed off the ground? (b) How long are they in the air?

(II) An object starts from rest and falls under the influ-
ence of gravity. Draw graphs of (a) its speed and (b) the
distance it has fallen, as a function of time from ¢t = 0 to
t = 5.00s. Ignore air resistance.

(I) A stone is thrown vertically upward with a speed of
240m/s. (a) How fast is it moving when it is at a
height of 13.0m? (b) How much time is required to reach
this height? (c) Why are there two answers to (b)?

(I) For an object falling freely from rest, show that the
distance traveled during each successive second increases
in the ratio of successive odd integers (1, 3, 5, etc.). (This
was first shown by Galileo.) See Figs. 2-19 and 2-22.

(I) A rocket rises vertically, from rest, with an accelera-
tion of 3.2 m/s? until it runs out of fuel at an altitude of
775 m. After this point, its acceleration is that of gravity,
downward. (a) What is the velocity of the rocket when it
runs out of fuel? (b) How long does it take to reach this
point? (¢) What maximum altitude does the rocket reach?
(d) How much time (total) does it take to reach
maximum altitude? (e) With what velocity does it strike
the Earth? (f) How long (total) is it in the air?

(Il) A helicopter is ascending vertically with a speed of
5.40 m/s. At a height of 105m above the Farth, a package
is dropped from the helicopter. How much time does it take
for the package to reach the ground? [Hint: What is vy for
the package?]

(IT) Roger sees water balloons fall past his window. He
notices that each balloon strikes the sidewalk 0.83s after
passing his window. Roger’s room is on the third floor, 15m
above the sidewalk. (¢) How fast are the balloons trav-
eling when they pass Roger’s window? (b) Assuming the
balloons are being released from rest, from what floor are
they being released? Each floor of the dorm is 5.0 m high.

(IT) Suppose you adjust your garden hose nozzle for a fast
stream of water. You point
the nozzle vertically upward at
a height of 1.8m above the
ground (Fig. 2—-40). When you
quickly turn off the nozzle, you
hear the water striking the
ground next to you for another
2.5s. What is the water speed
as it leaves the nozzle?

FIGURE 2-40
Problem 48.

P (m/s)

49. (IIT) A falling stone takes 0.31s to travel past a window
2.2m tall (Fig. 2-41). From what height above the top of
the window did the
stone fall?

&3
To travel
this
2.2m > distance
took
0.31s
|
FIGURE 2-41
Problem 49.

50. (IIT) A rock is dropped from a sea cliff, and the sound of
it striking the ocean is heard 3.4s later. If the speed of
sound is 340 m/s, how high is the cliff?

2-8 Graphical Analysis

51. (IT) Figure 2-42 shows the velocity of a train as a function of
time. (@) At what time was its velocity greatest? (b) During
what periods, if any, was the velocity constant? (c¢) During
what periods, if any, was the acceleration constant?
(d) When was the magnitude of the acceleration greatest?

40
30 \\
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r(s)
FIGURE 2-42 Problem 51.

52. (Il) A sports car accelerates approximately as shown in the
velocity—time graph of Fig.2—43. (The short flat spots in the
curve represent manual shifting of the gears.) Estimate the car’s
average acceleration in (@) second gear and (b) fourth gear.

50 -
/_M gear
40 /-/‘ 4th gear
3rd gear
z 30 f
Ry
=20
// 2nd gear
10 !
1st gear
0 I(s)
0 10 20 30 40

FIGURE 2-43 Problem 52. The velocity of a car
as a function of time, starting from a dead stop.
The flat spots in the curve represent gear shifts.
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53.

(IT) The position of a rabbit along a straight tunnel as a
function of time is plotted in Fig. 2—-44. What is its instan-
taneous velocity (a) at ¢t = 10.0s and (b) at ¢ = 30.0s?
What is its average velocity (¢) between ¢t =0 and

t =50s, (d) between ¢t =250s and ¢ =30.0s, and
(e) between ¢ = 40.0s and ¢ = 50.0s?

20
_ / \
g /
=10 /,

—
//
O0 10 20 30 40 50
1(s)

FIGURE 2-44 Problems 53, 54, and 55.

| General Problems

54.

55.

(Il) In Fig. 2-44, (a) during what time periods, if any, is
the velocity constant? (b) At what time is the velocity
greatest? (c) At what time, if any, is the velocity zero?
(d) Does the object move in one direction or in both
directions during the time shown?

(III) Sketch the v vs. f graph for the object whose displace-
ment as a function of time is given by Fig. 2-44.

56.

57.

58.

59.

The acceleration due to gravity on the Moon is about one-
sixth what it is on Farth. If an object is thrown vertically
upward on the Moon, how many times higher will it go
than it would on Farth, assuming the same initial velocity?
A person who is properly restrained by an over-the-shoulder
seat belt has a good chance of surviving a car collision if the
deceleration does not exceed 30 “g’s” (1.00 ¢ = 9.80 m/ sz).
Assuming uniform deceleration at 30 g’s, calculate the dis-
tance over which the front end of the car must be designed
to collapse if a crash brings the car to rest from 95 km/h.
A person jumps out a fourth-story window 18.0m above
a firefighter’s safety net. The survivor stretches the net
1.0m before coming
to rest, Fig. 2-45.
(@) What was the
average deceleration
experienced by the
survivor when she was
slowed to rest by the
net? (b) What would
you do to make it
“safer” (that is, to
generate a smaller
deceleration): would
you stiffen or loosen
the net? Explain.

FIGURE 2-45
Problem 58.

A bicyclist in the Tour de France crests a mountain pass
as he moves at 15km/h. At the bottom, 4.0km farther,
his speed is 65 km/h. Estimate his average acceleration
(in m/s?) while riding down the mountain.

60.

Consider the street pattern shown in Fig. 2-46. Fach inter-
section has a traffic signal, and the speed limit is 40 km /h.
Suppose you are driving from the west at the speed limit.
When you are 10.0m from the first intersection, all the lights
turn green. The lights are green for 13.0s each. (¢) Calculate
the time needed to reach the third stoplight. Can you make
it through all three lights without stopping? (b) Another car
was stopped at the first light when all the lights turned green.
It can accelerate at the rate of 2.00m/s” to the speed limit.
Can the second car make it through all three lights without
stopping? By how many seconds would it make it, or not
make it?

West 00 ‘ East
oooo h oo g 000,00
L == Speed limit
You?m‘_" 40 km/h ]
~car— 10m—; ~—350m 7 | 70 m | j
15m 15m 15m

61.

62.

63.

FIGURE 2-46 Problem 60.

An airplane travels 2100 km at a speed of 720 km /h, and
then encounters a tailwind that boosts its speed to 990 km /h
for the next 2800 km. What was the total time for the trip?
What was the average speed of the plane for this trip?
[Hint: Does Eq.2-11d apply?]

A stone is dropped from the roof of a high building. A second
stone is dropped 1.30s later. How far apart are the stones
when the second one has reached a speed of 12.0 m/s?

A person jumps off a diving board 4.0m above the water’s
surface into a deep pool. The person’s downward motion
stops 2.0 m below the surface of the water. Estimate the
average deceleration of the person while under the water.
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64.

65.

In putting, the force with which a golfer strikes a ball is
planned so that the ball will stop within some small distance
of the cup, say 1.0m long or short, in case the putt is missed.
Accomplishing this from an uphill lie (that is, putting the
ball downhill, see Fig. 2-47) is more difficult than from a
downhill lie. To see why, assume that on a particular green
the ball decelerates constantly at 1.8 m/s? going downhill,
and constantly at 2.6 m/s” going uphill. Suppose we have an
uphill lie 7.0m from the cup. Calculate the allowable range
of initial velocities we may impart to the ball so that it stops
in the range 1.0m short to 1.0m long of the cup. Do the
same for a downhill lie 7.0m from the cup. What in your
results suggests that the downbhill putt is more difficult?

Downbhill

FIGURE 2-47 Problem 64.

A stone is thrown vertically upward with a speed of
155 m/s from the edge of a cliff 75.0m high (Fig. 2-48).
(a) How much later
does it reach the
bottom of the cliff?
(b) What is its speed
just before hitting?
(c¢) What total distance
did it travel?

FIGURE 2-48
Problem 65.

66.

67.

68.

69.

70.

71.

In the design of a rapid transit system, it is necessary to
balance the average speed of a train against the distance
between station stops. The more stops there are, the slower
the train’s average speed. To get an idea of this problem,
calculate the time it takes a train to make a 15.0-km trip
in two situations: (a) the stations at which the trains must
stop are 3.0km apart (a total of 6 stations, including those
at the ends); and (b) the stations are 5.0km apart (4 stations
total). Assume that at each station the train accelerates at
a rate of 1.1 m/s® until it reaches 95 km/h, then stays at
this speed until its brakes are applied for arrival at the next
station, at which time it decelerates at —2.0 m/s%. Assume
it stops at each intermediate station for 22 s.

A person driving her car at 35 km/h approaches an inter-
section just as the traffic light turns yellow. She knows that
the yellow light lasts only 2.0 s before turning to red, and
she is 28 m away from the near side of the intersection
(Fig. 2-49). Should she try to stop, or should she speed up
to cross the intersection before the light turns red? The
intersection is 15 m wide. Her car’s maximum deceleration
is —5.8m/s?, whereas it can accelerate from 45 km/h to
65 km/h in 6.0s. Ignore the length of her car and her
reaction time.

— +x

FIGURE 2-49 Problem 67.

A car is behind a truck going 18 m/s on the highway. The
car’s driver looks for an opportunity to pass, guessing that
his car can accelerate at 0.60m/s?> and that he has to
cover the 20-m length of the truck, plus 10-m extra space at
the rear of the truck and 10 m more at the front of it. In the
oncoming lane, he sees a car approaching, probably at the
speed limit, 25 m/s (55mph). He estimates that the car is
about 500 m away. Should he attempt the pass? Give details.
Agent Bond is standing on a bridge, 15m above the road
below, and his pursuers are getting too close for comfort.
He spots a flatbed truck approaching at 25 m/s, which he
measures by knowing that the telephone poles the truck is
passing are 25 m apart in this region. The roof of the truck
is 3.5 m above the road, and Bond quickly calculates how
many poles away the truck should be when he drops down
from the bridge onto the truck, making his getaway. How
many poles is it?

A conveyor belt is used to send burgers through a grill-
ing machine. If the grilling machine is 1.2m long and
the burgers require 2.8min to cook, how fast must
the conveyor belt travel? If the burgers are spaced 25 cm
apart, what is the rate of burger production (in burgers/min)?
Two students are asked to find the height of a particular
building using a barometer. Instead of using the barometer
as an altitude measuring device, they take it to the roof of the
building and drop it off, timing its fall. One student reports a
fall time of 2.0s, and the other, 2.3s. What % difference does
the 0.3 s make for the estimates of the building’s height?
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72.

73.

74.

Two children are playing on two trampolines. The first
child bounces up one-and-a-half times higher than the
second child. The initial speed up of the second child is
40m/s. (a) Find the maximum height the second child
reaches. (b) What is the initial speed of the first child?
(c) How long was the first child in the air?

If there were no air resistance, how long would it take a
free-falling skydiver to fall from a plane at 3200m to an
altitude of 450 m, where she will open her parachute? What
would her speed be at 450m? (In reality, the air resis-
tance will restrict her speed to perhaps 150 km/h.)

You stand at the top of a cliff while your friend stands on
the ground below you. You drop a ball from rest and see
that she catches it 1.4 s later. Your friend then throws the
ball up to you, such that it just comes to rest in your hand.
What is the speed with which your friend threw the ball?

|Search and Learn

75. On an audio compact disc (CD), digital bits of infor-

mation are encoded sequentially along a spiral path. Each
bit occupies about 028 um. A CD player’s readout laser
scans along the spiral’s sequence of bits at a constant
speed of about 1.2 m/s as the CD spins. (a) Determine
the number N of digital bits that a CD player reads every
second. (b) The audio information is sent to each of the
two loudspeakers 44,100 times per second. Each of these
samplings requires 16 bits, and so you might expect the
required bit rate for a CD player to be

Samphngs> <16 bits > — 14x 100208,

S sampling S

Ny = 2(44,100

where the 2 is for the 2 loudspeakers (the 2 stereo channels).
Note that NN, is less than the number N of bits actually
read per second by a CD player. The excess number of
bits (= N — NO) is needed for encoding and error-
correction. What percentage of the bits on a CD are
dedicated to encoding and error-correction?

1.

ANSWERS TO EXERCISES

Discuss two conditions given in Section 2-7 for being able
to use a constant acceleration of magnitude g = 9.8 m/ s%.
Give an example in which one of these conditions would
not be met and would not even be a reasonable approxima-
tion of motion.

. In a lecture demonstration, a 3.0-m-long vertical string

with ten bolts tied to it at equal intervals is dropped from
the ceiling of the lecture hall. The string falls on a tin
plate, and the class hears the clink of each bolt as it hits
the plate. (a) The sounds will not occur at equal time inter-
vals. Why? (b) Will the time between clinks increase or
decrease as the string falls? (¢) How could the bolts be tied
so that the clinks occur at equal intervals? (Assume the
string is vertical with the bottom bolt touching the tin plate
when the string is released.)

. The position of a ball rolling in a straight line is given by

x = 2.0 — 3.6t + 1.7¢2, where x is in meters and ¢ in seconds.
(a) What do the numbers 2.0, 3.6, and 1.7 refer to? (b) What
are the units of each of these numbers? (c¢) Determine the
position of the ball at { = 1.0s, 2.0s, and 3.0s. (d) What is
the average velocity over the interval { = 1.0s to f = 3.0s?

A: (a) displacement = —30cm; (b) total distance = 50 cm.
B: (b).
C (o) +5 (b) =5 (&) =5 (D) +.

D: (b).
E: (o).
F: (o).
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Kinematics in

This snowboarder flying through
the air shows an example of
motion in two dimensions. In
the absence of air resistance, the
path would be a perfect parabola.
The gold arrow represents the
downward acceleration of
gravity, g. Galileo analyzed the
motion of objects in 2 dimensions
under the action of gravity near
the Earth’s surface (now called
“projectile motion”) into its
horizontal and vertical components.
We will discuss vectors and how
to add them. Besides analyzing
projectile motion, we will also see
how to work with relative velocity.

Two Dimensions; Vectors

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—you will get another chance later in the
Chapter. See also p. 1 of Chapter 1 for more explanation. |

A small heavy box of emergency supplies is dropped from a moving helicopter at
point A as it flies at constant speed in a horizontal direction. Which path in the
drawing below best describes the path of the box (neglecting air resistance) as
seen by a person standing on the ground?

n Chapter 2 we dealt with motion along a straight line. We now consider the
I motion of objects that move in paths in two (or three) dimensions. In par-
ticular, we discuss an important type of motion known as projectile motion:
objects projected outward near the Earth’s surface, such as struck baseballs and
golf balls, kicked footballs, and other projectiles. Before beginning our discussion
of motion in two dimensions, we will need a new tool, vectors, and how to add them.

CONTENTS
3-1
3-2

Vectors and Scalars

Addition of Vectors—
Graphical Methods

Subtraction of Vectors, and
Multiplication of a Vector
by a Scalar

Adding Vectors by
Components

3-3

3-5 Projectile Motion

Solving Projectile Motion
Problems

*3-7
3-8

Projectile Motion Is Parabolic
Relative Velocity
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FIGURE 3-1 Car traveling on a
road, slowing down to round the
curve. The green arrows represent
the velocity vector at each position.

FIGURE 3-2 Combining vectors in
one dimension.

3—1 Vectors and Scalars

We mentioned in Chapter 2 that the term velocity refers not only to how fast an
object is moving but also to its direction. A quantity such as velocity, which has
direction as well as magnitude, is a vector quantity. Other quantities that are also
vectors are displacement, force, and momentum. However, many quantities have no
direction associated with them, such as mass, time, and temperature. They are speci-
fied completely by a number and units. Such quantities are called scalar quantities.

Drawing a diagram of a particular physical situation is always helpful in
physics, and this is especially true when dealing with vectors. On a diagram, each
vector is represented by an arrow. The arrow is always drawn so that it points in
the direction of the vector quantity it represents. The length of the arrow is drawn
proportional to the magnitude of the vector quantity. For example, in Fig. 31,
green arrows have been drawn representing the velocity of a car at various places
as it rounds a curve. The magnitude of the velocity at each point can be read off
Fig. 3-1 by measuring the length of the corresponding arrow and using the scale
shown (1cm = 90km/h).

When we write the symbol for a vector, we will always use boldface type, with a
tiny arrow over the symbol. Thus for velocity we write V. If we are concerned only
with the magnitude of the vector, we will write simply v, in italics, as we do for
other symbols.

3-2 Addition of Vectors—Graphical
Methods

Because vectors are quantities that have direction as well as magnitude, they must
be added in a special way. In this Chapter, we will deal mainly with displacement
vectors, for which we now use the symbol ﬁ, and velocity vectors, v. But the results
will apply for other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also be
used for adding vectors if they are in the same direction. For example, if a

person walks 8 km east one day, and 6 km east the next day, the person will be
Resultant = 14 km (east) 8km + 6km = 14km east of the point of origin. We say that the net or resultant
> displacement is 14 km to the east (Fig. 3—2a). If, on the other hand, the person
o~ 8 km =t P km ’ ’ééls(tm) walks 8 km east on the first day, and 6 km west (in the reverse direction) on the
second day, then the person will end up 2 km from the origin (Fig. 3-2b), so the
(a) resultant displacement is 2 km to the east. In this case, the resultant displacement
is obtained by subtraction: 8km — 6 km = 2 km.
But simple arithmetic cannot be used if the two vectors are not along the same
Resultant = 2 km (east) line. For example, suppose a person walks 10.0 km east and then walks 5.0 km
6km north. These displacements can be represented on a graph in which the positive
><—. e x km) Y axis points north and the positive x axis points east, Fig. 3-3. On this graph, we
O "¢m ' Fast  draw an arrow, labeled D, to represent the 10.0-km displacement to the east.
Then we draw a second arrow, f)z, to represent the 5.0-km displacement to
(b) the north. Both vectors are drawn to scale, as in Fig. 3-3.
y (km)
North X
FIGURE 3-3 A person walks 10.0 km east and then 5.0 km 6 Ge“‘e‘\
north. These two displacements are represented by the 4 T \&/%Q\iéq,
vectors D; and D5, which are shown as arrows. Also shown 1 e%“\\?\ PAVES D
is the resultantﬁdisplacgment vector, Dy, which is the 2 __% * 2
vector sum of Dy and D,. Measurement on the graph + 6 D
with ruler and protractor shows that Dy, has a magnitude West —g 1=ttt x (km)
of 11.2 km and points at an angle 0 = 27° north of east. + 2 4 6 8 10 Hast
South
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After taking this walk, the person is now 10.0 km east and 5.0 km north of the
point of origin. The resultant displacement is represented by the arrow labeled Dy
in Fig. 3-3. ('The subscript R stands for resultant.) Using a ruler and a protractor,
you can measure on this diagram that the person is 11.2 km from the origin at an
angle 6 = 27° north of east. In other words, the resultant displacement vector has
amagnitude of 11.2 km and makes an angle 6 = 27° with the positive x axis. The
magnitude (length) of Dy, can also be obtained using the theorem of Pythagoras
in this case, because Dy, D,, and Dy form a right triangle with Dy as the
hypotenuse. Thus

D} + D3 = \/(10.0km)? + (5.0km)>
\V125km?> = 112km.

You can use the Pythagorean theorem only when the vectors are perpendicular
to each other. ~ _ _

The resultant displacement vector, Dy, is the sum of the vectors Dy and D,
That is,

Dy

f)R = ﬁl'i‘ﬁzA

This is a vector equation. An important feature of adding two vectors that are not
along the same line is that the magnitude of the resultant vector is not equal to the
sum of the magnitudes of the two separate vectors, but is smaller than their sum.
That is,

Dy = (D + D),

where the equals sign applies only if the two vectors point in the same direction.
In our example (Fig. 3-3), Dy = 11.2km, whereas D; + D, equals 15 km,
which is the total distance traveled. Note also that we cannot set Dy equal to
11.2 km, because we have a vector equation and 11.2 km is only a part of the
resultant vector, its magnitude. We could write something like this, though:
D, =D; + D, = (112km, 27° Nof E).

Figure 3-3 illustrates the general rules for graphically adding two vectors
together, no matter what angles they make, to get their sum. The rules are as
follows:

1. On a diagram, draw one of the vectors—call it I_il—to scale.

2. Next draw the second vector, f)z, to scale, placing its tail at the tip of the
first vector and being sure its direction is correct.

3. The arrow drawn from the tail of the first vector to the tip of the second
vector represents the sum, or resultant, of the two vectors.

The length of the resultant vector represents its magnitude. Note that vectors can
be moved parallel to themselves on paper (maintaining the same length and
angle) to accomplish these manipulations. The length of the resultant can be FIGURE 3-4 If the vectors are
measured with a ruler and compared to the scale. Angles can be measured  ,44ed in reverse order, the resultant
with a protractor. This method is known as the tail-to-tip method of adding s {he same. (Compare to Fig.3-3.)
vectors.

The resultant is not affected by the order in which the vectors are added. Y a&%lr)th
For example, a displacement of 5.0 km north, to which is added a displacement 6 1
of 10.0 km east, yields a resultant of 11.2 km and angle 6 = 27° (see Fig. 3-4), 44
the same as when they were added in reverse order (Fig. 3-3). That is, now 1
using V to represent any type of vector, 21
VitV o= V4V West =g
[Mathematicians call this equation the commutative property of vector addition.] South
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The tail-to-tip method of adding vectors can be extended to three or more
vectors. The resultant is drawn from the tail of the first vector to the tip of the last
one added. An example is shown in Fig. 3-5; the three vectors could represent
displacements (northeast, south, west) or perhaps three forces. Check for yourself
that you get the same resultant no matter in which order you add the three vectors.

v,
FIGURE 3-5 The resultant of three / 1 + Vz + <V— = Vz
vectors: Vp = V| + V, + Vs, 3 VR
\

FIGURE 3-6 Vector addition by two
different methods, (a) and (b). =
Part (c) is incorrect.

DcauTion

Be sure to use the correct diagonal on
the parallelogram to get the resultant

FIGURE 3-7 The negative of a
vector is a vector having the same
length but opposite direction.

/7

A second way to add two vectors is the parallelogram method. It is fully equiva-
lent to the tail-to-tip method. In this method, the two vectors are drawn starting
from a common origin, and a parallelogram is constructed using these two vectors
as adjacent sides as shown in Fig. 3—6b. The resultant is the diagonal drawn from
the common origin. In Fig. 3—6a, the tail-to-tip method is shown, and we can see that
both methods yield the same result.

_— =+ < =
v, /Vz

(a) Tail-to-tip
(b) Parallelogram

(c) Wrong

Itis a common error to draw the sum vector as the diagonal running between
the tips of the two vectors, as in Fig. 3—-6¢. This is incorrect: it does not represent
the sum of the two vectors. (In fact, it represents their difference, V, — V,, aswe
will see in the next Section.)

CONCEPTUAL EXAMPLE 3-1 | Range of vector lengths. Suppose two
vectors each have length 3.0 units. What is the range of possible lengths for the
vector representing the sum of the two?

RESPONSE The sum can take on any value from 6.0 (= 3.0 + 3.0) where the
vectors point in the same direction, to 0 (= 3.0 — 3.0) when the vectors are
antiparallel. Magnitudes between 0 and 6.0 occur when the two vectors are at
an angle other than 0° and 180°.

EXERCISE A If the two vectors of Example 3-1 are perpendicular to each other, what is
the resultant vector length?

3—-3 Subtraction of Vectors, and
Multiplication of a Vector by a Scalar

Given a vector V, we define the negative of this vector (— V) to be a vector with
the same magnitude as V but opposite in direction, Fig. 3-7. Note, however, that
no vector is ever negative in the sense of its magnitude: the magnitude of every
vector is positive. Rather, a minus sign tells us about its direction.
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We can now define the subtraction of one vector from another: the difference
between two vectors V, — V; is defined as
V2 - Vl = Vz + (_Vl)
That is, the difference between two vectors is equal to the sum of the first plus

the negative of the second. Thus our rules for addition of vectors can be applied as
shown in Fig. 3-8 using the tail-to-tip method.

V. v v Y - QK 7
/ _— 1— - 2/ + 1— - V2—V1 Vz

A vector V can be multiplied by a scalar ¢. We define their product so that ¢V
has the same direction as V and has magnitude ¢V. That is, multiplication of a
vector by a positive scalar ¢ changes the magnitude of the vector by a factor ¢ but
doesn’t alter the direction. If ¢ is a negative scalar (such as —2.0), the magnitude
of the product ¢V is changed by the factor |c| (where |c| means the magnitude of c),
but the direction is precisely opposite to that of V. See Fig. 3-9.

EXERCISE B What does the “incorrect” vector in Fig. 3—-6c represent? (a) V, — V;;
(b) Vi — ¥;; (c) something else (specify).

3-4 Adding Vectors by Components

Adding vectors graphically using a ruler and protractor is often not sufficiently
accurate and is not useful for vectors in three dimensions. We discuss now a more
powerful and precise method for adding vectors. But do not forget graphical
methods—they are useful for visualizing, for checking your math, and thus for
getting the correct result.

Components

Consider first a vector V that lies in a particular plane. It can be expressed as
the sum of two other vectors, called the components of the original vector. The
components are usually chosen to be along two perpendicular directions, such as
the x and y axes. The process of finding the components is known as resolving the
vector into its components. An example is shown in Fig. 3-10; the vector V could
be a displacement vector that points at an angle 8 = 30° north of east, where we
have chosen the positive x axis to be to the east and the positive y axis north.
This vector V is resolved into its x and y components by drawing dashed lines
(AB and AC) out from the tip (A) of the vector, making them perpendicular to
the x and y axes. Then the lines OB and OC represent the x and y components
of V, respectively, as shown in Fig. 3-10b. These vector components are written
V, and Vy . In this book we usually show vector components as arrows, like vectors,
but dashed. The scalar components, V. and V,,, are the magnitudes of the vector
components, with units, accompanied by a positive or negative sign depending on
whether they point along the positive or negative x or y axis. As can be seen in
Fig.3-10, V, + V = V by the parallelogram method of adding vectors.

Space is made up of three dimensions, and sometimes it is necessary to
resolve a vector into components along three mutually perpendicular directions.
In rectangular coordinates the components are V., V and V,.

8 (=30°)

o) SR
sl
2

(@) (b)

FIGURE 3-8 Subtracting two
vectors: V2

V.

FIGURE 3-9 Multiplying a vector V
by a scalar ¢ gives a vector whose
magnitude is ¢ times greater and in
the same direction as V (or opposite
direction if ¢ is negative).

/

=

\£

=15V

=

,=-20V

FIGURE 3-10 Resolving a vector V into its
components along a chosen set of x and y axes.
The components, once found, themselves
represent the vector. That is, the components
contain as much information as the vector itself.
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FIGURE 3-11 Starting with an angle 6 as

in (a), we can construct right triangles of h
different sizes, (b) and (c), but the ratio of 5 d 0
the lengths of the sides does not depend on u

the size of the triangle.

:
Vv =H
I y
]
0 90l
- >1
A\ *
V.
i =_J
sin 6 v
cos9=5
1%
V.
tan @ = 2
V)C
VZ:V)%+Vy2

FIGURE 3-12 Finding the
components of a vector using
trigonometric functions. The
equations are valid only if 0 is the
angle V makes with the positive
X axis.

To add vectors using the method of components, we need to use the trigo-
nometric functions sine, cosine, and tangent, which we now review.

Given any angle 6, as in Fig. 3-11a, a right triangle can be constructed by
drawing a line perpendicular to one of its sides, as in Fig. 3-11b. The longest
side of a right triangle, opposite the right angle, is called the hypotenuse, which
we label A. The side opposite the angle 6 is labeled o, and the side adjacent is
labeled a. We let A, o, and a represent the lengths of these sides, respectively.

(@) (b)

We now define the three trigonometric functions, sine, cosine, and tangent (abbre-
viated sin, cos, tan), in terms of the right triangle, as follows:

) side opposite ]
sinf = ——— = —
hypotenuse h
side adjacent
cosf = SIce adjacent _ 4 3-1
hypotenuse h
side opposite ]
tanf) = —— " = —
side adjacent a

If we make the triangle bigger, but keep the same angles, then the ratio of the
length of one side to the other, or of one side to the hypotenuse, remains the same.
That is, in Fig. 3—11c we have: a/h = a'/h'; o/h =o' /h'; and o/a = o' /d'.
Thus the values of sine, cosine, and tangent do not depend on how big the trian-
gle is. They depend only on the size of the angle. The values of sine, cosine, and
tangent for different angles can be found using a scientific calculator, or from the
Table in Appendix A.
A useful trigonometric identity is

sin’@ + cos’0 = 1 (3-2)
which follows from the Pythagorean theorem (0? + a*> = h* in Fig. 3—-11). That is:

., ,, 0 at _ o+a K
sm6+cost9—ﬁ+ﬁ— 7 _ﬁ_l'
{See Appendix A and inside the rear cover for other details on trigonometric
functions and identities.)

The use of trigonometric functions for finding the components of a vector is
illustrated in Fig. 3—12, where a vector and its two components are thought of as
making up a right triangle. We then see that the sine, cosine, and tangent are as
given in Fig. 3-12, where 6 is the angle V makes with the +x axis. If we multiply
the definition of sin6 = V,/V by V on both sides, we get

V, = Vsino. (3-3a)

Similarly, from the definition of cos 6, we obtain
V. = Vcosé. (3-3b)

Note that if 6 is not the angle the vector makes with the positive x axis, Eqs. 3-3
are not valid.
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=Vsinf=250m
=Vcos8=433m

V=+/VI+VZ=500m

Y
North
V)C

V (V=500m) v

0=30°

X
Hast 0
(a) (b)

Using Eqgs. 3-3, we can calculate V, and V), for any vector, such as that illus-
trated in Fig. 3-10 or Fig. 3-12. Suppose V represents a displacement of 500 m in
a direction 30° north of east, as shown in Fig. 3—13. Then V = 500 m. From a
calculator or Tables, sin 30° = 0.500 and cos 30° = 0.866. Then

Ve = Vcosh = (500m)(0.866) = 433m (east),
Vy = Vsing = (500m)(0.500) = 250m (north).
There are two ways to specify a vector in a given coordinate system:

1. We can give its components, V, and V.
2. We can give its magnitude V and the angle 6 it makes with the positive x axis.

We can shift from one description to the other using Eqs. 3-3, and, for the reverse,
by using the theorem of Pythagoras’ and the definition of tangent:

Vv = \VI+V} (3-4a)

(3-4b)

Vy
tan 6 —
an V.
as can be seen in Fig. 3-12.

Adding Vectors

We can now discuss how to add vectors using components. The first step is to
resolve each vector into its components. Next we can see, using Fig. 3—14, that the
addition of any two vectors V; and V, to give aresultant, Vg = V; + V,, implies that

Vor = Vix + Vi
VRy = ‘/1y+‘/2yA

(3-5)

That is, the sum of the x components equals the x component of the resultant vector,
and the sum of the y components equals the y component of the resultant, as can
be verified by a careful examination of Fig. 3-14. Note that we do not add x compo-
nents to y components.

If the magnitude and direction of the resultant vector are desired, they can
be obtained using Eqs. 3—4.

fIn three dimensions, the theorem of Pythagoras becomes V = \/V7 + Vy2 + V2, where V, is the
component along the third, or z, axis.

)

Vix

FIGURE 3-13 (a) Vector V
represents a displacement of 500 m
at a 30° angle north of east. (b) The
components of V are V, and Vy ,
whose magnitudes are given on

the right in the diagram.

FIGURE 3-14 The components of
V Vl + V2 are VRX = le + VZX
and Vgy, = Viy + V3.
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Post 0 \ Hast
office D,

FIGURE 3-15 Example 3-2.

(a) The two displacement vectors,
D, and D,. (b) D, is resolved into
its components. (c) D, and D, are
added to obtain the resultant D R-
The component method of adding
the vectors is explained in the
Example.

PROBLEM SOLVING

Identify the correct quadrant by
drawing a careful diagram

The components of a given vector depend on the choice of coordinate axes.
You can often reduce the work involved in adding vectors by a good choice of
axes—for example, by choosing one of the axes to be in the same direction as one
of the vectors. Then that vector will have only one nonzero component.

EXAMPLE 3-2| Mail carrier’s displacement. A rural mail carrier leaves the
post office and drives 22.0 km in a northerly direction. She then drives in a direc-
tion 60.0° south of east for 47.0 km (Fig. 3—15a). What is her displacement from
the post office?

APPROACH We choose the positive x axis to be east and the positive y axis to
be north, since those are the compass directions used on most maps. The origin
of the xy coordinate system is at the post office. We resolve each vector into its
x and y components. We add the x components together, and then the y compo-
nents together, giving us the x and y components of the resultant.

SOLUTION Resolve each displacement vector into its components, as shown
in Fig. 3—15b. Since D; has magnitude 22.0 km and points north, it has only a
y component:

Dlx = 0, Dl = 22.0km.

y
D, has both x and y components:
Dy = +(47.0km)(cos 60°) = +(47.0km)(0.500) +23.5km
D,y = —(47.0km)(sin60°) = —(47.0km)(0.866) —40.7 km.

Notice that D, is negative because this vector component points along the
negative y axis. The resultant vector, Dy, has components:

Dpy = Dy + Dy, = Okm + 235km = +235km

Dgy = Dy + Dy, = 220km + (—40.7km) = —18.7km.
This specifies the resultant vector completely:

Dy, = 23.5km, Dgy = —187km.

We can also specify the resultant vector by giving its magnitude and angle using
Eqgs.3-4:

Dy = \/Di, + D&y, = \/(235km)’ + (—18.7km)’ = 30.0km

Dy, —18.7km
tanf = DRX = m = —0.796.
A calculator with a key labeled INV TAN, or ARC TAN, Or TAN = gives
6 = tan '(—0.796) = —38.5°. The negative sign means 6 = 38.5° below the
x axis, Fig. 3-15c. So, the resultant displacement is 30.0 km directed at 38.5°
in a southeasterly direction.

1

NOTE Always be attentive about the quadrant in which the resultant vector
lies. An electronic calculator does not fully give this information, but a good
diagram does.

As we saw in Example 3-2, any component that points along the negative x or
y axis gets a minus sign. The signs of trigonometric functions depend on which
“quadrant” the angle falls in: for example, the tangent is positive in the first and
third quadrants (from 0° to 90°, and 180° to 270°), but negative in the second
and fourth quadrants; see Appendix A, Fig. A—7. The best way to keep track of
angles, and to check any vector result, is always to draw a vector diagram, like
Fig. 3-15. A vector diagram gives you something tangible to look at when analyzing
a problem, and provides a check on the results.

The following Problem Solving Strategy should not be considered a prescrip-
tion. Rather it is a summary of things to do to get you thinking and involved in the
problem at hand.
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eoLVI/VQ

S

il‘/ Adding Vectors Pay tCarleful ?ﬁtentimtl. to signs: any C?mpopent .that
M@  Here is a brief summary of how to add two or more POITS along the NEGALVE X OT y axIs §C1S 4 MINUS SIEN.
O  vectors using components: 5. Add the x components together to get the x compo-
o 1. Draw a diagram, adding the vectors graphically by nent of the resultant. Similarly for y:
either the parallelogram or tail-to-tip method. Vry = Vix + Vi + any others
2, Choose x and y axes. Choose them in a way, if possible, Voy = Wiy + V,y + any others.
that Wﬂl make your.wor.k casier. (For example, choqse This is the answer: the components of the resultant
one a@s along the direction of one of the vectors, which vector. Check signs to see if they fit the quadrant
then will have only one component.) shown in your diagram (point 1 above).
3. Resolve each vector into its x and y components, . o
howi h ¢ al 0 it 6. If you want to know the magnitude and direction of
showing cach component along 11 appropriate the resultant vector, use Eqs. 3—4:
{(x or y) axis as a (dashed) arrow. v
4. Calculate each component (when not given) using Ve = \/V2 + V2 tanf = “RY
sines and cosines. If 6; is the angle that vector V; R R R Ve
makes with the positive x axis, then: The vector diagram you already drew helps to obtain
Vix, = Vicosby, Viy = Visinf,. the correct position (quadrant) of the angle 6.
EXAMPLE 3-3| Three short trips. An airplane trip involves three legs, with +y
two stopovers, as shown in Fig. 3—16a. The first leg is due east for 620 km; the North
second leg is southeast (45°) for 440 km; and the third leg is at 53° south of
west, for 550 km, as shown. What is the plane’s total displacement?
APPROACH We follow the steps in the Problem Solving Strategy above. - +]ijcast
SOLUTION
1. Draw a diagram such as Fig. 3-16a, where D,, D,, and D, represent the
three legs of the trip, and Dy is the plane’s total displacement.
2. Choose axes: Axes are also shown in Fig. 3—16a: x is east, y north.
3. Resolve components: It is imperative to draw a good diagram. The components
are drawn in Fig. 3—16b. Instead of drawing all the vectors starting from
a common origin, as we did in Fig. 3-15b, here we draw them “tail-to-tip”
style, which is just as valid and may make it easier to sce.
4. Calculate the components: D, D,
Dl: Dlx = +D1 C.OS OO = Dl = 620 km —X 0 132 4;3:D2y +]}ECast
Dyy = +Dysin0” = Okm DN
D,: Dy, = +Dycos45° = +(440km)(0.707) = +311km D, 530
Dy, = —D,sind5° = —(440km)(0.707) = —311km /b,
D;: Dy, = —Dscos53° = —(550km)(0.602) = —331km —y v
Dy, = —Dssin53° = —(550km)(0.799) = —439km. (b)
We have giv.en a.minus sign to each component th.at in Fig. 3—16b points 111 the  FIGURE 3-16 Example 3-3.
—x or — y direction. The components are shown in the Table in the margin.
5. Add the components: We add the x components together, and we add the
y components together to obtain the x and y components of the resultant: Components
Dy = Dy + Dy + Dy = 620km + 311km — 331km = 600km  Vector x (km) y (km)
Dry = Dyy+ D)y + Dy = Okm — 311km — 439km = —750 km. l:)1 620 0
The x and y components of the resultant are 600 km and —750 km, and point g 2 _;ﬁ :féé
respectively to the east and south. This is one way to give the answer. 3
6. Magnitude and direction: We can also give the answer as Dr 600 —750
Dy = \/Di, + Dy = \/(600)* + (=750’ km = 960 km
Dyy, =750 km
= = —— = 12 = —=51°.
tan 6 D 600 km S, so 6 5
Thus, the total displacement has magnitude 960 km and points 51° below the
x axis (south of east), as was shown in our original sketch, Fig. 3—16a.
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(b)

FIGURE 3-17 Photographs of

(a) a bouncing ball and (b) a thrown
basketball, each showing the
characteristic “parabolic” path of
projectile motion.

—i ~ e a= g
FIGURE 3-18 Projectile motion of a small Y \’\

3-5 Projectile Motion

In Chapter 2, we studied the one-dimensional motion of an object in terms of dis-
placement, velocity, and acceleration, including purely vertical motion of a falling
object undergoing acceleration due to gravity. Now we examine the more general
translational motion of objects moving through the air in two dimensions near the
Earth’s surface, such as a golf ball, a thrown or batted baseball, kicked footballs,
and speeding bullets. These are all examples of projectile motion (see Fig. 3-17),
which we can describe as taking place in two dimensions if there is no wind.

Although air resistance is often important, in many cases its effect can be
ignored, and we will ignore it in the following analysis. We will not be concerned
now with the process by which the object is thrown or projected. We consider only
its motion after it has been projected, and before it lands or is caught—that is,
we analyze our projected object only when it is moving freely through the air under
the action of gravity alone. Then the acceleration of the object is that due to gravity,
which acts downward with magnitude g = 9.80 m/s*, and we assume it is constant.’

Galileo was the first to describe projectile motion accurately. He showed that
it could be understood by analyzing the horizontal and vertical components of
the motion separately. For convenience, we assume that the motion begins at
time ¢ = 0 at the origin of an xy coordinate system (so xq = y;, = 0).

Let us look at a (tiny) ball rolling off the end of a horizontal table with an
initial velocity in the horizontal (x) direction, v,,. See Fig. 3-18, where an object
falling vertically is also shown for comparison. The velocity vector v at each instant
points in the direction of the ball’s motion at that instant and is thus always tangent
to the path. Following Galileo’s ideas, we treat the horizontal and vertical compo-
nents of velocity and acceleration separately, and we can apply the kinematic
equations (Egs.2—11a through 2—-11c¢) to the x and y components of the motion.

First we examine the vertical (y) component of the motion. At the instant
the ball leaves the table’s top (¢ = 0), it has only an x component of velocity.
Once the ball leaves the table (at ¢ = 0), it experiences a vertically downward
acceleration g, the acceleration due to gravity. Thus vy is initially zero (vyo = O)
but increases continually in the downward direction (until the ball hits the
ground). Let us take y to be positive upward. Then the acceleration due to gravity
is in the —y direction, so a, = —g. From Eq. 2-11a (using y in place of x) we
can write v, = vy + a,t = —gt since we set v, = 0. The vertical displacement
is given by Eq. 2-11b written in terms of y: y = y; + vy + 3ay,1%

Given y, = 0, vy = 0, and a, = —g, then y = —;gt>.

"This restricts us to objects whose distance traveled and maximum height above the Earth are small
compared to the Earth’s radius (6400 km).

ball projected horizontally with initial N

velocity v = ¥,. The dashed black line ==V o
represents the path of the object. The ; Projectile

velocity vector ¥ is in the direction of

<l

y motion

NE
\V

motion at each point, and thus is tangent to -

the path. The velocity vectors are green
arrows, and velocity components are dashed.
(A vertically falling object starting from rest
at the same place and time is shown at the

left for comparison; v, is the same at each Vertical
instant for the falling object and the fall
projectile.)
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In the horizontal direction, on the other hand, there is no acceleration (we are
ignoring air resistance). With a, = 0, the horizontal component of velocity, v, ,
remains constant, equal to its initial value, v,,, and thus has the same magnitude
at each point on the path. The horizontal displacement (with a, = 0) is given by
X = vyt + 3a, 1> = vyt. The two vector components, v, and vy, can be added
vectorially at any instant to obtain the velocity v at that time (that is, for each
point on the path), as shown in Fig.3-18.

One result of this analysis, which Galileo himself predicted, is that an object
projected horizontally will reach the ground in the same time as an object dropped
vertically. This is because the vertical motions are the same in both cases, as shown
in Fig. 3—18. Figure 3-19 is a multiple-exposure photograph of an experiment
that confirms this.

EXERCISE C Two balls having different speeds roll off the edge of a horizontal table at
the same time. Which hits the floor sooner, the faster ball or the slower one?

If an object is projected at an upward angle, as in Fig. 3-20, the analysis is
similar, except that now there is an initial vertical component of velocity, vy,.
Because of the downward acceleration of gravity, the upward component of
velocity v, gradually decreases with time until the object reaches the highest
point on its path, at which point v, = 0. Subsequently the object moves down-
ward (Fig. 3-20) and v, increases in the downward direction, as shown (that is,
becoming more negative). As before, v, remains constant.

Y Vy = 0 at this point
v _ v
VoA &7 T~<

: [

o)
Il
]

| EXERCISE D Where in Tig. 3-201s (i) v = 0, (ii) v, = 0, and (iii) v, = 0?

CONCEPTUAL EXAMPLE 3-4 | Where does the apple land? A child sits
upright in a wagon which is moving to the right at constant speed as shown in
Fig. 3-21. The child extends her hand and throws an apple straight upward
(from her own point of view, Fig. 3-21a), while the wagon continues to travel
forward at constant speed. If air resistance is neglected, will the apple land
{(a) behind the wagon, (b) in the wagon, or (¢) in front of the wagon?

RESPONSE The child throws the apple straight up from her own reference frame
with initial velocity v, (Fig. 3-21a). But when viewed by someone on the ground,
the apple also has an initial horizontal component of velocity equal to the speed of
the wagon, v,o. Thus, to a person on the ground, the apple will follow the path of
a projectile as shown in Fig. 3-21b. The apple experiences no horizontal accel-
eration, so v, will stay constant and equal to the speed of the wagon. As the
apple follows its arc, the wagon will be directly under the apple at all times
because they have the same horizontal velocity. When the apple comes down, it
will drop right into the outstretched hand of the child. The answer is (b).

EXERCISE E Return to the Chapter-Opening Question, page 49, and answer it again
now. Try to explain why you may have answered differently the first time. Describe the
role of the helicopter in this example of projectile motion.

. &

FIGURE 3-19 Multiple-exposure
photograph showing positions of
two balls at equal time intervals.
One ball was dropped from rest at
the same time the other ball was
projected horizontally outward.
The vertical position of each ball is
seen to be the same at each instant.

FIGURE 3-20 Path of a projectile launched with
initial velocity ¥ at angle 6, to the horizontal.
Path is shown dashed in black, the velocity
vectors are green arrows, and velocity
components are dashed. The figure does

not show where the projectile hits the ground

(at that point, projectile motion ceases).

FIGURE 3-21 Example 3-4.

Vyo

Yo Yo7 N

%0 T@)

0O o :ﬁ

(b) Ground reference frame
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3—6 Solving Projectile Motion Problems

We now work through several Examples of projectile motion quantitatively. We
use the kinematic equations (2—11a through 2—-11c) separately for the vertical and
horizontal components of the motion. These equations are shown separately for
the x and y components of the motion in Table 3-1, for the general case of two-
dimensional motion at constant acceleration. Note that x and y are the respective
displacements, that v, and v, are the components of the velocity, and that
a, and ay are the components of the acceleration, each of which is constant.
The subscript 0 means “at 1 = 0.”

TABLE 3-1 General Kinematic Equations for Constant Acceleration
inTwo Dimensions

x component (horizontal) y component (vertical)
Vy = Vyo T Uyl (Eq.2-11a) vy = Vyo T oayl

x = xp + Vgl + Lat? (Eq.2-11b) Y= Yo+ Uyol + Sayt?
vy = vio + 2ax(x — xq) (Eq.2-11c) va = vao + 2ay(y — vo)

We can simplify Eqs.2—-11 to use for projectile motion because we can set a, = 0.
See Table 3-2, which assumes y is positive upward, so ay = —g = —9.80m/s%.

TABLE 3-2 Kinematic Equations for Projectile Motion
{y positive upward; a, = 0, a, = —g = —9.80m/s’)

Horizontal Motion Vertical Motion®

(ay = 0, v, = constant) (ay = —g = constant)

Vy = Vxg (Eq.2-11a) vy = Vyo — gf

x = xg + Uyot (Eq.2-11b) y = Yo + vyl — 341
(Eq.2-11¢) vy = 3o — 28(v = y0)

¥ If y is taken positive downward, the minus ( —) signs in front of g become + signs.

If the projection angle 6 is chosen relative to the +x axis (Fig. 3-20), then
Vyo = VgCOS by, and Vyg = Vpsinfy.
% PROBLEM SOLVING Indoing Problems involving projectile motion, we must consider a time interval for

Choice of time interval ~ which our chosen object is in the air, influenced only by gravity. We do not consider
the throwing (or projecting) process, nor the time after the object lands or is caught,

S oLVI N because then other influences act on the object, and we can no longer set & = g.
@
:l‘/ PI’Oj ectile Motion 5. Examine the horizontal.(x) and \.fe.rt.ical ) motions
0 Our approach to solving Problems in Section 2-6 also separately. If you are given the initial velocity, you
O  applies here. Solving Problems involving projectile 6 ?ay v;rlan:(to resolvz it ml:o its x and y .c.omp(ilnent.s.
€  motion can require creativity, and cannot be done just ISt_ tO ¢ élown_an un I}rown ﬁuantltleisbcgooosng
\4 by following some rules. Certainly you must avoid just a; =0 and ay = —g or +g, where g =9.30m/s’,

and using the — or + sign, depending on whether
you choose y positive up or down. Remember that
v never changes throughout the trajectory, and that
vy = 0 at the highest point of any trajectory that
returns downward. The velocity just before landing is

plugging numbers into equations that seem to “work.”

1. As always, read carefully; choose the object (or
objects) you are going to analyze.

2. Draw a careful diagram showing what is happening

to the object. ) generally not zero.
3. Choose an origin and an xy coordinate system. 7. Think for a minute before jumping into the equations.
4. Decide on the time interval, which for projectile A little planning goes a long way. Apply the relevant
motion can only include motion under the effect of equations (Table 3-2), combining equations if neces-
gravity alone, not throwing or landing. The time inter- sary. You may need to combine components of a
val must be the same for the x and y analyses. The x vector to get magnitude and direction (Egs. 3—4).

and y motions are connected by the common time, 7.
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EXAMPLE 3-5| Driving off a cliff. A movie stunt driver on a motorcycle

speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave
the cliff top to land on level ground below, 90.0 m from the base of the cliff where
the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Strategy
on the previous page.

SOLUTION

1. and 2. Read, choose the object, and draw a diagram. Our object is the motor-
cycle and driver, taken as a single unit. The diagram is shown in Fig. 3-22.

3. Choose a coordinate system. We choose the y direction to be positive
upward, with the top of the cliff as y, = 0. The x direction is horizontal with
xq = 0 at the point where the motorcycle leaves the cliff.

4. Choose a time interval. We choose our time interval to begin (¢ = 0) just as
the motorcycle leaves the cliff top at position x5 = 0, y, = 0. Our time
interval ends just before the motorcycle touches the ground below.

5. Examine x and y motions. In the horizontal (x) direction, the acceleration
ay = 0, so the velocity is constant. The value of x when the motorcycle
reaches the ground is x = +90.0m. In the vertical direction, the accelera-

tion is the acceleration due to gravity, a, = —g = —9.80m /s%. The value of
y when the motorcycle reaches the ground is y = —50.0 m. The initial veloc-
ity is horizontal and is our unknown, v,,; the initial vertical velocity is zero,
vy = 0.

y0

6. List knowns and unknowns. See the Table in the margin. Note that in addition
to not knowing the initial horizontal velocity v, (which stays constant until
landing), we also do not know the time ¢ when the motorcycle reaches the
ground.

7. Apply relevant equations. The motorcycle maintains constant v, as long as it
is in the air. The time it stays in the air is determined by the y motion—when
it reaches the ground. So we first find the time using the y motion, and then
use this time value in the x equations. To find out how long it takes the
motorcycle to reach the ground below, we use Eq.2-11b (Tables 3—1 and 3-2)
for the vertical (y) direction with y, = 0 and vy, = 0:

Vo= W+ vyl + 3a,1’
0+ 0 +3(—g)?

or
v = —agt”
We solve forf and set y = —50.0m:

2y 2(=50.0m)
= — = — = = 3.19s.
-8 —9.80 m/s>

To calculate the initial velocity, v, we again use Eq.2—-11b, but this time for
the horizontal (x) direction, with a, = 0 and x, = 0:

X = Xg + vt + 3a,t?
= (0 + ’Uxot + 0
or
X = Vyol.
Then
X 90.0m
Vg = — = —— = 282m/s,
Ty 319s /

which is about 100 km /h (roughly 60 mi/h).

NOTE In the time interval of the projectile motion, the only acceleration is g in
the negative y direction. The acceleration in the x direction is zero.

+y
a3l —> + X =
% =T a=g
¥ \\\
~
N
' 500m N
L \
\
t y=—50.0m\\
je—90.0m —— ]

FIGURE 3-22 Example 3-5.

Known Unknown
x =3 =0 Uxo
x =90.0m t
y = —=500m
ay =0
ay = —g = —9.80m/s’
’Dyo =0
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Vy =0 at this point

FIGURE 3-23 Example 3-6.

o

=g

X)PHYSICS APPLIED EXAMPLE 3-6| A kicked football. A kicked football leaves the ground at

Sports | an angle 6, = 37.0° with a velocity of 20.0 m/s, as shown in Fig. 3-23. Calculate
{(a) the maximum height, (b) the time of travel before the football hits the ground,
and (c) how far away it hits the ground. Assume the ball leaves the foot at ground
level, and ignore air resistance and rotation of the ball.

APPROACH This may seem difficult at first because there are so many questions.
But we can deal with them one at a time. We take the y direction as positive
upward, and treat the x and y motions separately. The total time in the air is again
determined by the y motion. The x motion occurs at constant velocity. The y com-
ponent of velocity varies, being positive (upward) initially, decreasing to zero at
the highest point, and then becoming negative as the football falls.
SOLUTION We resolve the initial velocity into its components (Fig. 3-23):

Vyo = 0€0837.0° = (20.0m/s)(0.799) = 16.0m/s

vy = vp8in37.0° = (20.0m/s)(0.602) = 12.0m/s.
{(a) To find the maximum height, we consider a time interval that begins just after
the football loses contact with the foot until the ball reaches its maximum height.
During this time interval, the acceleration is g downward. At the maximum
height, the velocity is horizontal (Fig. 3-23), so v, = 0. This occurs at a time given
by v, = vyy — gt with v, = 0 (see Eq.2-11a in Table 3-2), so vy, = gf and

Vyo (12.0m/s)
g (9.80m/s?)

From Eq.2-11b, with y; = 0, we can solve for y at this time (f = vy,/g):
YT et T8 g 28 2¢  20980m/s)

The maximum height is 7.35 m. [Solving Eq.2-11c for y gives the same result.]
(b) To find the time it takes for the ball to return to the ground, we consider a
different time interval, starting at the moment the ball leaves the foot (¢ = 0,
yo = 0) and ending just before the ball touches the ground (y = 0 again).
We can use Eq.2-11b with y;, = 0 and alsoset y = 0 (ground level):

Y o= Yo+ vyl = 58t

0 = 0+ vyt —381%
This equation can be factored:

Z(%gt - vyo) = 0.
There are two solutions, ¢ = 0 (which corresponds to the initial point, y;), and

2v 2(120m/s
(o 2o 2RO
g (9.80m/s?)

which is the total travel time of the football.
(¢) The total distance traveled in the x direction is found by applying Eq.2-11b
with xo =0, a, =0, v, =160m/s, and { = 2.45s:
X = vyt = (16.0m/s)(2.45s) = 392m.
% PROBLEM SOLVING NOTE In (b), the time needed for the whole trip, ¢ = Zvyo /g = 2.45s, isdouble

Symmetry | the time to reach the highest point, calculated in (a). That is, the time to go up
equals the time to come back down to the same level (ignoring air resistance).
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EXERCISE F In Example 3—6, what is (a) the velocity vector at the maximum height, and
(b) the acceleration vector at maximum height?

In Example 3-6, we treated the football as if it were a particle, ignoring its
rotation. We also ignored air resistance. Because air resistance is significant on a
football, our results are only estimates (mainly overestimates).

he made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance.

RESPONSE Both the water balloon and the boy in the tree start falling at the

same instant, and in a time  they each fall the same vertical distance y = g2, FIGURE 3-24 Example 3-7.
much like Fig. 3-19. In the time it takes the water balloon to travel the horizontal

distance d, the balloon will have the same y position as the falling boy. Splat. If

the boy had stayed in the tree, he would have avoided the humiliation.

Level Horizontal Range

CONCEPTUAL EXAMPLE 3-7 | The wrong strategy. A boy on a small hill l« d {
aims his water-balloon slingshot horizontally, straight at a second boy hanging from o, " ____________ i

a tree branch a distance d away, Fig. 3-24. At the instant the water balloon is released, S = ~ I
the second boy lets go and falls from the tree, hoping to avoid being hit. Show that So LYYy

The total distance the football traveled in Example 3—6 is called the horizontal FIGURE 3-25 (a) The range R of a

range R. We now derive a formula for the range, which applies to a projectile that  projectile. (b) There. are generally
lands at the same level it started (= y;): that is, y (final) = y, (see Fig. 3-25a). two angles §, that will give the
Looking back at Example 3-6 part (c), we see that x = R = vye! where (from ~same range. If one angle is 0y,
part b) [ = Zvyo/g. 'I'hus the other is 002 = 90° — 001 .

5 . Example 3-8.
2vy 2050 Vy0 203 sin 6, cos 6, y
R = vyt = vl — ) = = ’ [y = wl y =0 again here
§ . 5 . § . . . *=0 (where x = R)
where vy = vyc08 6y and vy, = v sin 6. This can be rewritten, using the trigon- Yo = 0 ——
ometric identity 2 sin 6 cos 6 = sin26 (Appendix A or inside the rear cover): /9/0 N e
2 o3 X
V5 sin 26, . . R 9
R=——-: onlyif y (final) =
2 [onlyif y (final) = y] @
Note that the maximum range, for a given initial velocity v, is obtained when
sin 26 takes on its maximum value of 1.0, which occurs for 26, = 90°; so
8, = 45° for maximum range, and Ry, = v/g. oo°
7 ~N
The maximum range increases by the square of v, so doubling the muzzle velocity - >3 N
of a cannon increases its maximum range by a factor of 4. st LR ol
. . .. . . . 30 NN\ x
When air resistance is important, the range is less for a given v, , and the maxi-
mum range is obtained at an angle smaller than 45°, (b)

EXAMPLE 3-8| Range of a cannon ball. Suppose one of Napoleon’s cannons
had a muzzle speed, vy, of 60.0 m/s. At what angle should it have been aimed
(ignore air resistance) to strike a target 320 m away?

APPROACH We use the equation just derived for the range, R = vjsin26,/g,
with R = 320 m.

SOLUTION We solve for sin 26, in the range formula:
Rg  (320m)(9.80m/s’)
i (60.0m/s)?

We want to solve for an angle 6, that is between 0° and 90°, which means 26, in
this equation can be as large as 180°. Thus, 26, = 60.6° is a solution, so 6, = 30.3°.
But 26, = 180° — 60.6° = 119.4° is also a solution (see Appendix A-7), so

6, can also be 6, = 59.7°. In general we have two solutions (see Fig. 3-25b),
which in the present case are given by

6, = 303° or 59.7°.

Either angle gives the same range. Only when sin26, = 1 (so 6, = 45°) is there
a single solution (that is, both solutions are the same).

sin26;, = = 0.871.

SECTION 3-6 Solving Projectile Motion Problems
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FIGURE 3-26 Example 3-9: the J | % N
&7 =0

football leaves the punter’s footat @9 g0 AN X
y = 0, and reaches the ground N N

where y = —1.00 m. \

\ y=-1.00m \
£— Ground

J)PHYSICS APPLIED EXAMPLE 3-9| A punt. Suppose the football in Example 3—6 was punted,
Sports | and left the punter’s foot at a height of 1.00 m above the ground. How far did
the football travel before hitting the ground? Set xq = 0, y, = 0.

% PROBLEM SOLVING APPROACH The only difference here from Example 3—6 is that the football hits
Do not use any formula unless you | the ground below its starting point of y, = 0. That is, the ball hits the ground at
are sure its range of validity fits the | y = —1.00m. See Fig.3-26. Thus we cannot use the range formula which is valid

problem; the range formula does : : — : . — — o
not apply here because v £ v, onlyif y (final) = y;. Asin Example 3-6, v, = 20.0m/s, 6, = 37.0°.
SOLUTION With y = —1.00m and »,, = 12.0m/s (see Example 3-6), we use
the y version of Eq.2-11b with a, = —g,
Yy = Yot vyl — 381%,
and obtain
—1.00m = 0+ (12.0m/s)t — (490 m/s*)i%
We rearrange this equation into standard form (ax® + bx + ¢ = 0) so we can
use the quadratic formula:
(490 m/s?)1> — (12.0m/s)t — (1.00m) = 0.
The quadratic formula (Appendix A—4) gives
120m/s +£\/(—12.0m/s)’ — 4(4.90m/s?)(—1.00m)
2(4.90m/s?)
2.53s or —0.081s.
The second solution would correspond to a time prior to the kick, so it doesn’t
apply. With ¢ = 2.53s for the time at which the ball touches the ground, the
horizontal distance the ball traveled is (using v = 16.0m/s from Example 3-6):
X = vyt = (16.0m/s)(2.53s) = 40.5m.
Our assumption in Example 3—6 that the ball leaves the foot at ground level
would result in an underestimate of about 1.3 m in the distance our punt traveled.

*3-7 Projectile Motion Is Parabolic

We now show that the path followed by any projectile is a parabola, if we can
ignore air resistance and can assume that g is constant. To do so, we need to find
y as a function of x by eliminating ¢ between the two equations for horizontal and
vertical motion (Eq.2-11b in Table 3-2), and for simplicity we set x, = yy = 0:

{ =

X = ’Uxot
_ 1.2
y = vyl — 381"
From the first equation, we have ¢ = x/v,,, and we substitute this into the second
one to obtain

’Uyo g ) 5
= [—lx - . 3-6
Y ( Vxo )x <2U§co ! G-6)
We see that y as a function of x has the form
y = Ax — Bx?,

where A and B are constants for any specific projectile motion. This is the standard
equation for a parabola. See Figs.3-17 and 3-27.
The idea that projectile motion is parabolic was, in Galileo’s day, at the fore-

FIGURE 3-27 Examples of
projectile motion: a boy jumping,
and glowing lava from the volcano s . o . -
Stromboli. front of physics research. Today we discuss it in Chapter 3 of introductory physics!

*Some Sections of this book, such as this one, may be considered optional at the discretion of the
64 CHAPTER 3 instructor. See the Preface for more details.



3-8 Relative Velocity

We now consider how observations made in different frames of reference are
related to each other. For example, consider two trains approaching one another,
each with a speed of 80 km/h with respect to the Earth. Observers on the Earth
beside the train tracks will measure 80 km/h for the speed of each of the trains.
Observers on cither one of the trains (a different frame of reference) will mea-
sure a speed of 160 km /h for the train approaching them.

Similarly, when one car traveling 90 km/h passes a second car traveling in
the same direction at 75 km /h, the first car has a speed relative to the second car
of 90km/h — 75km/h = 15km/h.

When the velocities are along the same line, simple addition or subtraction is
sufficient to obtain the relative velocity. But if they are not along the same line, we
must make use of vector addition. We emphasize, as mentioned in Section 2—1, that
when specifying a velocity, it is important to specify what the reference frame is.

When determining relative velocity, it is easy to make a mistake by adding
or subtracting the wrong velocities. It is important, therefore, to draw a diagram
and use a careful labeling process. Each velocity is labeled by fwo subscripts:
the first refers to the object, the second to the reference frame in which it has this
velocity. For example, suppose a boat heads directly across a river, as shown
in Fig. 3-28. We let vgw be the velocity of the Boat with respect to the Water.
(This is also what the boat’s velocity would be relative to the shore if the
water were still.) Similarly, vgg is the velocity of the Boat with respect to the Shore,
and Vs is the velocity of the Water with respect to the Shore (this is the river
current). Note that v,y is what the boat’s motor produces (against the water),
whereas Vgg is equal to Vgw plus the effect of the current, vywg. Therefore, the
velocity of the boat relative to the shore is (see vector diagram, Fig. 3-28)

Vgs = Vpw T Vws. 3-7
By writing the subscripts using this convention, we see that the inner subscripts
(the two W’s) on the right-hand side of Eq. 3-7 are the same; also, the outer
subscripts on the right of Eq. 3-7 (the B and the S) are the same as the two
subscripts for the sum vector on the left, vg5. By following this convention (first
subscript for the object, second for the reference frame), you can write down the
correct equation relating velocities in different reference frames."

Equation 3-7 is valid in general and can be extended to three or more
velocities. For example, if a fisherman on the boat walks with a velocity v, rela-
tive to the boat, his velocity relative to the shore is Vgg = Vg + Vgw + Vws. The
equations involving relative velocity will be correct when adjacent inner subscripts
are identical and when the outermost ones correspond exactly to the two on the
velocity on the left of the equation. But this works only with plus signs (on the
right), not minus signs.

It is often useful to remember that for any two objects or reference frames,
A and B, the velocity of A relative to B has the same magnitude, but opposite
direction, as the velocity of B relative to A:

VBa = ~Vam- (3-8)
For example, if a train is traveling 100 km/h relative to the Earth in a certain
direction, objects on the Earth (such as trees) appear to an observer on the train
to be traveling 100 km/h in the opposite direction.

"We thus can see, for example, that the equation Vgy = Vg + Vs is wrong: the inner subscripts are
not the same, and the outer ones on the right do not correspond to the subscripts on the left.

b

e
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FIGURE 3-28 A boat heads north
directly across a river which flows
west. Velocity vectors are shown as
green arrows:

vgs = velocity of Boat with
respect to the Shore,

vgw = velocity of Boat with
respect to the Water,

vws = velocity of Water with

respect to the Shore
(river current).
As it crosses the river, the boat is
dragged downstream by the current.
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FIGURE 3-29 Example 3-10.

FIGURE 3-30 Example 3-11.
A boat heading directly across a
river whose current moves at
1.20m/s.

River current
—~—

Yws

| Summary

EXAMPLE 3-10 | Heading upstream. A boat’s speed in still water is vy =

1.85 m/s. If the boat is to travel north directly across a river whose westward current has
speed vyws = 1.20m/s, at what upstream angle must the boat head? (See Fig.3-29.)

APPROACH If the boat heads straight across the river, the current will drag
the boat downstream (westward). To overcome the river’s current, the boat
must have an upstream (eastward) component of velocity as well as a cross-stream
(northward) component. Figure 3-29 has been drawn with g, the velocity of
the Boat relative to the Shore, pointing directly across the river because this is
where the boat is supposed to go. (Note that Vgg = Vyyw + Vys.)

SOLUTION Vector vy points upstream at angle 6 as shown. From the diagram,
vws _ 120m/s
Vpw 1.85m/s
Thus 6 = 40.4°, so the boat must head upstream at a 40.4° angle.

sinf = = 0.6486.

EXAMPLE 3-11 | Heading across the river. The same boat (va = 1.85 m/s)

now heads directly across the river whose current is still 1.20 m /s. (¢) What is the velocity
(magnitude and direction) of the boat relative to the shore? (b) If the river is 110 m
wide, how long will it take to cross and how far downstream will the boat be then?

APPROACH The boat now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 3-30. The boat’s velocity with respect to
the shore, Vgg, is the sum of its velocity with respect to the water, vyw, plus the
velocity of the water with respect to the shore, Vwg: just as before,

Vgs = Vaw T Vws.
SOLUTION (a) Since vgy is perpendicular to Vs, we can get vgg using the
theorem of Pythagoras:

vgs = \Vvdw + ks = V(1.85m/s) + (120m/s)? = 221 m/s.

We can obtain the angle (note how 6 is defined in Fig. 3—-30) from:

tanf = vws/vpw = (120m/s)/(1.85m/s) = 0.6486.
A calculator with a key INV TAN or ARC TAN or TAN ' gives 6 = tan '(0.6486)
= 33.0°. Note that this angle is not equal to the angle calculated in Example 3-10.
(b) The travel time for the boat is determined by the time it takes to cross the
river. Given the river’s width D = 110 m, we can use the velocity component in the
direction of D, wvgyw = D/t. Solving fort, we get t = 110m/1.85m/s = 59.55.
The boat will have been carried downstream, in this time, a distance

d = vyst = (1.20m/s)(59.5s) = 71.4m =~ 71lm.

NOTE There is no acceleration in this Example, so the motion involves only

constant velocities (of the boat or of the river).

A quantity such as velocity, that has both a magnitude and a
direction, is called a vector. A quantity such as mass, that has
only a magnitude, is called a scalar. On diagrams, vectors are

represented by arrows.

Addition of vectors can be done graphically by placing the

Given the components, we can find a vector’s magnitude and
direction from

%
V= NVERV tanb = o (-4)
X

Projectile motion is the motion of an object in the air near the

tail of each successive arrow at the tip of the previous one. The
sum, or resultant vector, is the arrow drawn from the tail of the
first vector to the tip of the last vector. Two vectors can also be
added using the parallelogram method.

Vectors can be added more accurately by adding their
components along chosen axes with the aid of trigonometric
functions. A vector of magnitude V making an angle 6 with the
+x axis has components

Vy = Vcoso, Vy = Vsinf. 3-3)

Earth’s surface under the effect of gravity alone. It can be analyzed
as two separate motions if air resistance can be ignored. The hori-
zontal component of motion is at constant velocity, whereas the
vertical component is at constant acceleration, g, just as for an
object falling vertically under the action of gravity.

The velocity of an object relative to one frame of refer-
ence can be found by vector addition if its velocity relative to a
second frame of reference, and the relative velocity of the two
reference frames, are known.
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| Questions

1.

10.

11.

13.

One car travels due east at 40 km/h, and a second car travels
north at 40 km/h. Are their velocities equal? Explain.

. Can you conclude that a car is not accelerating if its speed-

ometer indicates a steady 60 km/h? Explain.

. Give several examples of an object’s motion in which a great

distance is traveled but the displacement is zero.

. Can the displacement vector for a particle moving in two

dimensions be longer than the length of path traveled by the
particle over the same time interval? Can it be less? Discuss.

. During baseball practice, a player hits a very high fly ball

and then runs in a straight line and catches it. Which had
the greater displacement, the player or the ball? Explain.

L IEV = \71 + \72, is V necessarily greater than V1 and/or V', ?

Discuss.

. Two vectors have length V; = 35km and V,; = 4.0km.

What are the maximum and minimum magnitudes of their
vector sum?

. Can two vectors, of unequal magnitude, add up to give the zero

vector? Can three unequal vectors? Under what conditions?

. Can the magnitude of a vector ever (a) equal, or (b) be less

than, one of its components?
Does the odometer of a car measure a scalar or a vector
quantity? What about the speedometer?

How could you determine the speed a slingshot imparts to
arock, using only a meter stick, a rock, and the slingshot?

. In archery, should the arrow be aimed directly at the target?

How should your angle of aim depend on the distance to
the target?

It was reported in World War I that a pilot flying at an alti-
tude of 2 km caught in his bare hands a bullet fired at the
plane! Using the fact that a bullet slows down considerably
due to air resistance, explain how this incident occurred.

| MisConceptual Questions

14.

15.

16.
17.

18.

19.

20.

21.

You are on the street trying to hit a friend in his dorm
window with a water balloon. He has a similar idea and is
aiming at you with his water balloon. You aim straight at
each other and throw at the same instant. Do the water
balloons hit each other? Explain why or why not.

A projectile is launched at an upward angle of 30° to the
horizontal with a speed of 30 m/s. How does the horizon-
tal component of its velocity 1.0s after launch compare
with its horizontal component of velocity 2.0 s after launch,
ignoring air resistance? Explain.

A projectile has the least speed at what point in its path?

Two cannonballs, A and B, are fired from the ground with
identical initial speeds, but with 6 5 larger than 0y . (a) Which
cannonball reaches a higher elevation? (b) Which stays
longer in the air? (¢) Which travels farther? Explain.

A person sitting in an enclosed train car, moving at constant
velocity, throws a ball straight up into the air in her reference
frame. (@) Where does the ball land? What is your answer
if the car (b) accelerates, (¢) decelerates, (d) rounds a curve,
(e) moves with constant velocity but is open to the air?

If you are riding on a train that speeds past another train
moving in the same direction on an adjacent track, it
appears that the other train is moving backward. Why?

Two rowers, who can row at the same speed in still water,
set off across a river at the same time. One heads straight
across and is pulled downstream somewhat by the current.
The other one heads upstream at an angle so as to arrive at
a point opposite the starting point. Which rower reaches
the opposite side first? Explain.

If you stand motionless under an umbrella in a rainstorm
where the drops fall vertically, you remain relatively dry.
However, if you start running, the rain begins to hit your
legs even if they remain under the umbrella. Why?

1.

2.

You are adding vectors of length 20 and 40 units. Which of

the following choices is a possible resultant magnitude?

(a) 0.

(b) 18.

(c) 37.

(d) 64.

(e) 100.

The magnitude of a component of a vector must be

(a) less than or equal to the magnitude of the vector.

(b) equal to the magnitude of the vector.

(c) greater than or equal to the magnitude of the vector.

(d) less than, equal to, or greater than the magnitude of
the vector.

. You are in the middle of a large field. You walk in a straight

line for 100 m, then turn left and walk 100 m more in a
straight line before stopping. When you stop, you are 100 m
from your starting point. By how many degrees did you turn?
(a) 90°.

(b) 120°.

(c) 30°.

(d) 180°.

(e) This is impossible. You cannot walk 200 m and be only

100 m away from where you started.

. A bullet fired from a rifle begins to fall

(a) as soon as it leaves the barrel.
(b) after air friction reduces its speed.
(¢) not at all if air resistance is ignored.

5. A baseball player hits a ball that -8
soars high into the air. After the el P
ball has left the bat, and while it is ,/
traveling upward (at point P in /

Fig. 3-31), what is the direction of
acceleration? Ignore air resistance.
. H . FIGURE 3-31
@5y O © e MisConceptual
Question 3.
6. One ball is dropped vertically from a window. At the same

instant, a second ball is thrown horizontally from the same
window. Which ball has the greater speed at ground level?
(a) The dropped ball.

(b) The thrown ball.

(¢) Neither—they both have the same speed on impact.
(d) It depends on how hard the ball was thrown.
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7.

9.

You are riding in an enclosed train car moving at 90 km /h. If
you throw a baseball straight up, where will the baseball land?
() In front of you.

(b) Behind you.

(¢) In your hand.

(d) Can’t decide from the given information.

. Which of the three kicks in Fig. 3-32 is in the air for the

longest time? They all reach the same maximum height 4.
Ignore air resistance.
(a), (b), (c), or (d) all the same time.

(a)
FIGURE 3-32 MisConceptual Question 8.

(®) (©

A baseball is hit high and far. Which of the following state-
ments is true? At the highest point,

(a) the magnitude of the acceleration is zero.

(b) the magnitude of the velocity is zero.

(c) the magnitude of the velocity is the slowest.

(d) more than one of the above is true.

(e) none of the above are true.

10.

11.

A hunter is aiming horizontally at a monkey who is sitting

in a tree. The monkey is so terrified when it sees the gun

that it falls off the tree. At that very instant, the hunter
pulls the trigger. What will happen?

(a) The bullet will miss the monkey because the monkey
falls down while the bullet speeds straight forward.

(b) The bullet will hit the monkey because both the
monkey and the bullet are falling downward at the
same rate due to gravity.

(c) The bullet will miss the monkey because although
both the monkey and the bullet are falling downward
due to gravity, the monkey is falling faster.

(d) It depends on how far the hunter is from the monkey.

Which statements are not valid for a projectile? Take up as

positive.

(a) The projectile has the same x velocity at any point on
its path.

(b) The acceleration of the projectile is positive and
decreasing when the projectile is moving upwards,
zero at the top, and increasingly negative as the
projectile descends.

(¢) The acceleration of the projectile is a constant negative
value.

(d) The y component of the velocity of the projectile is
zero at the highest point of the projectile’s path.

(e) The velocity at the highest point is zero.

. A car travels 10 m/s east. Another car travels 10 m/s north.

The relative speed of the first car with respect to the second is
(a) less than 20 m/s.

(b) exactly 20m/s.

(¢) more than 20 m/s.

For assigned homework and other learning materials, go to the MasteringPhysics website.

| Problems

3-2 to 3-4 Vector Addition

1.

(I) A car is driven 225 km west and then 98 km southwest
(45°). What is the displacement of the car from the point
of origin (magnitude and direction)? Draw a diagram.

. (I) A delivery truck travels 21 blocks north, 16 blocks east,

and 26 blocks south. What is its final displacement from
the origin? Assume the blocks are equal length.

. (D If Vi = 9.80units and V, = —6.40 units, determine

the magnitude and direction of V.

. (II) Graphically determine the resultant of the following

three vector displacements: (1) 24 m, 36° north of east;
(2) 18 m, 37° east of north; and (3) 26 m, 33° west of south.

. (IT) V is a vector 24.8 units in magnitude and points at an

angle of 23.4° above the negative x axis. (@) Sketch this
vector. (b) Caleulate Vy and V). (c) Use Vy and Vy to
obtain (again) the magnitude and direction of V. [Note:
Part (¢) is a good way to check if you've resolved your
vector correctly. |

. (IT) Vector V; is 6.6 units long and points along the nega-

tive x axis. Vector V; is 8.5 units long and points at +355° to
the positive x axis. (a) What are the x and y components of
each vector? (b) Determine the sum V; + V, (magnitude
and angle).

7. (IT) Figure 3-33 shows two vectors, A and B, whose magni-
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tudes are A = 6.8 units and B = 5.5 units. Determine C
it @C=A+B, ®)C=A-B, |
(¢ C=B—-A. Give the
magnitude and direction

for each.

>l
=

FIGURE 3-33
Problem 7.

. (I) An airplane is traveling 835 km/h in a direction 41.5°

west of north (Fig. 3-34).

(a) Find the components N
of the velocity vector
in the mnortherly v\ 41.5°
and westerly direc- (835 km/h)
tions. (b) How far
north and how far
west has the plane w E
traveled after 1.75h?
FIGURE 3-34
Problem 8. S



9.

10.

11.

13.

14.

15.

16.

(IT) Three vectors are shown in Fig. 3-35. Their magnitudes
are given in arbitrary units. Determine the sum of the three
vectors. Give the resultant in terms of (@) components,
(b) magnitude and angle with the +x axis.

y
@
Ca
N
‘%\\)‘ P 0\
o J > &b/
56.0 28.0° .
FIGURE 3-35 C (C=31.0)
Problems 9, 10, 11, 12, and 13.
Vector magnitudes are given
in arbitrary units.

(I) (a) Given the vectors A and B shown in Fig. 3-35,
determine B — A. (b) Determine A — B without using
your answer in (). Then compare your results and see if
they are opposite.

(I) Determine the vector A — C, given the vectors A and
C in Fig. 3-35.

. (II) For the vectors shown in Fig. 3-35, determine

(a) B — 34, (b)2A — 3B + 2C.

(Il) For the vectors given in Fig. 3-35, determine
(@A -B+C, ())A +B—-C, and (¢)C — A — B.
(IT) Suppose a vector V makes an angle ¢ with respect to
the y axis. What could be the x and y components of the
vector V?

(I) The summit of a mountain, 2450 m above base camp,
is measured on a map to be 4580 m horizontally from the
camp in a direction 38.4° west of north. What are the compo-
nents of the displacement vector from camp to summit?
What is its magnitude? Choose the x axis east, y axis north,
and z axis up.

(IIT) You are given a vector in the xy plane that has a magni-
tude of 90.0units and a y component of —65.0 units.
(a) What are the two possibilities for its x component?
(b) Assuming the x component is known to be positive,
specify the vector which, if you add it to the original one,
would give a resultant vector that is 80.0 units long and
points entirely in the —x direction.

3-5 and 3-6 Projectile Motion (neglect air resistance)

17.

18.

19.

20.

21.

(I) A tiger leaps horizontally from a 7.5-m-high rock with
a speed of 3.0m/s. How far from the base of the rock will
she land?

(D A diver running 2.5 m/s dives out horizontally from the
edge of a vertical cliff and 3.0s later reaches the water
below. How high was the cliff and how far from its base did
the diver hit the water?

(IT) Estimate by what factor a person can jump farther on
the Moon as compared to the Earth if the takeoff speed
and angle are the same. The acceleration due to gravity on
the Moon is one-sixth what it is on Earth.

(IT) A ball is thrown horizontally from the roof of a build-
ing 7.5 m tall and lands 9.5 m from the base. What was the
ball’s initial speed?

(IT) A ball thrown horizontally at 12.2 m/s from the roof of
a building lands 21.0 m from the base of the building. How
high is the building?

22,

23.

24,

25.

26.

217.

(IT) A football is kicked at ground level with a speed of
18.0m/s at an angle of 31.0° to the horizontal. How much
later does it hit the ground?

(I) A fire hose held near the ground shoots water at a
speed of 6.5 m/s. At what angle(s) should the nozzle point
in order that the water land 2.5m away (Fig. 3-36)? Why
are there two different angles?

Sketch the two trajectories.

ﬁo
FIGURE 3-36
Problem 23. e—2.5 m—-

(IT) You buy a plastic dart gun, and being a clever physics
student you decide to do a quick calculation to find its
maximum horizontal range. You shoot the gun straight up,
and it takes 4.0s for the dart to land back at the barrel.
What is the maximum horizontal range of your gun?

(IT) A grasshopper hops along a level road. On each hop,
the grasshopper launches itself at angle 6, = 45° and
achieves a range R = 0.80m. What is the average hori-
zontal speed of the grasshopper as it hops along the
road? Assume that the time spent on the ground between
hops is negligible.

(IT) Extreme-sports enthusiasts have been known to jump
off the top of El Capitan, a sheer granite cliff of height
910 m in Yosemite National Park. Assume a jumper runs
horizontally off the top of El Capitan with speed 4.0m/s
and enjoys a free fall until she is 150 m above the valley
floor, at which time she opens her parachute (Fig. 3-37).
(a) How long is the jumper in free fall? Ignore air resis-
tance. (b) It is important to be as far away from the cliff
as possible before opening the parachute. How far from
the cliff is this jumper when she opens her chute?

4.0 m/s
LIRS
\
\
\
\
\
\
910 m ‘I
€D
F
S 150 m
FIGURE 3-37 2 '
Problem 26.

(I) A projectile is fired with an initial speed of 36.6 m/s
at an angle of 42.2° above the horizontal on a long flat
firing range. Determine (@) the maximum height reached
by the projectile, (b) the total time in the air, (¢) the total
horizontal distance covered (that is, the range), and (d) the
speed of the projectile 1.50 s after firing.
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28.

29.

30.

31.

32.

33.

(I) An athlete performing a long jump leaves the ground
at a 27.0° angle and lands 7.80 m away. (a) What was the
takeoff speed? (b) If this speed were increased by just
5.0%, how much longer would the jump be?

(IT) A baseball is hit with a speed of 27.0 m/s at an angle of
45.0°. It lands on the flat roof of a 13.0-m-tall nearby build-
ing. If the ball was hit when it was 1.0 m above the ground,
what horizontal distance does it travel before it lands on
the building?

(IT) A rescue plane wants to drop supplies to isolated moun-
tain climbers on a rocky ridge 235 m below. If the plane is
traveling horizontally with a speed of 250 km/h (69.4m/s),
how far in advance of the recipients (horizontal distance)
must the goods be dropped (Fig. 3-38)?

} Vxo
=
‘ “Dropped”\ S~
Wy0=0) AN

235 m N

N\
\
\

%(r-l':.

FIGURE 3-38 Problem 30.

(IIT) Suppose the rescue plane of Problem 30 releases the
supplies a horizontal distance of 425 m in advance of the
mountain climbers. What vertical velocity (up or down)
should the supplies be given so that they arrive precisely at
the climbers’ position (Fig. 3-39)? With what speed do the
supplies land?

%/\/_\'_ ~ =~ _ Thrown upward?
~

AN (vyo >0)
~
~ < \
235m  Thrown downward? > N \\
(’L)yo <0) N N \

. 25 H
iy

FIGURE 3-39 Problem 31.

(IIT) Show that the time required for a projectile to reach
its highest point is equal to the time for it to return to its
original height if air resistance is neglible.

(IIT) Suppose the kick in Example 3-6 is attempted 36.0m
from the goalposts, whose crossbar is 3.05m above the
ground. If the football is directed perfectly between the
goalposts, will it pass over the bar and be a field goal?
Show why or why not. If not, from what horizontal distance
must this kick be made if it is to score?

34.

35.

(IIT) Revisit Example 3-7, and assume that the boy with
the slingshot is below the boy in the tree (Fig. 3-40) and
so aims upward, directly at the boy in the tree. Show that
again the boy in the tree makes the wrong move by letting
go at the moment the water balloon is shot.

FIGURE 3-40 Problem 34.

(IIT) A stunt driver wants to make his car jump over 8 cars
parked side by side below a horizontal ramp (Fig. 3-41).
(a) With what minimum speed must he drive off the hori-
zontal ramp? The vertical height of the rampis 1.5m above
the cars and the horizontal distance he must clear is 22 m.
(b) If the ramp is now tilted upward, so that “takeoff angle”
is 7.0° above the horizontal, what is the new minimum
speed?

[ 22 m ]

Must clear
this point!

FIGURE 3-41 Problem 35.

3-8 Relative Velocity
36. (I) Huck Finn walks at a speed of 0.70 m/s across his raft
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(that is, he walks perpendicular to the raft’s motion relative
to the shore). The heavy raft is traveling down the Mississippi
River at a speed of

1.50 m /s relative to the T e
river bank (Fig. 3-42). 3, )
What is Huck’s velocity %‘%’M
(speed and direction) T
relative to the river
2
bank? ' 0.70 m/s
J-— =2
Lt == River
g current
FIGURE 3-42
Problem 36.



37.

38.

39.

40.

41.

42.

(IT) Two planes approach each other head-on. Each has a
speed of 780 km/h, and they spot each other when they are
initially 10.0 km apart. How much time do the pilots have
to take evasive action?

(IT) A passenger on a boat moving at 1.70 m/s on a still lake
walks up a flight of stairs at a speed of 0.60 m /s, Fig. 3—-43.
The stairs are angled at 45° pointing in the direction of
motion as shown. What is the velocity of the passenger rel-
ative to the water?

FIGURE 3-43 Problem 38.

(I) A person in the passenger basket of a hot-air balloon
throws a ball horizontally outward from the basket with
speed 10.0m/s (Fig. 3-44). What initial velocity (magni-
tude and direction) does the ball have relative to a person
standing on the ground (a) if the hot-air balloon is rising
at 3.0 m/s relative to the ground during this throw, (b) if
the hot-air balloon is descending at 3.0 m/s relative to the
ground?

Problem 39.

(Il) An airplane is heading due south at a speed of
688 km /h. If a wind begins blowing from the southwest at
a speed of 90.0 km/h (average), calculate (a) the velocity
(magnitude and direction) of the plane, relative to the
ground, and (b) how far from its intended position it will
be after 11.0 min if the pilot takes no corrective action.
[Hint: First draw a diagram. ]

(I) In what direction should the pilot aim the plane in
Problem 40 so that it will fly due south?

(II) A swimmer is capable of swimming 0.60m/s in still
water. (a) If she aims her body directly across a 45-m-wide
river whose current is 0.50 m/s, how far downstream (from
a point opposite her starting point) will she land? (b) How
long will it take her to reach the other side?

43.

44.

45.

(I) A boat, whose speed in still water is 2.50 m/s, must
cross a 285-m-wide river and arrive at a point 118 m
upstream from where it starts (Fig. 3-45). To do so, the
pilot must head the boat at a 45.0° upstream angle. What
is the speed of the

river’s current? f+—118 m—
I 7 Finish
1 /
: /
! // River
! S/ current
h)
285 m : Q§/ ~l§
A
45.0° 7
] 7
:&
i
FIGURE 3-45 &
Problem 43. Start

(IT) A child, who is 45m from the bank of a river, is being
carried helplessly downstream by the river’s swift current
of 1.0m/s. As the child passes a lifeguard on the river’s
bank, the lifeguard starts swimming in a straight line
(Fig. 3-46) until she reaches the child at a point downstream.
If the lifeguard can swim at a speed of 2.0 m/s relative
to the water, how long does it take her to reach the child?
How far downstream does the lifeguard intercept the
child?

1.0 m/s

2.0 m/s

45 m

FIGURE 3-46 Problem 44.

(IIT) Two cars approach a street corner at right angles to
each other (Fig. 3-47). Car 1 travels at a speed relative
to Barth v = 35km/h, and car 2 at vz = 55km/h.
What is the relative

velocity of car 1 as ——‘ﬁi j"zE

seen by car 2?7 What ( J!,/;

is the velocity of car 2
relative to car 1? ‘ ‘ ‘ v

FIGURE 3-47
Problem 45.
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46.

47.

48.

49.

50.
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Two vectors, \71 eLnd \72, add to a resultant VR = \71 + \72.
Describe Vy and V, if (@) Vg = Vi + V,, (B) Vg = Vi + V2,
@@V +V, =V =V,

On mountainous downbhill roads, escape routes are some-
times placed to the side of the road for trucks whose brakes
might fail. Assuming a constant upward slope of 26°, calcu-
late the horizontal and vertical components of the acceleration
of a truck that slowed from 110 km/h to rest in 7.0s. See

Fig. 3-48.
Escape
rout A
Main road =
downhill =

FIGURE 3-48 Problem 47.

A light plane is headed due south with a speed relative to
still air of 185km/h. After 1.00 h, the pilot notices that
they have covered only 135 km and their direction is not
south but 15.0° east of south. What is the wind velocity?

Romeo is throwing pebbles gently up to Juliet’s window,
and he wants the pebbles to hit the window with only a
horizontal component of velocity. He is standing at the
edge of a rose garden 8.0m below her window and 8.5m
from the base of the wall (Fig. 3-49). How fast are the
pebbles going when they hit her window? M

T - —_—
”~
7
/ ’J
’/
8om
/
/
/
el
FIGURE 3-49 o
Problem 49. F 85m !

Apollo astronauts took a “nine iron” to the Moon and hit
a golf ball about 180 m. Assuming that the swing, launch
angle, and so on, were the same as on Earth where the
same astronaut could hit it only 32 m, estimate the accel-
eration due to gravity on the surface of the Moon. (We
neglect air resistance in both cases, but on the Moon there
is none.)

51. (a) A long jumper leaves the ground at 45° above the

horizontal and lands 8.0m away. What is her “takeoff”
speed vy ? (b) Now she is out on a hike and comes to the
left bank of a river. There is no bridge and the right bank
is 10.0m away horizontally and 2.5m vertically below. If
she long jumps from the edge of the left bank at 45° with
the speed calculated in (4), how long, or short, of the
opposite bank will she land (Fig. 3-50)?

| 10.0 m

FIGURE 3-50 Problem 51.

52. A projectile is shot from the edge of a cliff 115m above

ground level with an initial speed of 65.0 m/s at an angle of
35.0° with the horizontal, as shown in Fig. 3-51. (a) Deter-
mine the time taken by the projectile to hit point P at
ground level. (b) Determine the distance X of point P
from the base of the vertical cliff. At the instant just before
the projectile hits point P, find (¢) the horizontal and the
vertical components of its velocity, (d) the magnitude of
the velocity, and (e) the angle made by the velocity vector
with the horizontal. (f) Find the maximum height above
the cliff top reached by the projectile.

vy = 65.0 m/s

1 X 1

FIGURE 3-51 Problem 52.



53. Raindrops make an angle 6 with the vertical when viewed
through a moving train window (Fig. 3-52). If the speed
of the train is v, what is the speed of the raindrops in the
reference frame of
the Farth in which [ )
they are assumed to %
fall vertically? :

X
\_/

FIGURE 3-52 Y

Problem 53. il B

54. A hunter aims directly at a target (on the same level)
38.0 m away. (a) If the arrow leaves the bow at a speed of
23.1m/s, by how much will it miss the target? (b) At what
angle should the bow be aimed so the target will be hit?

55. The cliff divers of Acapulco push off horizontally from rock
platforms about 35m above the water, but they must clear
rocky outcrops at water level that extend out into the water
5.0m from the base of the cliff directly under their launch
point. See Fig. 3-53. What minimum pushoff speed is neces-
sary to clear the rocks? How long are they in the air?

FIGURE 3-53
Problem 55.

56. When Babe Ruth hit a homer over the 8.0-m-high right-
field fence 98 m from home plate, roughly what was the
minimum speed of the ball when it left the bat? Assume the
ball was hit 1.0 m above the ground and its path initially
made a 36° angle with the ground.

57. At serve, a tennis player aims to hit the ball horizontally.
What minimum speed is required for the ball to clear the
0.90-m-high net about 15.0m from the server if the ball is
“launched” from a height of 2.50m? Where will the ball
land if it just clears the net (and will it be “good” in the
sense that it lands within 7.0 m of the net)? How long will
it be in the air? See Fig. 3-54.

1P .
250 m ~B_ _
g ;

fe———150m } 7.0m {
FIGURE 3-54 Problem 57.

58. Spymaster Chris, flying a constant 208 km/h horizontally
in a low-flying helicopter, wants to drop secret documents
into her contact’s open car which is traveling 156 km/h on
a level highway 78.0 m below. At what angle (with the hori-
zontal) should the car be in her sights when the packet is
released (Fig. 3-55)?

208 km/h

‘%v ___ > _
~
~

h

AN 78.0 m

——
156 km/h
FIGURE 3-55 Problem 58.

59. A boat can travel 220m/s in still water. (a) If the boat
points directly across a stream whose current is 1.20m/s,
what is the velocity (magnitude and direction) of the boat
relative to the shore? (b) What will be the position of the
boat, relative to its point of origin, after 3.00s?

60. A projectile is launched from ground level to the top of a
cliff which is 195 m away and 135 m high (see Fig. 3-56).
If the projectile lands on top of the cliff 6.6s after it is
fired, find the initial velocity of the projectile (magnitude
and direction). Neglect air resistance.

Landing point
S

4|

v 135m

FIGURE 3-56 ; P
Problem 60. . 195 m .

61. A basketball is shot from an initial height of 2.40m
(Fig. 3-57) with an initial speed vy = 12m/s directed at
an angle 0; = 35° above the horizontal. () How far from
the basket was the player if he made a basket? (b) At what
angle to the horizontal did the ball enter the basket?

FIGURE 3-57

Problem 61. Vg = N ='k ‘
_ ,/_65_0_ _!w

- -~
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62. A rock is kicked horizontally at 15 m/s from a hill with a
45° slope (Fig.3-58). How long does it take for the rock to
hit the ground?

-

T

FIGURE 3-58 Problem 62.

|Search and Learn

63. A ball is shot from the top of a building with an initial
velocity of 18 m/s at an angle 8 = 42° above the horizontal.
(a) What are the horizontal and vertical components of the
initial velocity? (b) If a nearby building is the same height
and 55 m away, how far below the top of the building will
the ball strike the nearby building?

64 If a baseball pitch leaves the pitcher’s hand horizontally at
a velocity of 150 km/h, by what % will the pull of gravity
change the magnitude of the velocity when the ball reaches
the batter, 18 m away? For this estimate, ignore air resis-
tance and spin on the ball.

1. Here is something to try at a sporting event. Show that
the maximum height / attained by an object projected
into the air, such as a baseball, football, or soccer ball, is
approximately given by

ho o~ 12¢*m,

where ¢ is the total time of flight for the object in sec-
onds. Assume that the object returns to the same level
as that from which it was launched, as in Fig. 3-59. For
example, if you count to find that a baseball was in the
air for ¢ =150s, the maximum height attained was
h =12 x (50)% = 30m. The fun of this relation is that
h can be determined without knowledge of the launch
speed vy or launch angle ;. Why is that exactly? See
Section 3-6.

FIGURE 3-59 Search and Learn 1.

2. The initial angle of projectile A is 30°, while that of projec-
tile B is 60°. Both have the same level horizontal range.
How do the initial velocities and flight times (elapsed time
from launch until landing) compare for A and B?

3. You are driving south on a highway at 12m/s (approxi-
mately 25 mi/h) in a snowstorm. When you last stopped,
you noticed that the snow was coming down vertically, but
it is passing the windows of the moving car at an angle of
7.0° to the horizontal. Estimate the speed of the vertically
falling snowflakes relative to the ground. [Hint: Construct
a relative velocity diagram similar to Fig. 3-29 or 3-30. Be
careful about which angle is the angle given.]

ANSWERS TO EXERCISES

A: 3.0\/2 ~ 42 units.
B: (a).
C: They hit at the same time.

D: (i) Nowhere; (ii) at the highest point; (iii) nowhere.
E: (d). It provides the initial velocity of the box.
F: (a) v = vy = 16.0m/s, horizontal; (b) 9.80 m/s* down.
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