Computer Architecture

A Quantitative Approach, Sixth Edition

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Introduction

uoIONPOJU|

= Pipelining become universal technique in 1985
= Qverlaps execution of instructions
= Exploits “Instruction Level Parallelism”

= Beyond this, there are two main approaches:

= Hardware-based dynamic approaches
= Used in server and desktop processors
= Not used as extensively in PMP processors

= Compiler-based static approaches
= Not as successful outside of scientific applications

Instruction-Level Parallelism

uoIONPOJU|

= When exploiting instruction-level parallelism,
goal is to maximize CPI
= Pipeline CPI =
= |deal pipeline CPI +
= Structural stalls +

= Data hazard stalls +
= Control stalls

= Parallelism with basic block is limited
= Typical size of basic block = 3-6 instructions
= Must optimize across branches

Data Dependence

= | oop-Level Parallelism
= Unroll loop statically or dynamically
= Use SIMD (vector processors and GPUs)

uoIONPOJU|

= Challenges:

= Data dependency

= Instruction j is data dependent on instruction i if
= |nstruction / produces a result that may be used by instruction j

= |nstruction j is data dependent on instruction k and instruction k
is data dependent on instruction j

= Dependent instructions cannot be executed
simultaneously

Data Dependence

= Dependencies are a property of programs

= Pipeline organization determines if dependence
IS detected and if it causes a stall

uoIONPOJU|

= Data dependence conveys:
= Possibility of a hazard
= QOrder in which results must be calculated

= Upper bound on exploitable instruction level
parallelism

= Dependencies that flow through memory
locations are difficult to detect

Name Dependence

= Two instructions use the same name but no flow
of information
= Not a true data dependence, but is a problem when
reordering instructions

= Antidependence: instruction j writes a register or
memory location that instruction i reads
= |nitial ordering (i before j) must be preserved
= Qutput dependence: instruction i and instruction |
write the same register or memory location
= Ordering must be preserved

uoIONPOJU|

= To resolve, use register renaming techniques

Other Factors

uoIONPOJU|

= Data Hazards
= Read after write (RAW)
= Write after write (WAW)
= Write after read (WAR)

= Control Dependence

» Ordering of instruction i with respect to a branch

iInstruction
* |nstruction control dependent on a branch cannot be moved
before the branch so that its execution is no longer controlled
by the branch
= An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

)
Examples 2
2
Example 1: = or instruction dependenton ~©
add x1,x2,x3 add and sub
beq x4,x0,L
sub x1,x1,x6
L: ...
or x7,x1,x8
Example 2: = Assume x4 isn’'t used after
add x1,x2,x3 Skip
beq x12,x0,skip = Possible to move sub before
Sub x4,x5,x6 the branch
add x5,x4,x9
skip:

or x7,x8,x9

Compiler Techniques for Exposing ILP

= Pipeline scheduling

= Separate dependent instruction from the
source instruction by the pipeline latency of
the source instruction

= Example:
for (i=999; i>=0; i=i-1)
x[i] = X[i] + s:
Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op |

Load double Store double 0

sanbiuyoa] Jajidwo)

Pipeline Stalls

sanbiuyoa] Jajidwo)

Loop: fld f0,0(x1) Loop: fld f0,0(x1)
stall addi x1,x1,-8
fadd.d f4,f0,f2 fadd.d f4,f0,f2
stall stall
stall stall
fsd f4,0(x1) fsd f4,0(x1)
addi x1,x1,-8 bne x1,x2,Loop

bne x1,x2,Loop

Instruction producing result Instruction using result Latency 1n clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

Loop Unrolling

= [oop unrolling
= Unroll by a factor of 4 (assume # elements is divisible by 4)

= Eliminate unnecessary instructions

Loop: fld f0,0(x1)
fadd.d f4,f0,f2
fsd f4,0(x1) //drop addi & bne
fid f6,-8(x1)
fadd.d 8,f6,f2
fsd f8,-8(x1) //drop addi & bne
fid f0,-16(x1)
fadd.d f12,f0,f2
fsd f12,-16(x1) //drop addi & bne
fid f14,-24(x1)
fadd.d f16,f14,f2
fsd 16,-24(x1) " note: number
addi x1,x1,-32 of live registers

bne x1,x2,Loop vs. original loop

sanbiuyoa] Jajidwo)

Loop Unrolling/Pipeline Scheduling

= Pipeline schedule the unrolled loop:

sanbiuyoa] Jajidwo)

Loop: fld f0,0(x1)
fld f6,-8(x1)
fid £8,-16(x1)
fid f14,-24(x1)
fadd.d f4,f0,f2
fadd.d 8,16,
fadd.d f12,f0,f2
fadd.d 16,1412
fsd f4,0(x1)
fsd f8,-8(x1)
fsd f12,-16(x1)

fsd f16,-24(x1)]
addi x1,x1,-32 14 cycles

bne x1,x2,Loop = 3.5 cycles per element

Strip Mining

= Unknown number of loop iterations?
= Number of iterations = n
= Goal: make k copies of the loop body

= Generate pair of loops:
" First executes n mod k times
= Second executes n / k times
= “Strip mining”

sanbiuyoa] Jajidwo)

Branch Prediction

= Basic 2-bit predictor:
= For each branch:
= Predict taken or not taken
= |f the prediction is wrong two consecutive times, change prediction
= Correlating predictor:
= Multiple 2-bit predictors for each branch

= One for each possible combination of outcomes of preceding n
branches

= (m,n) predictor: behavior from last m branches to choose from 2™ n-bit
predictors

= Tournament predictor:
= Combine correlating predictor with local predictor

uonoIpald youelg

10-bit shift register
Branch history |=——0

Most recent branch

Branch address

result (not taken/taken)
= -1 10
Exclusive 1024 2-bit predictors
OR
10 +
v
Prediction

gshare

MVIK

Branch Prediction

uonoipalid youelg

Branch history — Branch address
Global predictors Selector Local predictors
=M
u Prediction
"X

tournament

MORGAN KAUFMANN

Branch Prediction Performance

uonoipalid youelg

- B 4096 entries:
nASA7 ?& 2 bits per entry
0% O Unlimited entries:
matrix300 | 0% S " ——
] 0% O 1024 entries:
1% (22)
tomcatv 0%
1%

doduc

spice

foppp

SPECB89 benchmarks

gee

espresso

18%
18%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

Branch Prediction Performance

2%

Conditional branch misprediction rate

0%

Local 2-bit predictors

+++++++++++++++

.
Correlating predictors

1% -

A
Tournament predictors

32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

Total predictor size

uonoIpald youelg

Tagged Hybrid Predictors

= Need to have predictor for each branch
and history
= Problem: this implies huge tables
= Solution:

uonoIpald youelg

= Use hash tables, whose hash value is based on
branch address and branch history

* Longer histories may lead to increased chance of
hash collision, so use multiple tables with
Increasingly shorter histories

Tagged Hybrid Predictors

uonoipalid youelg

pc h[O:L(1)] pc h[O:L(2)] pc h[O:L(3)] pc h{O:L(4)]

Y + l i L 1_" } L] | B | * l

e |hash] [hash) (hash) [hash] [hash| [hash (hash] [hash]
P(0) P(1) P(2) P(3) P(4)

-—

|
|
|
|
pred | tag
I
|
|

Base predictor
g
_5-__
']
____.5:_____
=]
2
g
B
0

Misses per one thousand instructions

Tagged Hybrid Predictors

r i*

[=1]
|

o
l

o
l

W
l

[\ %]
|

B TAGE [gshare

SPECTp SPECint MultiMedia Server

Dynamic Scheduling
= Rearrange order of instructions to reduce

stalls while maintaining data flow

Buiinpayog olweulg

= Advantages:

= Compiler doesn’t need to have knowledge of
microarchitecture

= Handles cases where dependencies are
unknown at compile time

= Disadvantage:
= Substantial increase in hardware complexity
= Complicates exceptions

Dynamic Scheduling

= Dynamic scheduling implies:
= Qut-of-order execution
= QOut-of-order completion

Buiinpayog olweulg

= Example 1:
fdiv.d f0,f2,f4
fadd.d f10,f0,f8
fsub.d f12,18,f14

= fsub.d is not dependent, issue before fadd.d

Dynamic Scheduling

= Example 2:
fdiv.d f0,f2,f4
fmul.d 16,f0,f8
fadd.d f0,f10,f14

Buiinpayog olweulg

= fadd.d is not dependent, but the
antidependence makes it impossible to issue
earlier without register renaming

_|_Register Renaming

Bulnpayos olweuAq

= Example 3:
fdiv.d fO,f2,f4
fadd.d f6,0,f8 |
antidependence
fsd f6,0(x1)
fsub.d f8,f10,f14 antidependence

fmul.d f6,10,f8

= name dependence with 6

Register Renaming

= Example 3:

Buiinpayog olweulg

fdiv.d f0,2,f4
fadd.d S,f0,f8
fsd S,0(x1)
fsub.d T,f10,f14
fmul.d 6,10, T

= Now only RAW hazards remain, which can be strictly
ordered

Register Renaming

= Tomasulo’s Approach
" Tracks when operands are available

" |[ntroduces register renaming in hardware
= Minimizes WAW and WAR hazards

Buiinpayog olweulg

= Register renaming is provided by
reservation stations (RS)
= Contains:

* The instruction
= Buffered operand values (when available)

= Reservation station number of instruction providing
the operand values

Register Renaming

RS fetches and buffers an operand as soon as it
becomes available (not necessarily involving register file)

Pending instructions designate the RS to which they will
send their output

= Result values broadcast on a result bus, called the common data
bus (CDB)

Only the last output updates the register file

As instructions are issued, the register specifiers are
renamed with the reservation station

Buiinpayog olweulg

May be more reservation stations than registers

Load and store buffers
= Contain data and addresses, act like reservation stations

Tomasulo’s Algorithm

From instruction unit

Buiinpayos olweuiq

Instruction FP registers I
queue
Load/store
operations
1’ __ Floating-point Operand
SS unit operations buses

Store buffers =T
' ¥ Load buffers

Y

Operation bus

S |

g 2
2 Reservation 1
1 stations

FP adders FP multipliers
Common data bus (CDB)

MVIK

MORGAN KAUFMANN

Tomasulo’s Algorithm

= Three Steps:

= |ssue
= Get next instruction from FIFO queue

= |f available RS, issue the instruction to the RS with operand values if
available

= |f operand values not available, stall the instruction
= Execute

= When operand becomes available, store it in any reservation
stations waiting for it

= When all operands are ready, issue the instruction

= | oads and store maintained in program order through effective
address

= No instruction allowed to initiate execution until all branches that
proceed it in program order have completed

= \Write result

Buiinpayog olweulg

= Write result on CDB into reservation stations and store buffers
= (Stores must wait until address and value are received)

Example

Instruction status

Buiinpayog olweulg

Instruction Issue Execute Write result
fld 76,32(x2) V V v
F1d 2, 44(x3) v v
fmul.d f0,f2,f4 vV
fsub.d 8,f2,f6 vV
fdiv.d f0,f0,f6 Vv
fadd.d f6,f8,f2 v

Reservation stations
Name Busy Op Vj Vk Qj Qk A
Loadl No
Load2 Yes Load 44 + Regs[x3]
Addl Yes SUB Mem[32 + Regs[x2]] Load2
Add2 Yes ADD Addl Load2
Add3 No
Multl Yes MUL Regs[f4] Load2
Mult2 Yes DIV Mem[32 + Regs[x2]] Mult]

Register status

Field fo f2 fa fé6 f8 fio f12 s f30
O Multl Load2 Add2 Addl Mult2

MVIK

MORGAN KAUFMANN

Tomasulo’s Algorithm

= Example loop:

Buiinpayos olweuiq

Loop: fld f0,0(x1)
fmul.d f4,f0,f2
fsd f4,0(x1)
addi x1,x1,8
bne x1,x2,Loop // branches if x16 != x2

MVIK

MORGAN KAUFMANN

Tomasulo’s Algorithm

Instruction status

Instruction From iteration Issue Execute Write result
fld f0,0(x1) 1 v v
fmul.d f4,f0,f2 1 v
fsd f4,0(x1) 1 v
fld f0,0(x1) 2 v v
fmul.d f4,f0,f2 2 v
fsd f4,0(x1) 2 v

Reservation stations
Name Busy Op Vj Vk Q Qk A
Loadl Yes Load Regs[x1]+ 0
Load2? Yes Load Regs[x1] -8
Addl No
Add2 No
Add3 No
Multl Yes MUL Regs[f2] Loadl
Mult2 Yes MUL Regs[f2] Load2
Storel Yes Store Regs[x1] Mult]
Store2 Yes Store Regs[x1] — 8 Mult2

Register status

Field fo f2 f4 f6 fa f10 f12 f30
Qi Load2 Mul2

Buiinpayog olweulg

Hardware-Based Speculation

= Execute instructions along predicted
execution paths but only commit the
results if prediction was correct

® |Instruction commit: allowing an instruction
to update the register file when instruction
IS no longer speculative

= Need an additional piece of hardware to
prevent any irrevocable action until an
Instruction commits

uone|noadg paseg-aiempleH

= |.e. updating state or taking an execution

Reorder Buffer
= Reorder buffer — holds the result of
iInstruction between completion and commit

= Four fields:
" |nstruction type: branch/store/register
= Destination field: register number
= Value field: output value
= Ready field: completed execution?

uone|noadg paseg-aiempleH

= Modify reservation stations:

= Operand source is now reorder buffer instead
of functional unit

Reorder Buffer
" |ssue:
= Allocate RS and ROB, read available operands

= Execute:

= Begin execution when operand values are
available

= \Write resuilt:
= Write result and ROB tag on CDB

= Commit:

uone|noadg paseg-aiempleH

=" When ROB reaches head of ROB, update
register

=" \When a mispredicted branch reaches head of
ROB, discard all entries

Reorder Buffer

= Register values and memory values are
not written until an instruction commits

uone|noadg paseg-aiempleH

= On misprediction:
= Speculated entries in ROB are cleared

= Exceptions:
= Not recognized until it is ready to commit

Reorder Buffer

Reorder buffer

From instruction unit

uone|noadg paseg-aiempleH

_ Reg #, ¢ Data
Instruction
queue
FP registers
Load/store
operations &
Operand
Floating-point buses
operations 1
+ Load buffers ! X
L
Operation bus
r Y
Store 3 :
address %

Store i
data | + Address

Memory unit FP adders

Load Common data bus (CDB)

data

MVIK

MORGAN KAUFMANN

Reorder Buffer

Reorder buffer
Entry Busy Instruction State Destination Value
1 No fld f6,32(x2) Commit 6 Mem[32 + Regs[x2]]
2 No fld f2,44(x3) Commit - Mem[44 + Regs[x3]]
3 Yes fmul .d fQ,f2,f4 Write result f0 #2 x Reqs[f4]
4 Yes fsub.d 8. 12,16 Write result 8 #2 — #1
5 Yes fdiv.d f0,f0, f6 Execute f0
6 Yes fadd.d f6,f8, f2 Write result f6 #4 + #2

uone|noadg paseg-aiempleH

Reservation stations

Name Busy Op Vj Vk Q Qk Dest A
Loadl No

Load2 No

Addl No

Add2 No

Add3 No

Multl No fmul.d Mem[44 + Regs[x3]] Regs[f4] #3

Mult2 Yes fdiv.d Mem[32 + Regs[x2]] #3 #5

FP register status

Field fo f1 f2 f3 f4 fs fé 7 f8 f10
Reorder # 3 6 4 5
Busy Yes No No No No No Yes P Yes Yes

MVIK

MORGAN KAUFMANN

Multiple Issue and Static Scheduling

= To achieve CPIl < 1, need to complete
multiple instructions per clock

= Solutions:
= Statically scheduled superscalar processors
= VLIW (very long instruction word) processors

= Dynamically scheduled superscalar
processors

Bulinpayos onels pue anss| ajdninpy

Multiple Issue

Bulinpayos o1elS pue anss| ajdnNA

Common Issue Hazard Distinguishing
name structure detection Scheduling characteristic Examples
Superscalar Dynarmc Hardware Static In-order execution Mosty 1n the embedded
(static) space: MIPS and ARM,
including the Cortex-AS3
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculanon
Superscalar Dynamic Hardware Dynamuc with Out-of-order execution Intel Core 13, 15, i7: AMD
(speculative) speculaton with speculation Phenom; IBM Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in signal
software and indicated by compiler processing, such as the TI
(often implicidy) Céx
EPIC Pnmanly Primanly Mostly static All hazards determuned Itanium
static software and indicated exphicitly
by the compiler

MVIK

MORGAN KAUFMANN

VLIW Processors

= Package multiple operations into one
Instruction

= Example VLIW processor:
= One integer instruction (or branch)
= Two independent floating-point operations
= Two independent memory references

Bulinpayos onels pue anss| ajdninpy

= Must be enough parallelism in code to fill
the available slots

VLIW Processors

Memory Memory
reference 1 reference 2 FP operation 1 FP operation 2

Integer
operation/branch

fld f0,0(x1) fld f6,-8(x1)

f1d f10,-16(x1) fldfl14,-24(x1)

fld f18,-32(x1) fldf22,-40(x1) fadd.d f4,f0,f2 fadd.d f8, f6,f2

fld f26,-48(x1) fadd.d f12,f0,f2 fadd.d f16,f14,f2

fadd.d f20,f18,f2 fadd.d f24,f22,f2

fsd f4,0(x1) fsd f8,-8(x1) fadd.d f28,f26,f24

fsd f12,-16(x1) fsdfl6,-24(x1)

addi x1.,x1,-56

fsd f20,24(x1) fsd f24,16(x1)

Bulinpayos o1elS pue anss| ajdnNA

fsd £28,8(x1)

= Disadvantages:
= Statically finding parallelism
= Code size
" No hazard detection hardware
= Binary code compatibilit

bne x1,x2,Loop

Dynamic Scheduling, Multiple Issue, and Speculation

= Modern microarchitectures:

= Dynamic scheduling + multiple issue +
speculation

= Two approaches:

= Assign reservation stations and update pipeline
control table in half clock cycles
= Only supports 2 instructions/clock

= Design logic to handle any possible
dependencies between the instructions

Issue logic is the bottleneck in dynamically
scheduled superscalars

uonenoadg pue ‘enss| a|diyny ‘Bulnpayos olweuiq

O

| |] <
verview of Design 5
=

[e —

=

0]

@)

- 0

| Reorder buffer (¢))

From instruction unit =

=

©

¥ g

(e

: Reg#y ¢ Data =

Instruction | '5

queue =

Integer and FP reqgisters ®

Load/store (9]
operations (é)

J o

Address unit Floating-point

operations %

4 Load buffers o
|F U)

Operation bus o

(¢))

(@)

L r L i E

Store 3 Q

address 2 Reservation —

s > 1 stations g

data § , Address -
Memory unit FP adders
Load
data Y Common data bus (CDB)

MVIK

MORGAN KAUFMANN

Multiple Issue
= Examine all the dependencies among the

instructions in the bundle

= |f dependencies exist in bundle, encode
them in reservation stations

= Also need multiple completion/commit

= To simplify RS allocation:

= Limit the number of instructions of a given class
that can be issued in a “bundle”, i.e. on FP, one

uonenoadg pue ‘enss| a|diyny ‘Bulnpayos olweuiq

Example

Loop: Id x2,0(x1) [Ix2=array element
addi x2,x2,1 /lincrement x2
sd x2,0(x1) //store result
addi x1,x1,8 //increment pointer
bne x2,x3,Loop //branch if not last

O
<
)
Q
3
o
)
o
2
)
o
=
=
©
<
—
=
j=i
)
7]
)
(=
o
Q
2
o
2
©
@
o
=
Q
=r
o
>

O

m <

>

Example (No Speculation) S

3

@)

Issues at Executes at Memory access at Write CDB at g‘-?

Iteration clock cycle clock cycle clock cycle clock cycle c:D-

number Instructions number number number number Comment Q

c

1 d xZ2 ,0(x1) | 2 3 4 First issue g

I addi x2,x2,1 1 5 6 Wait for 1d ©

| sd x2,0(x1) 2 3 7 Wait for addi §

1 addi x1.x1.,8 2 3 4 Execute directly =

| bne x2,x3,Loop 3 7 Wait for addi | =

2 Id x2,0(x1) 4 8 9 10 Wait for bne)

2 addi x2,x2,1 4 1 12 Wait for 1d L

2 sd x2,0(x1) 5 9 13 Wait for addi |5

2 addi x1,x1,8 5 8 9 Wait for bne %’_

2 bne x2,x3,Loop 6 13 Wait for addi W

3 1d x2,0(x1) 7 14 15 16 Wait for bne @

3 addi x2,x2,1 7 17 18 Wait for 1d -

3 sd x2,0(x1) 8 15 19 Wait for add i QO

3 addi x1,x1,8 8 14 15 Wait for bne |8
3 bne x2,x3,Loop 9 19 Wait for addi

Example (Mutiple Issue with Speculation)

Read Write

Issues Executes access CDB at Commits
Iteration atclock atcock atclock clock at clock
number Instructions number number number number number Comment
1 1d x2,0(x1) 1 2 3 4 5 First issue
1 addi x2,x2,1 1 5 6 7 Wait for 1d
1 sd x2,0(x1) 2 3 7 Wait for add i
1 addi x1,x1,8 2 3 4 8 Commit in order
1 bne x2,x3,Loop 3 7 8 Wait for add i
2 1d x2,0(x1) 1 5 6 9 No execute delay
2 addi x2,x2,1 4 8 10 Wait for 1d
2 sd x2,0(x1) 5 6 10 Wait for add i
2 addi x1,x1,8 5 6 7 11 Commit in order
2 bne x2,x3,Loop 6 10 11 Wait for add i
3 1d x2,0(x1) ¥ 8 9 10 12 Earliest possible
3 addi x2,x2,1 7 11 12 13 Wait for 1d
3 sd x2,0(x1) 8 9 13 Wait for add i
3 addi x1,x1,8 8 9 10 14 Executes carlier
3 bne x2,x3,Loop 9 13 14 Wait for add i

uonenoadg pue ‘enss| a|diyny ‘Bulnpayos olweuiq

Branch-Target Buffer

" Need high instruction bandwidth

= Branch-Target buffers
= Next PC prediction buffer, indexed by current PC

o
<
D
(@)
3
)
o]
[
]
wn
—h
o
-
>
Send PC to memory and Eﬁ.
branch-target buffer -
PC of instruction o fetch %
=t
Look up Predicted PC - o)
35
@
Number of =
entries <
in branch- Q)
target Send out ‘2
buffer predicted @
PC
>
o
N W
No Taken Yes ©
No: instruction is not Normal branch? Q)
predicted to be a taken instruction (@)
branch; proceed normally execution E
Q
Yes: then instruction is taken branch and predicted l g
PC should be used as the next PC Enter Mispredicted branch, Branch correctly
branch instruction kill fetched instruction; predicted; D
EX address and next restart fetch at other continue execution|
PC into branch- target; delete entry with no stalls
target buffer from target buffer

MORGAN KAUFMANN

Branch Folding

= Optimization:
= | arger branch-target buffer

= Add target instruction into buffer to deal with
longer decoding time required by larger buffer

= “Branch folding”

>
o
<
)
(@)
2
=3
o)
C
D
(7]
o
-
=1
2]
—
-3
C
@)
=z
@)
-}
)
0}
=
D
<
Q
)
o
2
o
D
(@)
=
Q
=t
@)
-}

Return Address Predictor

® Most unconditional branches come from
function returns

" The same procedure can be called from
multiple sites

= Causes the buffer to potentially forget about
the return address from previous calls

= Create return address buffer organized
as a stack

2>
o
<
)
o)
2
=3
®)
C
®
0]
o
-
=1
7))
ﬁ
-3
C
o
=z
o
-}
O
@
=
@
<
)
)
o
wn
©
®
(@)
=
Q
=t
o
-}

>

- a

Return Address Predictor 2
70% g
- Go S,

-~ m8Bksim .g

609, - =~ ccl __ 8
-0~ Compress .

- Xlisp o

- ljpeg —

60%] -A- Per o

g -~ Vortex g"
=

é 40% 5
z &
E 30% 1 E
] S
20% %

Q

0))

§o)

109 b é

£

0% g

Retum address buffer entries

MVIK

MORGAN KAUFMANN

Integrated Instruction Fetch Unit

= Design monolithic unit that performs:
= Branch prediction

= |nstruction prefetch
" Fetch ahead

= |nstruction memory access and buffering
= Deal with crossing cache lines

>
Q
<
o
o
>
=3
o)
c
®
n
o
-
=3
0
ﬁ
-
c
)
=3
o
-
)
@
=
®
<
Q
-
Q
2
go)
®
o
c
)
=3
o
-

Register Renaming

Register renaming vs. reorder buffers

Instead of virtual registers from reservation stations and reorder
buffer, create a single register pool
= Contains visible registers and virtual registers

Use hardware-based map to rename registers during issue
WAW and WAR hazards are avoided

Speculation recovery occurs by copying during commit
Still need a ROB-like queue to update table in order
Simplifies commit:

* Record that mapping between architectural register and physical register is no
longer speculative

* Free up physical register used to hold older value
* |n other words: SWAP physical registers on commit

Physical register de-allocation is more difficult

= Simple approach: deallocate virtual register when next instruction writes to its
mapped architecturally-visibly register

2>
o
<
)
o)
2
=3
®)
C
®
0]
o
-
=1
7))
ﬁ
-
C
o
=z
o
-}
O
@
=
@
<
)
)
o
wn
©
®
(@)
=
Q
=t
o
-}

Integrated Issue and Renaming

= Combining instruction issue with register renaming:

= |ssue logic pre-reserves enough physical registers for the
bundle

= [ssue logic finds dependencies within bundle, maps registers
as necessary

= |ssue logic finds dependencies between current bundle and
already in-flight bundles, maps registers as necessary

uonenoadg pue AlaAl@g uononJisu| oy senbiuyos| "ApY

Physical register assigned Instruction with physical Rename map
Instr. # Instruction or destination register numbers changes
1 add x1,x2,x3 p32 add p32.p2,.p3 xl-> pi2
2 sub x1,x1,x2 p33 sub p33.,p32.p2 x1->p33
3 add x2,x1,x2 p34 add p34,p33,x2 x2->pid
4 sub x1,x3,x2 p3s sub p35,p3,p34 x1->p3s
5 add x1,x1,x2 p36 add p36,p35,p34 x1->p36
6 subxl x3.x1 p37 sub p37,p3,p36 x1->p37

How Much?
- How much to speculate

= Mis-speculation degrades performance and
power relative to no speculation
* May cause additional misses (cache, TLB)

= Prevent speculative code from causing
higher costing misses (e.g. L2)

= Speculating through multiple branches
= Complicates speculation recovery

= Speculation and energy efficiency

= Note: speculation is only energy efficient
when it significantly improves performance

uonenoadg pue AlaAl@g uononJisu| oy senbiuyos| "ApY

How Much?

45% -

integer

40% -

35% -

Misspeculation

Energy Efficiency

= Value prediction

= Uses:
= | oads that load from a constant pool
= |Instruction that produces a value from a small set
of values
= Not incorporated into modern processors

= Similar idea--address aliasing prediction--is
used on some processors to determine if
two stores or a load and a store reference
the same address to allow for reordering

x>
o
<
CBI
O
-
=3
o)
(@
®
w
o
-
=3
v
ﬁ
-
(@
o
=t
o
)
O
@
=
®
<
Q
>
Q
wn
o)
@
o
c
)
=
o
)

Fallacies and Pitfalls

" |tis easy to predict the performance/energy
efficiency of two different versions of the same
ISA if we hold the technology constant

s|lefild pue saoe|je-

% 10 |- Speedup +Energyeﬂidency|
g 97
@
5 8_
B
m
o 74
g
m
E 6
3]
T s
o
™
o™ 4-
E
)
< 34
g
m
o™
[= ;]
0_
a X = = @ o o .CN - [= ‘SO. - _0. = Tz = >~_Q L]
FERIiisEs *E“E*E,Eaé %%é eEgeiﬁ:ﬂ%Essc
5 E‘Ngﬂ 228g%E g‘:ms Sgg 8 33 se 8
=3 S 8 m 8 S o T o : ~ 8248 5 8,85
O o - o o 0 o O a O N o igam
O, o~ c_xv vmq_gd*n [il vmg - g
3 | E P T 598 5 ¥ 938¢ ¥ < -
8 o g g€ ¥ g P @
1 NI - - b

Fallacies and Pitfalls

" Processors with lower CPls / faster clock rates
will also be faster

silejiid pue seaioe|e

Implementation Clock SPECCInt2006 SPECCFP2006
Processor technology rate Power base baseline
Intel Pentium 4 670 90 nm 3.8 GHz 115W 115 122
Intel Itanium 2 90 nm 1.66 GHz 104 W 14.5 17.3

approx. 70 W one
core

Intel 17 920 45 nm 3.3 GHz 130 W total 353 384
approx. 80 W one
core

= Pentium 4 had higher clock, lower CPI
= |[tanium had same CPI, lower clock

Fallacies and Pitfalls

= Sometimes bigger and dumber is better

= Pentium 4 and Itanium were advanced designs, but
could not achieve their peak instruction throughput
because of relatively small caches as compared to i/

silejiid pue seaioe|e

" And sometimes smarter is better than bigger and
dumber

= TAGE branch predictor outperforms gshare with less
stored predictions

Fallacies and Pitfalls

10 Window size
{10 M Infinite

10 @ 256

W 128

64

m 32

= Believing that there
are large amounts
of ILP available, if
only we had the
right techniques

silejiid pue saioe|je-

espresso |

Benchmarks

56

0 10 20 30 40 50 60
Instruction issues per cycle

	Διαφάνεια 1
	Διαφάνεια 2
	Διαφάνεια 3
	Διαφάνεια 4
	Διαφάνεια 5
	Διαφάνεια 6
	Διαφάνεια 7
	Διαφάνεια 8
	Διαφάνεια 9
	Διαφάνεια 10
	Διαφάνεια 11
	Διαφάνεια 12
	Διαφάνεια 13
	Διαφάνεια 14
	Διαφάνεια 15
	Διαφάνεια 16
	Διαφάνεια 17
	Διαφάνεια 18
	Διαφάνεια 19
	Διαφάνεια 20
	Διαφάνεια 21
	Διαφάνεια 22
	Διαφάνεια 23
	Διαφάνεια 24
	Διαφάνεια 25
	Διαφάνεια 26
	Διαφάνεια 27
	Διαφάνεια 28
	Διαφάνεια 29
	Διαφάνεια 30
	Διαφάνεια 31
	Διαφάνεια 32
	Διαφάνεια 33
	Διαφάνεια 34
	Διαφάνεια 35
	Διαφάνεια 36
	Διαφάνεια 37
	Διαφάνεια 38
	Διαφάνεια 39
	Διαφάνεια 40
	Διαφάνεια 41
	Διαφάνεια 42
	Διαφάνεια 43
	Διαφάνεια 44
	Διαφάνεια 45
	Διαφάνεια 46
	Διαφάνεια 47
	Διαφάνεια 48
	Διαφάνεια 49
	Διαφάνεια 50
	Διαφάνεια 51
	Διαφάνεια 52
	Διαφάνεια 53
	Διαφάνεια 54
	Διαφάνεια 55
	Διαφάνεια 56
	Διαφάνεια 57
	Διαφάνεια 58
	Διαφάνεια 59
	Διαφάνεια 60
	Διαφάνεια 61
	Διαφάνεια 62

