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1 Introduction

The purpose of this study is to provide quantitative data on 
the influence of the natural number bias in students’ rea-
soning with arithmetic operations and the way it relates to 
certain aspects of students’ understanding of the number 
concept. The natural number bias characterizes students’ 
tendency to ascribe characteristics of natural numbers to 
non-natural numbers, a practice that most often results 
in certain kinds of mistakes on the part of the student (Ni 
and Zhou 2005). These mistakes appear due to differences 
between natural and non-natural numbers, which are appar-
ent in notation, the ways of ordering, and the density of 
their structure, among other reasons; these differences are 
presented in more detail later on. Recently, the focus of 
research uses a natural number bias perspective to further 
investigate the effects of arithmetic operations and more 
specifically the tendency to anticipate specific results from 
specific operations, such as larger numbers for addition and 
multiplication, and smaller numbers for subtraction and 
division (Vamvakoussi et al. 2012, 2013; Van Hoof et al. 
2014).

1.1  The natural number bias phenomenon

The term whole number bias was introduced by Ni and 
Zhou (2005) to characterize children’s tendency to use the 
single-unit counting scheme to interpret instructional data 
on fractions, a well-known phenomenon in the research lit-
erature. This term has since been used interchangeably with 

Abstract This study investigates the hypothesis that 
there is a natural number bias that influences how students 
understand the effects of arithmetical operations involving 
both Arabic numerals and numbers that are represented by 
symbols for missing numbers. It also investigates whether 
this bias correlates with other aspects of students’ under-
standing of the number concept beyond natural numbers. 
Natural number bias has been characterized as the inter-
ference of natural number knowledge in reasoning about 
non-natural numbers. Quantitative data is presented show-
ing that in the case of operations between numbers and 
missing numbers this bias acts in two main ways. First, 
it shapes students’ anticipations about the expected out-
come of each operation, that is, that the result of addition 
or multiplication “must” be bigger than the initial num-
bers and the result of subtraction or division “must” be 
smaller. Second, it causes students to think that missing 
numbers stand mostly for natural numbers; this tendency 
would lead students to make decisions about the general 
results of operations by substituting only natural numbers 
for the missing number symbols. It is argued that knowl-
edge about operations between natural numbers needs to 
be inhibited for students to overcome the natural number 
bias and to reason with numbers beyond the scope of natu-
ral numbers.
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the term natural number bias, which is often used with the 
same meaning (DeWolf and Vosniadou 2014; Obersteiner 
et al. 2013; Vamvakoussi et al. 2012; Van Hoof et al. 2014). 
Whole numbers are exact numbers, which in a mathemati-
cal context are named integers, that is, the natural numbers, 
their negatives, and zero. When the focus is on the issue of 
the differences between the exact numbers and their frac-
tions, using the term whole number bias could be sufficient. 
However, if the focus is on the interference of natural num-
ber knowledge on non-natural numbers, which may include 
not only the rational numbers but also the negative integers 
and the real numbers, then the term natural number bias 
may be more appropriate (see also Van Hoof et al. 2014). 
Therefore the term natural number bias is adopted here in 
order to better describe the conflicted procedures of attrib-
uting characteristics and properties of the natural numbers 
to different kinds of non-natural numbers.

1.2  The natural number bias and the number concept

There is an ongoing debate about the origins of the natural 
number bias and its relation to the way the number con-
cept is perceived and developed (Rips et al. 2008). How-
ever, there seems to be a consensus that cultural privilege, 
the type of notation, intuitions, and early instruction have 
all supported the construction of an initial conception for 
numbers grounded on natural numbers and the act of count-
ing (Gelman 2000; Smith et al. 2005).

This initial conception may undermine students’ ideas 
about what a number is supposed to look like and how it 
is supposed to behave (Smith et al. 2005; Vamvakoussi and 
Vosniadou 2010). Students often use this early understand-
ing for numbers when reasoning about non-natural num-
bers by means of projecting their initial knowledge of natu-
ral numbers onto non-natural numbers such as fractions 
and decimal numbers. This has multiple consequences that 
appear in different mathematical contexts and it is reflected 
in certain kinds of mistakes that come up. For example, in 
the case of decimal numbers, students erroneously think 
that longer decimals are larger, for example that 2.367 
is larger than 2.6 (Nesher and Peled 1986; Resnick et al. 
1989). However, this type of error appears to decrease with 
age while shorter is larger types of responses, a possible 
result of an intrusion of knowledge about fractions, appear 
in older children and adults (Stacey and Steinle 1999).

Similarly, it appears that students tend to confound 
the number of pieces in a partition with the size of each 
piece (e.g., 1/4 is bigger than 1/3 because 4 is bigger that 
3) and to think that the bigger the numerator and denom-
inator of a fraction, the bigger the fraction (Hartnett and 
Gelman 1998; Moss 2005), or to think that the smaller the 
whole number components the larger the fraction (DeWolf 
and Vosniadou 2014; Resnick et al. 1989; Stafylidou and 

Vosniadou 2004). Furthermore, the relationship between 
‘1’ and a fraction also seems to puzzle students. Some stu-
dents tend to think that 1 is greater than any fraction while 
other students think that 1 is less than any fraction (Stafy-
lidou and Vosniadou 2004). The former misconception is 
likely associated with the part–whole scheme that is most 
commonly used for introducing fractions to students (Steffe 
2002; Thompson and Saldanha 2003); this scheme sup-
ports an understanding of fractions as part of a whole and 
so the fraction always appears smaller than 1. Furthermore, 
the former misunderstanding could be due to an erroneous 
overgeneralization in which the property of 1 as the small-
est natural number is also applied to rational numbers (see 
Stafylidou and Vosniadou 2004).

Natural numbers also differ from rational numbers by 
means of the density of their structure. In contrast to natu-
ral numbers, where there is a unique successor and a unique 
predecessor for each one of them, rational and real num-
bers are dense in the sense that there are infinitely many 
numbers between any two rational (or real) numbers. Many 
research studies have shown that students rely on their ini-
tial knowledge of natural numbers and think that numbers 
in general are discrete, meaning that every number has a 
unique successor, and that there is no number between two 
pseudosuccessive numbers, such as 0.5 and 0.6 (Hannula 
et al. 2006; Merenluoto and Lehtinen 2002; Vamvakoussi 
and Vosniadou 2010).

Recent findings showed that acquiring a dense structure 
for rational numbers, meaning to accept that infinitely many 
numbers lie in any given interval, is not an all or nothing 
situation (Vamvakoussi and Vosniadou 2010). Rather, there 
are intermediate levels of understanding, where the pre-
supposition of discreteness is present even if it sometimes 
appears in a more sophisticated way. There is both a math-
ematically naïve level of understanding, where students 
respond that there is no number between two pseudosuc-
cessive numbers, and a sophisticated level, where students 
can accept that there are infinitely many numbers in any 
interval. In between, there are students whose responses 
reflect a tendency to apply the property of an advanced 
discreteness (Vamvakoussi and Vosniadou 2010) to the 
rational number sets, by accepting a finite number of inter-
mediate numbers between two pseudosuccessive numbers 
that could be named one by one. Students in this category 
think that between 0.5 and 0.6 there are ten numbers, i.e., 
0.51, 0.52, etc., or even one hundred numbers, i.e., 0.511, 
0.512, …, 0.521, 0.522,… but not infinitely many numbers 
that cannot all be named.

1.3  Natural number bias in arithmetic operations

The research considering the natural number bias phenom-
enon has recently reached the area of arithmetic operations, 
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presenting findings such as students’ tendency to think 
that addition and multiplication between any two numbers 
always result in a larger number, as well as that subtraction 
and division always produce smaller numbers, regardless of 
the kinds of numbers involved (Vamvakoussi et al. 2012, 
2013; Van Hoof et al. 2014). It would be plausible to expect 
that the natural number bias would interfere in this specific 
way with students’ anticipations about the results of arith-
metic operations. That is because the result of addition or 
multiplication between two natural numbers is always a 
number bigger than the two initial numbers (unless 0 or 1 
are involved). Similarly, the result of subtraction or divi-
sion between two natural numbers is a number smaller than 
the minuend and the dividend, respectively. This is, how-
ever, not necessarily true for certain kinds of non-natural 
numbers, for which the effects of operations depend on the 
numbers involved. Specifically, in the case of rational num-
bers smaller than 1 or negative numbers, students’ expecta-
tions about the results of multiplication and division in the 
first case and addition and subtraction in the second case 
are falsified. For instance, 7: 0.2 is bigger than 7, 8 × 0.5 
is smaller than 8, and 6 + (−2) is smaller than 6. This is 
a well-known phenomenon by every teacher and also in 
the research literature on students’ difficulties with rational 
numbers, often called by its descriptive name multiplica-
tion makes bigger.

Back in the 1980s, many colleagues from different per-
spectives had noted that students tend to overgeneralize 
the results of operations between natural numbers to also 
include rational numbers, a tendency that resulted in the 
above-mentioned misconception. This appeared both in 
purely numerical items (Greer 1987, 1989) and in word-
problem tasks (Bell et al. 1981; Graeber et al. 1989; Hart 
1981), when, for example, students choose an operation 
between two numbers based on their belief that multipli-
cation always produces a larger number and that division 
always produces a smaller number (Fischbein et al. 1985; 
Harel et al. 1994). There is also some evidence showing 
that students tend to associate more with addition and less 
with subtraction when solving word problems (De Corte 
et al. 1990), which may support the claim that students 
also hold beliefs such as that addition always makes big-
ger and subtraction always makes smaller (Green et al. 
2008; Tirosh et al. 2008). However, until recently, very 
little research had specifically investigated students’ intui-
tions concerning addition and subtraction. Fischbein et al. 
(1985) interpreted those intuitions to lie in certain primi-
tive, implicit models students hold for each operation, that 
is, the model of addition as putting together, subtraction as 
taking away, multiplication as repeated addition, and divi-
sion as partitive and quotitive division.

Quite recently, these misconceptions were revisited 
from a broader natural number bias perspective, using new 

methodologies and theoretical frameworks. From such per-
spective Vamvakoussi and her colleagues (2013) argue that 
the primitive models as described by Fischbein et al. (1985) 
are compatible with—and based on—natural number oper-
ations, particularly with the characteristic that their effects 
(i.e., whether the result will be larger or smaller) depend 
merely on the operation and not on the numbers involved. 
In their studies, Vamvakoussi and her colleagues (Vamva-
koussi et al. 2012, 2013) used a pioneering methodology 
to investigate intuitive reasoning about all four operations 
in more depth. They measured adult participants’ reac-
tion times as they were reasoning about arithmetic opera-
tions with given numbers and literal symbols in algebraic 
expressions (e.g., 5 + 2x). The results were in line with the 
hypothesis that even adults have strong intuitions about the 
results of each operation due to the natural number bias 
phenomenon. The same phenomenon appeared in a recent 
paper-and-pencil study with middle grade students (Van 
Hoof et al. 2014). However, Vamvakoussi et al. (2012, 
2013) only partly interpreted their results as an influence 
of the natural number bias. The researchers argued that 
students’ tendencies to think, for example, that 5 + 2x is 
always bigger than 5 is due to participants’ preconcep-
tions about what the specific operation sign represents. The 
researchers acknowledge that students may be using a par-
ticular strategy, namely, trying specific numbers in order 
to check the results of the given operations, and that this 
strategy could also be affected by a predisposition to natu-
ral numbers (Vamvakoussi et al. 2013).

This explanation is also supported by evidence show-
ing that students indeed tend to substitute literal symbols 
of algebraic expressions mostly with natural numbers 
when they need to determine the value of those expres-
sions (Christou and Vosniadou 2005, 2012). In our early 
studies we have shown that when presented with algebraic 
expressions involving operations between numbers and lit-
eral symbols (e.g., 4 g), students tended to substitute literal 
symbols mostly with natural numbers in order to decide 
on the value of the expressions (Christou and Vosniadou 
2005, 2012). Additionally, in an interview study with tenth 
graders, students were asked a series of questions such 
as whether they think that 5d is always bigger than 4/d. 
The majority of students claimed that 5d is always bigger 
“because multiplication makes the numbers bigger than 
division,” and many of them supported their standpoint by 
substituting specific numbers for the literal symbols, which 
in most cases were natural numbers, despite the hints pro-
vided by the interviewer to also try with other kinds of 
numbers (Christou and Vosniadou 2012). In support of this 
finding, Van Hoof et al.’s (2014) study provided more data 
from students’ individual interviews in which the students 
explicitly referred to general natural number rules or sub-
stituted literal symbols with natural numbers to come to an 
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answer. However, there is still need for quantitative data to 
support a possible dual effect of the natural number bias on 
the results of arithmetic operations. This gap will hopefully 
be filled by the present research study.

1.4  The present study

To sum up, in the present study the natural number bias 
perspective is taken to investigate students’ tendency to 
anticipate certain results from each arithmetic operation. 
As mentioned above, the natural number bias shapes stu-
dents’ conceptions about what counts as a number and how 
numbers are supposed to behave, therefore it would be 
expected that this bias acts in two main ways when students 
reason about arithmetic operations with missing numbers. 
(a) It may lead students to decide on the result of a given 
operation using their preconceptions about the effect of 
this operation, as if its result (i.e., whether the result will be 
larger or smaller than the initial numbers) depended exclu-
sively on the operation and not on the numbers involved. 
As discussed above, these preconceptions, which may take 
the form of general rules, have been cultivated by students’ 
experiences with numbers which, for many years—from 
their early acquaintance with the counting numbers until 
their first years of instruction—were restricted to include 
the natural numbers almost exclusively. In other words, 
students would tend to count on general rules such as 
multiplication makes bigger because that is what natural 
numbers do. (b) It may prompt students to test the result 
of the given operation between given and missing numbers 
by substituting the missing ones only with random natural 
numbers, generalizing the effect of the operation based on 
the specific results of this testing. The natural number bias 
will cause students to prioritize substituting missing num-
bers with natural numbers because, under this general bias, 
only the natural numbers count as numbers since this is the 
dominant category of numbers. Consequently, natural num-
bers are the first kind of numbers that come to someone’s 
mind, and in some cases are the only ones.

Thus, the main hypothesis of this study is that stu-
dents’ tendency to anticipate certain results from specific 
arithmetic operations is rooted in the natural number bias 
phenomenon, which affects both of the strategies they use 
when reasoning about the results of arithmetic operations, 
namely their tendency to count on a general law about the 
result of each operation or the strategy to try specific num-
bers. In order to test this hypothesis and the more general, 
underlying issue of the natural number bias phenomenon in 
arithmetic operations, specific tasks were developed. These 
tasks aimed at illustrating the way the natural number bias 
affects each of the two main strategies mentioned above, 
and at providing quantitative data from students’ responses 

that would reveal the way this bias affects each of the stu-
dents’ strategies to reason about the results of arithme-
tic operations. The tasks involved arithmetic operations 
between given and missing numbers and were either con-
gruent in that reasoning relying on natural numbers would 
lead to a correct answer, or incongruent, meaning that rea-
soning relying on the natural number knowledge would 
lead to an incorrect answer. If the students were to exclu-
sively count on the operation sign making use of a general 
rule in order to determine the effects of the operations (i.e. 
bigger result in multiplication, smaller result in division), 
without caring about the numbers involved, there would be 
no differences in students’ responses on the different sets of 
given tasks.

A sub-focus of this study was to also test whether stu-
dents’ ways of reasoning about specific arithmetic opera-
tions would be related to their understanding of the number 
concept, which is also affected by the same bias as pre-
sented above. In order to test whether there are such rela-
tionships, the participants also completed a number of tasks 
that tested their understanding of rational numbers. The 
tasks included questions about the ordering of fractions 
and decimal numbers as well as about the density of the 
rational number set.

2  Methodology

2.1  Participants

The participants in this study were 189 fifth and sixth grad-
ers from two public primary schools in Greece; 104 were 
boys and 85 were girls; 73 were from the fifth and 116 
from the sixth grade. The study targeted students of this age 
to be as close to fourth grade as possible, when students 
start to learn about operations with rational numbers, which 
violates their initial intuitions about the effects of arithme-
tic operations. However, one of the drawbacks with using 
students of this age is that they lack knowledge of negative 
numbers (as they are not introduced until seventh grade), 
which are the kinds of numbers that violate students’ intui-
tions about the results of addition and subtraction, namely 
that addition always produces bigger numbers and subtrac-
tion always produces smaller numbers [e.g., 4 + (−1) = 3, 
4 − (−1) = 5]. Another issue with choosing students of 
this age is that they have not yet been introduced to literal 
symbols as symbols that stand for numbers. Because of 
this, in the tasks involving operations between given and 
missing numbers, the missing ones were represented by 
missing-number symbols (i.e., “_”) instead of literal sym-
bols as students of this age have extensive experience with 
missing-number symbols when practicing calculations.
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2.2  Materials

A paper-and-pencil test was administered to the students 
with 42 questions divided into four parts, with the items 
in each part being given in randomized order. The first 
part included 28 questions involving arithmetic operations 
between one given number and one missing number, as 
well as the result of an operation (e.g., 2:_ = 5). The tasks 
that were used are presented in Table 1. The students were 
asked to decide whether it is possible for a given relation 
such as this one to be true, by choosing between two given 
alternatives: “it is possible” and “it is not possible”.

There were three main categories of tasks depending on 
the type of missing number in the given operation. First, there 
were congruent tasks with operations between a given natural 
number and a missing one, for example 7 × _ = 21. Second, 
there were congruent tasks that involved rational numbers 
bigger than 1 as missing numbers, for example 6 × _ = 11. 
Students’ intuitions about the results of the arithmetic opera-
tions were not violated in either case; however, to successfully 
complete the second type of congruent tasks, students were 
required to think beyond the set of natural numbers. The tasks 
in the third set were incongruent, as they involved rational 
numbers less than 1 as the missing numbers—something that 
violates students’ intuitions about the results of operations 
(e.g., for 2:_ = 5, division results in a larger number).

All four operations were used in the tasks above; how-
ever, there were no incongruent tasks involving addition or 
subtraction, since, as explained above, students had not yet 
learned about negative numbers. This means that for addi-
tion and subtraction tasks, students’ intuition that addition 
results in bigger numbers and subtraction results in smaller 
numbers is their expected response, because this is what 
they know so far. Therefore, for tasks involving negative 
numbers, the expected response was “it is not possible.” 
These responses were included as buffers to avoid always 
having “it is possible” responses.

In the second part of the questionnaire the students were 
given six tasks that involved inequalities, as presented 

in Table 2. An operation between two numbers was pre-
sented in one of the sides of each of the inequalities, with 
the operation sign missing, for the students to fill in one 
of two given alternatives: multiplication or division. The 
other side of the inequality was filled with one of the ini-
tial numbers. There were two congruent tasks involving 
natural numbers with the result being in line with students’ 
intuitions about the operations. The remaining four were 
incongruent tasks involving one natural number and one 
rational number smaller than 1 (e.g., 6_0.2 < 6), such that 
the result is counter to students’ intuitions about the given 
operation.

In the third part of the questionnaire students were given 
three sets of rational numbers with four numbers each and 
were asked to put the numbers in order from smallest to 
largest; two of the given sets included fractions and the 
remaining ones involved decimal numbers. The first set 
only contained unit fractions (i.e., 1

7
, 1
5
, 1
3
, 1

11
, given in that 

order). The second set contained the number 1 and three 
fractions either smaller or bigger than 1 (i.e., 1

2
, 3
2
, 1, 1

4
). The 

set of decimals included four decimal numbers with up to 
three decimal digits (i.e., 0.12, 1.549, 0.4, 0.387). The stu-
dents were asked to put the numbers in the correct order 
from smallest to largest.

The last part of the questionnaire contained five forced-
choice questions focusing on students’ understanding of 
the density of the rational numbers. In three of the ques-
tions students were asked how many numbers there were 
between two given pseudosuccessive numbers. The 

Table 1  Overview of 
experimental items by kind of 
operation and type (congruent, 
incongruent)

Tasks Multiplication Division Addition Subtraction

Congruent with natural numbers 7 × _ = 21
3 × _ = 9

8: _ = 2
9: _ = 3

3 + _ = 8
6 + _ = 8

5 − _ = 1

Congruent with rational numbers 6 × _ = 11
_ × 2 = 7

8: _ = 5
14: _ = 5

_ + 3 = 4.7
2 + _ = 3.3

13 − _ = 7.5
8 − _ = 3.8

Incongruent (rational numbers smaller than 1) _ × 4 = 1
3 × _ = 2
8 × _ = 3
_ × 6 = 4

6: _ = 14
2: _ = 5
5: _ = 8
3: _ = 7

Buffers _ + 5 = 2
_ + 7 = 3

5 − _ = 9
5 − _ = 7
3 −_ = 8

Table 2  Overview of the missing operation tasks by type (congruent, 
incongruent)

Congruent Incongruent

3 _ 10 > 3 6 _ 0.2 < 6

5 _ 2 < 5 4 _ 0.5 > 4

10 _ 1
2
 < 10

10 _ 3
4
 > 10
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remaining two questions were about the previous and the 
subsequent numbers of a given one. The items of the first 
kind—which were offered in randomized order—differed 
on the type of interval endpoints, namely two integers (i.e., 
0 and 1), two decimals (i.e., 0.005, 0.006), and two frac-
tions (i.e., 1

3
, 2
3
). The answer choices were the same across 

all items, were presented in mixed order, and were as fol-
lows: (a) There is no other number in between, (b) There 
are more numbers in between and we can name them all 
one by one, (c) There are so many numbers in between that 
we can not name them all.

Lastly, there were two questions asking students whether 
there is a number that comes directly before or after a given 
number (i.e., after 10, before 6.3). The specific question 
was “Is there a number that is immediately before 10 (after 
6.3) and if so, what is that number?” The answer choices 
were (a) Yes, there is such a number, it’s…; (b) Yes, there is 
such a number, but I cannot tell exactly what it is; (c) No, 
there is no such a number, because…

The answer choices reflected the three main levels of 
understanding numbers beyond natural numbers as dis-
cussed in the related research literature (Merenluoto 
and Lehtinen 2002; Vamvakoussi and Vosniadou 2010), 
namely: (a) an understanding of rational numbers by apply-
ing properties of the natural numbers, such as discreteness; 
(b) an intermediate understanding in which natural number 
knowledge is interfering, however in a more sophisticated 
way compared with the first alternative, characterized by 
an advanced discreteness (Vamvakoussi and Vosniadou 
2010); and (c) correct understanding of the density, which 
was considered as correct even if they did not give an 
explanation.

2.3  Procedure

The students completed the tests in their classroom during 
their mathematics course with the presence of their teacher 
and the researcher. Students were told there was only one 
correct answer for each question. The questionnaire con-
tained instructions and also some examples for the first 
part, such as that 3 × _ = 7 is possible. For the first part 
of the questionnaire, students were told to choose one of 
the two given alternatives that best represents their opinion. 
They were also explicitly told that they could think with 
any kind of number they know.

3  Results

Students’ responses in the missing number items were 
scored on a right/wrong basis; null responses were scored 
as zero. Overall the questions used in the questionnaire 

showed high reliability (Cronbach’s Αlpha = 0.716). Anal-
ysis of variance of students’ total score in the test showed 
no main effect either for gender [F(1, 181) = 0.027, 
p = 0.869, ηp

2 = 0.000], school [F(1, 181) = 0.297, 
p = 0.586, ηp

2 = 0.002], or grade [F(1, 181) = 0.292, 
p = 0.590, ηp

2 = 0.002], which indicates that older students 
did not necessarily do better than younger students.

3.1  Natural number bias in arithmetic operations

For the first part of the questionnaire the mean scores were 
calculated for each category of the missing number tasks 
that appear in Table 1; the results are presented in Table 3. 
As expected, students’ highest performance was on congru-
ent tasks that involved natural numbers as missing numbers 
and the lowest on the incongruent tasks. The fact that very 
few mistakes were made on the congruent tasks indicates 
that students understood the tasks, which were well within 
their abilities. Paired-samples t-tests showed that, in line 
with our main hypothesis concerning the dual effect of the 
natural number bias, students scored significantly higher 
on the congruent tasks that involved natural numbers as 
missing numbers than on the congruent tasks that involved 
rational numbers t(188) = 28.412, p < 0.001 and they also 
scored significantly higher on the congruent tasks that 
involved rational numbers than on the incongruent tasks 
t(188) = 14.08, p < 0.001. As expected, the vast majority 
of students responded negatively on the five buffer tasks, 
and their score in those tasks was significantly lower even 
than their score in the incongruent tasks t(188) = 6.576, 
p < 0.001, and their responses in those tasks were excluded 
from the analysis that follows.

In the second part of the questionnaire, where students 
were asked to choose the operation (i.e., multiplication or 
division) that could make the inequality true, the results 
showed again that the students did significantly better on 
the congruent tasks (M = 0.767, SD = 0.359) compared 
with the incongruent tasks (M = 0.416, SD = 0.427), 
t(188) = 8.454, p < 0.001, supporting the hypothesis that 

Table 3  Mean scores for each category of the missing number items

Tasks N Minimum Maximum Mean Std. deviation

Congruent with 
natural numbers

189 0.14 1 0.844 0.188

Congruent with 
rational numbers

189 0 1 0.434 0.192

Incongruent 
(rational num-
bers <1)

189 0 1 0.196 0.211

Buffers 189 0 1 0.096 0.186
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there are certain intuitions concerning multiplication and 
division, namely that multiplication produces bigger num-
bers and division produces smaller ones.

3.2  The effect of natural number bias in each of the 
given operations

A subsequent analysis focused on the way students 
responded in each of the categories of congruent/incongru-
ent tasks for each of the four arithmetic operations between 
numbers and missing numbers. Therefore mean scores 
were calculated for the cases that included more than one 
item in each category; the results are presented in Table 4. 
Keep in mind that there were no incongruent tasks with 
addition and subtraction.

Paired-samples t test indicated that students did signifi-
cantly better in the congruent tasks that involved natural num-
bers as missing numbers than in those with rational numbers; 
this was the case for addition t(188) = 5.974, p < 0.001, 
subtraction t(188) = 4.97, p < 0.001, multiplication 
t(188) = 26.039, p < 0.001, and also division t(188) = 10.591, 
p < 0.001. Furthermore, students did better in the congruent 
tasks that involved missing rational numbers bigger than 1 
than in the incongruent tasks with missing rational numbers 
smaller than 1, which violated students’ expectation about the 
result of each operation; this was the case for multiplication 
t(188) = 6.513, p < 0.001, and also division, in which case 
the difference was not significant t(188) = 1.603, p = 0.111. 
Surprisingly, students did better in the tasks that involved 
division than multiplication; this was the case in the incongru-
ent tasks t(188) = 6.421, p < 0.001, and also in the congruent 
tasks with missing rational numbers, but this latter difference 
was not significant t(188) = 1.08, p = 0.281. This indicates 
that students appeared more willing to accept that division 
could make numbers bigger than to accept that multiplication 
could make numbers smaller, in contrast to the results of Van 
Hoof and colleagues’ (2014) study with older students (eighth 
to twelfth graders).

From the results it can be also concluded that students 
had a mean accuracy of 75–81 % on congruent addi-
tion and subtraction tasks that involved decimal num-
bers as missing numbers (e.g., _ + 3 = 4.7), while their 
accuracy on congruent multiplication and division tasks 
that involved decimal numbers as missing numbers (e.g., 
6 × _ = 11) was 26–31 %. A possible explanation for 
this difference is that it is much easier to find the miss-
ing rational number in the case of addition or subtraction 
than in the case of multiplication or division. Despite the 
fact that students were specifically told that they did not 
have to find the specific number that is missing, upon eas-
ily finding the missing number it is probably also easier to 
respond that such a number exists and thus that the spe-
cific result is possible. However, more research is needed 
to further clarify this issue.

3.3  Natural number bias in understanding ordering 
and density of rational numbers

Responses on the three tasks that required students to order 
two sets of fractions and one set of decimal numbers were 
coded as right/wrong; the results are presented in Table 5. 
As can be seen, fewer than half of the students succeeded 
in each of these tasks. The influence of the natural num-
ber bias on students’ ways of ordering given numbers is 
more obvious when focusing on the kinds of mistakes the 
students made. In the case of ordering the unit fractions, 
almost all of the students who responded incorrectly (94 
students, 49.7 %) ordered the fractions by applying the 
rule “the bigger the denominator the bigger the fraction,” 
which is in line with an understanding of rational num-
bers affected by the properties of natural numbers. Also 
in line with this way of understanding rational numbers 
were students’ mistakes on the ordering of decimal num-
bers, in which 68 students (36 %) ordered the numbers 
by following the rule “the longer the number, the larger.” 
Lastly, in the case of ordering three fractions compared to 
1, two main categories of incorrect responses appeared: an 
ordering in which all the fractions were bigger than 1 (55, 
29.1 %), and the exact opposite, an ordering in which all 
the fractions were smaller than 1 (49, 25.9 %).

Table 4  Mean scores for each category by operation

Category of item Operation N Mean Std. deviation

Congruent with natural 
numbers

Addition 189 0.958 0.157

Subtraction 189 0.915 0.279

Multiplication 189 0.942 0.169

Division 189 0.719 0.393

Congruent with rational 
numbers

Addition 189 0.809 0.339

Subtraction 189 0.756 0.377

Multiplication 189 0.269 0.328

Division 189 0.304 0.370

Incongruent (rational 
numbers <1)

Multiplication 189 0.120 0.218

Division 189 0.272 0.308

Table 5  Performance in ordering of rational numbers tasks

Question Wrong Right

Ordering of unit fractions 106
56.1 %

83
43.9 %

Ordering of decimals 120
63.5 %

69
36.5 %

Ordering of fractions 140
74.1 %

49
25.9 %
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Performance on the last set of questions that included 
five tasks that tested students’ understanding of the density 
of rational numbers is presented in Table 6. Fewer than one 
in three students responded correctly to the questions about 
how many numbers there are between two pseudosucces-
sive numbers, and very few students responded correctly 
to the tasks about the numbers that come directly before 
and after a given number. Among the first three tasks, the 
largest percentage of intermediate responses corresponded 
to how many numbers there are between 0 and 1, and stu-
dents’ worst performance was on how many numbers there 
were between 0.005 and 0.006. This shows that when asked 
about the density of an interval of numbers, students tended 
to assign different behaviors to natural numbers, decimals, 
and fractions. This finding is consistent with prior research 
in the field (Vamvakoussi and Vosniadou 2010). Stu-
dents also appeared to face strong difficulties in the tasks 
concerning the immediate next and previous number of a 
given one; less than 2 % of the students succeeded, and the 
majority of incorrect responses indicated 9 as the number 
directly before 10. These results were probably due to the 
counter-intuitiveness of the questions and the fact that it 
was not specified in the questions that the reference was 
not exclusively to natural numbers, even if students were 
told on the general instructions that they could think with 
any number they knew. Therefore those two questions were 
excluded from the rest of the analysis.

3.4  Correlations between the different aspects of the 
natural number bias

In order to create a variable that could best describe the 
natural number bias in arithmetic operations with missing 
numbers, students’ score on the first part of the question-
naire included only their responses on the tasks, either con-
gruent or incongruent, that involved rational numbers as 
missing numbers, and not the congruent tasks that involved 
natural numbers. Table 7 presents the correlations between 
students’ performance on the operations including missing 
number tasks, with their performance on the missing opera-
tion tasks, and with their performance on rational numbers 
ordering task. Table 8 presents the correlations between 
performance in the missing numbers tasks and the tasks 
about understanding the density of the rational number set. 
As shown in Table 7, Pearson test of correlation indicated 
that there was a significant positive correlation between 
students’ scores on the arithmetic operation tasks includ-
ing missing numbers and students’ scores on the missing 
operations tasks. Also, students’ performances on arithme-
tic operations with missing numbers are positively corre-
lated to their ability to order decimals and fractions. Stu-
dents’ abilities to order fractions and decimal numbers are 
highly correlated as well. On the other hand, students’ per-
formances on the missing operation tasks were not signifi-
cantly correlated to their ability to order any of the given 
sets of rational numbers.

As shown in Table 8, students’ performance on the 
arithmetic operations with missing number tasks was posi-
tively correlated with their understanding of the density 
of rational numbers but not between understanding of the 
density of rational numbers and students’ performance in 
the missing operation tasks. Out of the results presented in 
Tables 7 and 8 the positive correlation between students’ 
responses in the operations with missing numbers tasks and 
their ability to order rational numbers and reason about the 
density of their structure may be driven by their common 
characteristics, namely, that they may entail reasoning by 
mainly using number knowledge. On the other hand, stu-
dents may respond in the missing operation tasks using 
only their intuitive knowledge and general rules about the 

Table 6  Performance in each of the items about the density of 
rational numbers

Wrong Intermediate Right

Numbers between 0 and 1 63
33.3 %

69
36.5 %

57
30.2 %

Numbers between 0.005 and 0.006 112
59.3 %

39
20.6 %

38
20.1 %

Numbers between 1/3 and 2/3 95
50.3 %

55
29.1 %

39
20.6 %

Directly before 10 170
89.9 %

16
8.5 %

3
1.6 %

Directly after 6.3 167
88.4 %

19
10.1 %

3
1.6 %

Table 7  Correlations between performance in the ordering tasks and the operation tasks

* p < 0.05, ** p < 0.001

Score on operations  
with missing numbers

Score on the missing  
operation items

Ordering of unit fractions Ordering of decimals

Score on the missing  
operation items

0.172*

Ordering of unit fractions 0.146* 0.082

Ordering of decimals 0.163* 0.131 0.325**

Ordering of fractions 0.219** 0.069 0.523** 0.354**
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results of operations without caring about the numbers 
involved, and this is reflected in weak correlations between 
their responses on those tasks.

4  Discussion

The present study further investigates the influence of the 
natural number bias on students’ ways of reasoning about 
arithmetic operations providing quantitative data about 
the way this bias acts in this learning domain. In addi-
tion, it investigates the way the natural number bias cor-
relates with certain aspects of students’ understanding of 
the number concept. In a paper-and-pencil test, fifth and 
sixth grade students were given congruent and incongru-
ent tasks, which involved operations between given num-
bers or between given numbers and missing numbers, as 
well as questions about the order and density of the rational 
numbers.

The results supported our main hypothesis that in the 
domain of operations between numbers there is a natural 
number bias that interferes with students’ reasoning, which 
acts in two main ways. First, it supports, and probably also 
shapes, students’ tendencies to intuitively associate each 
operation with specific results, that is, that the result of 
multiplication is always bigger than the numbers involved 
and the result of division is always smaller. Second, in 
operations between numbers that are not presented with 
specific numerals, the natural number bias causes students 
to mentally substitute only with natural numbers, deciding 
on a general result based on the results of such trials.

The former conclusion is supported by the finding that 
the students in our sample performed significantly better 
in the congruent tasks that were designed in line with their 
intuitions (i.e., multiplication produces bigger numbers), 
compared with the incongruent tasks that violated those 
intuitions. Not only in the missing number tasks, but also in 
the second part of the questionnaire in which students were 
asked to choose the proper operation to make each of the 
given inequalities true, students showed a strong tendency 

to rely on their intuitions about the results of multiplica-
tion and division. This is in line with previous findings 
that school children, as well as adults, hold strong intui-
tions when considering the results of operations, appear-
ing in operations between numbers and algebraic expres-
sions (Greer 1989; Vamvakoussi et al. 2012; Van Hoof et al. 
2015), or in word problems (Bell et al. 1981; Fischbein 
et al. 1985; Harel and Confrey 1994).

The latter conclusion is supported by the significant 
differences between the results of two kinds of congruent 
tasks that were administered to the students in the miss-
ing number tasks—those that involved natural numbers 
and those that involved rational numbers as missing num-
bers—even though in both cases students’ intuitions about 
the effects of the operations were not violated. The congru-
ent tasks that involved rational numbers as missing num-
bers (e.g., 6 × _ = 11), elicited significantly more incorrect 
responses than the congruent tasks that involved natural 
numbers as missing numbers (e.g., 7 × _ = 21); some-
thing that was noted in all four operations. This innovative 
finding shows that students do not necessarily decide on 
the result of an operation using their preconceptions about 
the effect of the arithmetic operations, that is, by focus-
ing exclusively on the operation sign without considering 
the numbers involved; instead, students may decide on the 
result of an operation after testing (mentally) some random 
numbers. The natural number bias also affects this way of 
reasoning by biasing the kinds of numbers that students 
tend to substitute the missing numbers with, namely natural 
numbers.

Previous studies had provided some indications in sup-
port for this claim. Responses in individual interviews with 
students from eighth to twelfth grade showed that they 
tended to use the above two mentioned strategies when 
reasoning about the effect of arithmetic operations (Chris-
tou and Vosniadou 2012; Van Hoof et al. 2014). In addition, 
research on students’ interpretations of the kinds of num-
bers represented by literal symbols in algebraic expressions 
showed that students give priority to natural numbers (Chris-
tou and Vosniadou 2005, 2012). The innovative character of 

Table 8  Correlations between performance in the operation tasks and the density of rational numbers tasks

* p < 0.05, ** p < 0.001

Score on operations with 
missing numbers

Score on the missing  
operation items

Numbers between 0 and 1 Numbers between 0.005 
and 0.006

Score on the missing opera-
tion items

0.172*

Numbers between 0 and 1 0.139* −0.019

Numbers between 0.005  
and 0.006

0.144* 0.070 0.418**

Numbers between 1/3 and 
2/3

0.148* 0.010 0.349** 0.462**
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the results presented in this study is that they support this 
claim by providing quantitative data and statistical analysis 
of data coming from a large group of participants and their 
responses in a series of mathematical tasks. Those tasks 
were designed to be either in line with or counter to stu-
dents’ intuitions about the results of operations, and also to 
differentiate concerning the kinds of numbers involved. In 
this way they managed to capture and reveal the dual aspect 
of the effect of the natural number bias in the mathematics-
learning domain (see also Christou, submitted).

Another important finding of this study is that these two 
ways of reasoning about the results of arithmetic opera-
tions, namely the use of generalized rules or the strategy 
to try with specific numbers, are related to each other in 
quite complicated ways. Students’ performance on the 
tasks that involved operations between missing numbers, 
which entail both strategies, appeared to be positively cor-
related to their performance on the tasks in which they 
were asked to choose a correct operation that would make 
an inequality true. In addition, there was a strong correla-
tion between reasoning about arithmetic operations with 
missing numbers and other aspects of number reasoning 
such as ordering rational numbers and arguing about their 
dense structure. On the other hand, students’ performance 
on these tasks about number reasoning was not correlated 
to their performance on the missing operations tasks. A 
possible explanation for this is that responding to the miss-
ing number tasks entails focusing on the numbers involved, 
which is also the case when reasoning about ordering or 
about the density of the rational number set. This is, how-
ever, not the case when responding to the missing operation 
tasks, which could be done by referring to the general rules 
about the effect of each operation without caring about the 
numbers involved, and this could explain why responses 
in these tasks were not correlated to responses on the tasks 
about ordering and density of rational numbers, which both 
mainly entail reasoning about numbers. In other words, out 
of these results it could be argued that when the students 
are dealing with operations between numbers it is one thing 
what numbers can do (i.e., how they can be ordered or how 
dense their structure is), and another what operations can 
do (e.g., multiplication makes numbers bigger). Conse-
quently, these two aspects of reasoning in arithmetic opera-
tions could be quite distinctive from each other; however, 
each of them may be influenced by the natural number bias, 
as explained above. Additional research is needed to fur-
ther elaborate on the way these two strategies on reasoning 
about arithmetic operations actually relate to each other.

4.1  Inhibiting the natural number bias

The natural number bias is neither due to poor understand-
ing of a certain concept nor due to failing to apply a concept 

or its properties in certain conditions. It is rather the result 
of inappropriate application of correct natural number rules 
in cases that do not apply, and the tendency to assign only 
natural numbers in cases of missing number tasks where 
any real number would apply. This means that in situations 
entailing reasoning with non-natural numbers, the interfer-
ence of natural number knowledge must be inhibited.

The term inhibition has been used throughout the his-
tory of research in psychology and cognition in different 
ways and in many different contexts (for a thorough discus-
sion see MacLeod et al. 2003). Here, this term is used to 
characterize the cognitive process of deliberately inhibiting 
automatic or prepotent responses, produced by innate acti-
vation of dominant schemas, such as the counting number 
schema. It is argued that for students to be able to reason 
with numbers other than natural numbers and to overcome 
their intuitions about the effects of the arithmetic opera-
tions (i.e., to accept that under certain conditions multi-
plication may also produce smaller numbers), they would 
need to inhibit the natural number knowledge interference, 
meaning their automatic responses based on knowledge of 
natural numbers.

To do so, students would need to develop certain kinds 
of inhibition strategies. The need for inhibition strategies 
appears frequently in studies of intuitions on arithmetic 
operations, taking different names such as stop and think 
strategies (Vamvakoussi et al. 2013), alarm devices (Fisch-
bein 1990) or critics (Davis 1984). One inhibition strategy, 
for example, is to always try with at least one non-natural 
number—a negative or a number smaller than 1—in cases 
of missing number tasks, or to have in mind that “multipli-
cation does not always make bigger.”

Developing and implementing such inhibitory strategies 
presupposes that students are aware of their intuitions about 
the properties of numbers. As noted before, students not only 
carry intuitive ideas about numbers and the way that these 
numbers act on operations, but they might not be conscious 
of carrying them (Vamvakoussi and Vosniadou 2010). Cer-
tain examples and counterexamples can be used in provok-
ing and also refuting certain kinds of erroneous intuitions 
students may hold. Another presupposition is that students 
have developed a deeper conception of number beyond the 
natural numbers that is closer to the mathematical concept 
of number, such as incorporating the rational and the real 
numbers (Smith et al. 2005). Developing a more sophisti-
cated conception of number involves learning with revision 
of the prior knowledge, which is more time-consuming and 
does not develop automatically, requiring substantial cogni-
tive effort (Vamvakoussi and Vosniadou 2010). In line with 
this view, the results of the current study showed that there 
were no significant grade differences on the multiplication 
and division tasks, indicating that older students do not nec-
essarily do better than younger students. It is not by chance 
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that even educated adults and also pre-service and elemen-
tary teachers still carry the same intuitions about the results 
of operations (Graeber et al. 1989; Vamvakoussi et al. 2012).

However, there seems to be room for cultivating such 
inhibitory strategies through specifically designed learning 
interventions that focus on specific erroneous intuitions. 
Certain interventions, such as triggering an intuitive incor-
rect response and then falsifying it, could be used in con-
structive ways for raising students’ awareness of their intui-
tions and for developing certain strategies to remedy them 
(Christou 2012; Babai et al. 2015). To this end, the refuta-
tional argumentation methodology (Hynd 2001) could be 
fruitfully used as a means not only to challenge students’ 
erroneous beliefs but also to offer them alternative concep-
tions to adopt. This argumentation uses the cognitive con-
flict strategy by means of provoking and also falsifying 
students’ anticipations about the results of arithmetic opera-
tions that stem from their existing beliefs, in a more con-
structive way, with promising preliminary results (Christou 
2012). Some of these suggestions could be adapted and 
applied in interventions that would target the natural num-
ber bias in operations between numbers.
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