Lecture 17 Intro to Instruction Scheduling

Reading: Chapter 10.1 – 10.2

Optimization: What's the Point? (A Quick Review)

Machine-Independent Optimizations:

- e.g., constant propagation & folding, redundancy elimination, dead-code elimination, etc.
- Goal: eliminate work

Machine-Dependent Optimizations:

- register allocation
 - Goal: reduce cost of accessing data
- instruction scheduling
 - Goal: ???
- **—** ...

The Goal of Instruction Scheduling

- Assume that the remaining instructions are all essential
 - (otherwise, earlier passes would have eliminated them)
- How can we perform this fixed amount of work in less time?
 - Answer: execute the instructions in parallel

Time

$$a = 1 + x; b = 2 + y; c = 3 + z;$$

Hardware Support for Parallel Execution

- Three forms of parallelism are found in modern machines:
 - Pipelining
 - Superscalar Processing
 - Multiprocessing

Pipelining

Basic idea:

break instruction into stages that can be overlapped

Example: simple 5-stage pipeline from early RISC machines

IF = Instruction Fetch

RF = Decode & Register Fetch

EX = Execute on ALU

ME = Memory Access

WB = Write Back to Register File

Pipelining Illustration

Time

Pipelining Illustration

• In a given cycle, each instruction is in a different stage

Beyond 5-Stage Pipelines: Even More Parallelism

Should we simply make pipelines deeper and deeper?

- registers between pipeline stages have fixed overheads
 - hence diminishing returns with more stages (Amdahl's Law)
- value of pipe stage unclear if < time for integer add
- However, many consumers think "performance = clock rate"
 - perceived need for higher clock rates -> deeper pipelines
 - e.g., Pentium 4 processor had a 20-stage pipeline

Beyond Pipelining: "Superscalar" Processing

- Basic Idea:
 - multiple (independent) instructions can proceed simultaneously through the same pipeline stages
- Requires additional hardware
 - example: "Execute" stage

Abstract Representation

Hardware for Scalar Pipeline: 1 ALU

Hardware for 2-way Superscalar: 2 ALUs

Superscalar Pipeline Illustration

Original (scalar) pipeline:

 Only one instruction in a given pipe stage at a given time

Superscalar pipeline:

 Multiple instructions in the same pipe stage at the same time

The Ideal Scheduling Outcome

What prevents us from achieving this ideal?

Limitations Upon Scheduling

- 1. Hardware Resources
- 2. Data Dependences
- 3. Control Dependences

<u>Limitation #1: Hardware Resources</u>

 Processors have finite resources, and there are often constraints on how these resources can be used.

Examples:

- Finite issue width
- Limited functional units (FUs) per given instruction type
- Limited pipelining within a given functional unit (FU)

Finite Issue Width

- Prior to superscalar processing:
 - processors only "issued" one instruction per cycle
- Even with superscalar processing:
 - limit on total # of instructions issued per cycle

<u>Limited FUs per Instruction Type</u>

 e.g., a 4-way superscalar might only be able to issue up to 2 integer, 1 memory, and 1 floating-point insts per cycle

<u>Limited Pipelining within a Functional Unit</u>

• e.g., only 1 new floating-point division once every 2 cycles

Limitations Upon Scheduling

1. Hardware Resources

- 2. Data Dependences
 - 3. Control Dependences

Limitation #2: Data Dependences

 If we read or write a data location "too early", the program may behave incorrectly.

Why Data Dependences are Challenging

```
x = a[i];
*p = 1;
y = *q;
*r = z;
```

- which of these instructions can be reordered?
- ambiguous data dependences are very common in practice
 - difficult to resolve, despite fancy pointer analysis

Given Ambiguous Data Dependences, What To Do?

```
x = a[i];
*p = 1;
y = *q;
*r = z;
```

- Conservative approach: don't reorder instructions
 - ensures correct execution
 - but may suffer poor performance
- Aggressive approach?
 - is there a way to safely reorder instructions?

Hardware Limitations: Multi-cycle Execution Latencies

- Simple instructions often "execute" in one cycle
 - (as observed by other instructions in the pipeline)
 - e.g., integer addition
- More complex instructions may require multiple cycles
 - e.g., integer division, square-root
 - cache misses!
- These latencies, when combined with data dependencies, can result in non-trivial critical path lengths through code

Limitations Upon Scheduling

- 1. Hardware Resources
- 2. Data Dependences
- 3. Control Dependences

<u>Limitation #3: Control Dependences</u>

- What do we do when we reach a conditional branch?
 - choose a "frequently-executed" path?
 - choose multiple paths?

Carnegie Mellon

Scheduling Constraints: Summary

Hardware Resources

- finite set of FUs with instruction type, bandwidth, and latency constraints
- cache hierarchy also has many constraints
- Data Dependences
 - can't consume a result before it is produced
 - ambiguous dependences create many challenges
- Control Dependences
 - impractical to schedule for all possible paths
 - choosing an "expected" path may be difficult
 - recovery costs can be non-trivial if you are wrong

Hardware- vs. Compiler-Based Scheduling

- The hardware can also attempt to reschedule instructions (on-the-fly) to improve performance
- What advantages/disadvantages would hardware have (vs. the compiler) when trying to reason about:
 - Hardware Resources
 - Data Dependences
 - Control Dependences
- Which is better:
 - doing more of the scheduling work in the compiler?
 - doing more of the scheduling work in the hardware?

Spectrum of Hardware Support for Scheduling

Compiler-Centric

Hardware-Centric

VLIW

(Very Long Instruction Word)

In-Order Superscalar

Out-of-Order Superscalar

e.g.: Itanium

e.g.: Original Pentium

e.g.: Pentium 4

VLIW Processors

Motivation:

 if the hardware spends zero (or almost zero) time thinking about scheduling, it can run faster

Philosophy:

give full control over scheduling to the compiler

Implementation:

expose control over all FUs directly to software via a "very long instruction word"

Carnegie Mellon

Compiling for VLIW

Predicting Execution Latencies:

- easy for most functional units (latency is fixed)
- but what about memory references?

Data Dependences:

- in "pure" VLIW, the hardware does not check for them
 - the compiler takes them into account to produce safe code

```
while (p != NULL) {
  if (test(p->val))
    q->next = p->left;
    p = p->next;
}

Example #1

while (p != NULL) {
    if (test(p->val))
        q->next = p->left;
    p = p->next;
}
```

"VLIW" Today

- Hardware checks for data dependences through memory
- Compiler can do a good job with register dependences

Intel/HP Itanium2

Transmeta Crusoe 5400

Runtime software dynamically generates VLIW code

Spectrum of Hardware Support for Scheduling

In-Order Superscalar Processors

In contrast with VLIW:

- hardware does full data dependence checking
- hence, no need to encode NOPs for empty slots
- Once an instruction cannot be issued, no instructions after it will be issued.

Bottom Line:

- hardware matches code to available resources;
 recompilation is not necessary for correctness
- compiler's role is still important
 - for performance, not correctness!

Spectrum of Hardware Support for Scheduling

Out-of-Order Superscalar Processors

Motivation:

 when an instruction is stuck, perhaps there are subsequent instructions that can be executed

Sounds great! But how does this complicate the hardware?

Out-of-Order Superscalar Processors: Hardware Overview

fetch & graduate in-order, issue out-of-order

Compiler- vs. Hardware-Centric Scheduling: Bottom Line

- High-end processors will probably remain out-of-order
 - moving instructions small distances is probably useless
 - BUT, moving instructions large distances may still help
- Cheap, power-efficient processors may be in-order/VLIW
 - instruction scheduling may have a large impact

Carnegie Mellon

Scheduling Roadmap

List Scheduling:

• within a basic block

Global Scheduling:

• across basic blocks

Software Pipelining:

• *across* loop iterations