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Computer System Organization

B Computer-system operation
® One or more CPUs, device controllers connect through common bus
providing access to shared memory
® Concurrent execution of CPUs and devices competing for memory
cycles
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Storage-Device Hierarchy
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Computer-System Architecture

B Most systems use a single general-purpose processor
® Most systems have special-purpose processors as well

B Multiprocessors systems growing in use and importance
® Also known as parallel systems, tightly-coupled systems
® Two types:
1. Asymmetric Multiprocessing — each processor is assigned a specific
task.
2. Symmetric Multiprocessing — each processor performs all tasks
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Symmetric Multiprocessing Architecture
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Operating System Structure

B Multiprogramming (Batch system) needed for efficiency
® Single user cannot keep CPU and I/O devices busy at all times
® Multiprogramming organizes jobs (code and data) so CPU always has one to
execute
® A subset of total jobs in system is kept in memory
® One job selected and run via job scheduling
® When it has to wait (for 1/O for example), OS switches to another job

B Timesharing (multitasking) is logical extension in which CPU switches jobs
so frequently that users can interact with each job while it is running, creating

interactive computing
® Response time should be < 1 second
® Each user has at least one program executing in memory = process
® |f several jobs ready to run at the same time = CPU scheduling

m{j{[ ; &‘.‘ .\Dx
Operating System Concepts Essentials — 2nd Edition 7 Silberschatz, Galvin and Gagne ©2013




Memory Management

B To execute a program all (or part) of the instructions must be in
memory

B All (or part) of the data that is needed by the program must be Iin
memory.

B Memory management activities

® Keeping track of which parts of memory are currently being
used and by whom

® Deciding which processes (or parts thereof) and data to move
into and out of memory

® Allocating and deallocating memory space as needed

Operating System Concepts Essentials — 2nd Edition 8 Silberschatz, Galvin and Gagne ©2013
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Storage Management

B OS provides uniform, logical view of information storage
® |ogical storage unit - file
® Each medium is controlled by device (i.e., disk drive, tape drive)
» Varying properties include access speed, capacity, data-transfer
rate, access method (sequential or random)

B File-System management

® Files usually organized into directories

® Access control on most systems to determine who can access
what

® OGS activities include
» Creating and deleting files and directories
» Primitives to manipulate files and directories
» Backup files onto stable (non-volatile) storage media
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Distributed systems
e

e Virtually all large computer-based systems are
now distributed systems.

e |nformation processing is distributed over
several computers rather than confined to a

single machine.

e Distributed software engineering is therefore
very important for enterprise computing
systems.



System types
G

e Personal systems that are not distributed and that are
designed to run on a personal computer or workstation.

e Embedded systems that run on a single processor or on
an integrated group of processors.

e Distributed systems where the system software runs on
a loosely integrated group of cooperating processors
linked by a network.



Distributed system characteristics
G

e Resource sharing
- Sharing of hardware and software resources.

e Openness
- Use of equipment and software from different vendors.

e Concurrency
— Concurrent processing to enhance performance.

o Scalability

- Increased throughput by adding new resources.

e Fault tolerance
- The abillity to continue in operation after a fault has occurred.



Distributed system disadvantages

e
o Complexity

— Typically, distributed systems are more complex than centralised
systems.

o Security
- More susceptible to external attack.

e Manageability

- More effort required for system management.

o Unpredictability
- Unpredictable responses depending on the system organisation
and network load.



Distributed systems architectures
G

e Client-server architectures
- Distributed services which are called on by clients.
Servers that provide services are treated differently
from clients that use services.

e Distributed object architectures
- No distinction between clients and servers. Any object
on the system may provide and use services from
other objects.




Middleware
L

o Software that manages and supports the different
components of a distributed system. In essence, it sits
iIn the middle of the system.

e Middleware is usually off-the-shelf rather than specially
written software.

e Examples
- Transaction processing monitors;
- Data converters;
- Communication controllers.



Multiprocessor architectures
G

e Simplest distributed system model.

e System composed of multiple processes which

may (but need not) execute on different
processors.

e Architectural model of many large real-time
systems.

e Distribution of process to processor may be

pre-ordered or may be under the control of a
dispatcher.



A multiprocessor traffic control system

‘ Semsor Faffic llglu control g
9 "'°°‘”°‘
. ml :
process Process
| | Traffic lights
Tatic foosensorsand

camneras Operator consoles



https://www.youtube.com/watch?v=1ZfWjg3U3mA
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Why Choose a Multiprocessor?

» Asingle CPU can only go so fast, use more
than one CPU to improve performance

* Multiple users

* Multiple applications

* Multi-tasking within an application

* Responsiveness and/or throughput

« Share hardware between CPUs



Multiprocessor Symmetry

In a multiprocessing system, all CPUs may be equal, or
some may be reserved for special purposes.

A combination of hardware and operating-system
software design considerations determine the symmetry.

Systems that treat all CPUs equally are called symmetric
multiprocessing (SMP) systems.

If all CPUs are not equal, system resources may be
divided in a number of ways, including asymmetric
multiprocessing (ASMP), non-uniform memory access
(NUMA) multiprocessing, and clustered multiprocessing.



Instruction and Data Streams
Mike Flynn's Taxonomy (19606)

Multiprocessors can be used in different ways:
* Uniprossesors (single-instruction, single-data or SISD)

* Within a single system to execute multiple, independent
sequences of instructions in multiple contexts (multiple-
instruction, multiple-data or MIMD);

» Assingle sequence of instructions in multiple contexts
(single-instruction, multiple-data or SIMD, often used in
vector processing);

» Multiple sequences of instructions in a single context
(multiple-instruction, single-data or MISD, used for
redundancy In fail-safe systems and sometimes applied
to describe pipelined processors or hyper threading).
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Processor Coupling

Tightly-coupled multiprocessor systems:

Contain multiple CPUs that are connected at the bus level.

These CPUs may have access to a central shared memory
(Symmetric Multiprocessing, or SMP), or ma c}/ participate in a
memory hierarchy with both local and shared memory (Non-
Uniform Memory Access, or NUMA).

Example: IBM p690 Regatta, Chip multiprocessors, also
known as multi-core computing.

Loosely-coupled multiprocessor systems:

Often referred as clusters

Based on multiple standalone single or dual processor
commodity computers interconnected via a high speed
communication system, such as Gigabit ethernet.

Example: Linux Beowulf cluster



Amdanhl's law

S latency (5 ) —

where

* Siatency IS the theoretical speedup of the execution of the whole task;
e sis the speedup of the part of the task that benefits from improved system resources;

e pis the proportion of execution time that the part benefiting from improved resources originally occupied.

Furthermore,
( 1
Slatency (3) < n
\
lim Siageney (5) = —
\sg& latency \$) — 1_p-

shows that the theoretical speedup of the execution of the whole task increases with the improvement of the resources of the system and that regardless of the magnitude of the improvement, the
theoretical speedup is always limited by the part of the task that cannot benefit from the improvement.



Amdahl's Law
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Multiprocessor Communication
Architectures

Message Passing

» Separate address space for each processor
* Processors communicate via message passing
* Processors have private memories

* Focuses attention on costly non-local operations

Shared Memory

* Processors communicate with shared address space
Processors communicate by memory read/write
Easy on small-scale machines

Lower latency
SMP or NUMA



Shared-Memory Processors

*Single copy of the OS (although some parts might be
parallel)

*Relatively easy to program and port sequential code to
*Difficult to scale to large numbers of processors

processor processor e o o processor
1 2 N

interconnection network

memory memory ¢ o o memory
1 2 M

UMA machine block diagram




Types of Shared-Memory Architectures

UMA

» Uniform Memory Access
» Access to all memory occurred at the same speed for all
pProcessors.

NUMA

Non-Uniform Memory Access

a.k.a. "Distributed Shared Memory".

Typically interconnection is grid or hypercube.
Access to some parts of memory is tfaster for some
processors than other parts of memory.

* Harder to program, but scales to more processors



(a) Simplest MP:
More than one processor on a single bus

Bus Based UMA

connect to memory, bus bandwidth becomes

a bottleneck.

(b) Each processor has a cache to reduce the need
to access to memory.

(c) To further scale the number of processors, each
processor Is glven private local memory.
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Shared memory
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NUMA

All memories can be addressed by all processors, but access to a processor’s
own local memory is faster than access to another processor’s remote

memory, i.e. each processor has a private connection to its own workspace,
but a shared connection to all the others

Looks like a distributed machine, but the interconnection network is usually

custom-designed switches and/or buses.
Processo FProcesso Processo Processor
+ cache + cache + cache + cache
woron

r [ r
oo oo

Interconnection network
Memory o Memory . Memory . e Memory
Processor Processor Processor Processor
4+ cache 4+ cache 4+ cache 4+ cache
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OS Option 1

Each CPU has its own OS

« Statically allocate physical memory to each CPU

 Each CPU runs its own independents OS

* Share peripherals

 Each CPU handles its processes system calls

* Used in early multiprocessor systems

« Simple to implement

* Avoids concurrency issues by not sharing

* Issues: 1. Each processor has its own scheduling queue.
2. Each processor has its own memory partition.
3. Consistency is an issue with independent disk buffer caches and

potentially shared files.

CPU 1 CPU?2 CPU 3 CPU 4 Memory /O
Has Has Has Has
private private private private

OS OS OS OS




OS Option 2

Master-Slave Multiprocessors

* OS mostly runs on a single fixed CPU.

» User-level applications run on the other CPUs.

* All system calls are passed to the Master CPU for processing
* Very little synchronisation required

* 3ingle to implement

» Single centralised scheduler to keep all processors busy
 Memory can be allocated as needed to all CPUs.

* |ssues: Master CPU becomes the bottleneck.

CPU 1 CPU 2 CPU 3 CPU 4 Memory /O
Master Slave Slave Slave User

runs runs user runs user runs user processes

0S processes processes processes

I | |




OS Option 3

Symmetric Multiprocessors (SMP)

 OS kernel runs on all processors, while load and resources are balanced
between all processors.

* One alternative: A single mutex (mutual exclusion object) that make the
entire kernel a large critical section; Only one CPU can be in the kernel at a
time; Only slight better than master-slave

« Better alternative: Identify independent parts of the kernel and make each of
them their own critical section, which allows parallelism in the kernel

* [Issues: A difficult task; Code is mostly similar to uniprocessor code; hard part
IS identifying independent parts that don’t interfere with each other

CPU 1 CPU?2 CPU3 CPU 4 Memory /O
Runs Runs Runs Runs
users and users and users and users and

shared O shared OS]  |shared OS| |shared OS OS O

Locks



_I_
Effectlve Appllcatlons for Multlcore

Processors

‘. Mu1t1 threaded natwe apphcatlons

= Thread-level parallelism
Charactenzed by havmg a small number of highl‘y threaded processes

. Multi-process applications

= -Process-level parallelism

= Characterized by the presence of many single-threaded processes
. Java applications

= Embrace threading in a fundamental way

= Java Virtual Machine is a multi-threaded process that provides scheduling and
memory management for ]ava applications

'« Multi-instance applications

= If multiple application instances require some degree of 1solat10n virtualization
technology can be used to provide each of them with its own separate and secure
environment

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Earlier Example
Quad-Processor Pentium Pro

» SMP, bus interconnection.

4 x 200 MHz Intel Pentium Pro processors.
« 8+ 8 Kb L1 cache per processor.

512 Kb L2 cache per processor.

* Snhoopy cache coherence.

 Employed in Compaq, HP, IBM, NetPower.

« (0OS: Windows NT, Solaris, Linux, etc.



Example
HP Integrity Superdome

The HP Integrity Superdome is HP's high-end addition to the family of
industry-standard Itanium®-based solutions. The Superdome offers
several configurations from 2-way multiprocessing all the way to 128
CPUs supporting multiple operating systems such as HP-UX 111V2,
Microsoft Windows Server 2003 Datacentre Edition, Linux and
OpenVMS.

Prorc]:e)ssor: 2 1o 64 Intel Itanium 2 processors (1.6 GHz with 9 MB
cache

Memory: Up to 1TB DDR memory

1-16 cell boards (each cell: 2 or 4 processors and 2 to 32 GB memory)

48 - 96 PCI-X internal hot-plug I/O card slots (Optional Server
Expansion Unit)

4 -16 hardware partitions (nPars) using Server Expansion Unit
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Figure 18.6 Multicore Organization Alternatives
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Table 18.1

Operating Parameters of AMD 5100K
Heterogeneous Multicore Processor

CPU
Clack frequency (GH2) .

Cores

FLOPS/core
GFLOPS

FLOPS = floating point operations per second
FLOPS/core = number of parallel floating point operations that can be performed

© 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Conclusion

Parallel processing is a technique for higher
performance and effectiveness for
multiprogrammed workloads.

MPs combine the difficulties of building complex
hardware systems and complex software

systems.
Communication, memory, affinity and

throughputs presents an important influence on
the systems costs and performances

On-chip MPs (MPSoC) technology is dominating
and growing



Multiprocessor Synchronization (1)

Word
CPU 1 1000 is Memory CPU 2

. o M .
II 1.CPU1reads a0 II 2.CPU2reads a0 II

3.CPU 1 writes a 1 4. CPU 2 writes a 1

Bus

TSL instruction can fail if bus already locked



Multiprocessor Synchronization (2)

CPU3—| 3

CPU 3 spins on this (private) lock

CPU 2 spins on this (private) lock
CPU 4 spins on this (private) lock

2 4
/ When CPU 1 is finished with the
Shared memory real lock, it releases it and also
CPU 1 releases the private lock CPU 2
holds the | IS spinning on

real lock

Multiple locks used to avoid cache thrashing



Multiprocessor Synchronization (3)

Busy Spinning 1s a wait strategy in which one thread waits for
some condition to happen which is to be set by some other
thread. ... The consumer thread while waiting holds the CPU cycles
and thus there 1s wastage ot CPU resources which can be used for
some other processing by other threads.

Blocked waiting (also known as sleeping waiting) 1s a wait strategy
where a task sleeps until an event occurs. For blocked waiting to
work, there must be some external agent that can wake up the task
when the event has (or may have) occurred.



Multiprocessor Synchronization (4)

Spinning versus Switching

* In some cases CPU must wait
— waits to acquire ready list

* In other cases a choice exists
— spinning wastes CPU cycles
— switching uses up CPU cycles also
— possible to make separate decision each time
locked mutex encountered



Multiprocessor Scheduling (1)
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Multiprocessor Scheduling (2)

a
=
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* Space sharing
— multiple threads at same time across multiple CPUs



Multiprocessor Scheduling (3)

Thread A, running

J\

CPUO

Request 1 : equest |2 .
Reply 1 | Reply 2

Time 0O 1 00 200 300 400 500 600

CPU 1

e Problem with communication between two threads
— both belong to process A
— both running out of phase



Multiprocessor Scheduling (4)

e Solution: Gang Scheduling

1. Groups of related threads scheduled as a unit (a gang)
2. All members of gang run simultaneously

on different timeshared CPUs
3. All gang members start and end time slices together



Multiprocessor Scheduling (5)

Time
slot

CPU
0 1 2 S 4 5
" I T N A A
& [ & [ & [ & [ o [ o
I L D N W
o & & e [ & [ & [ &
T T N N Y
R T O B T

Gang Scheduling



Multicomputers

e Definition:

e Also known as

— cluster computers
— clusters of workstations (COWSs)



https://www.youtube.com/watch?v=S09SR3gpWsM

10:00 -


https://www.youtube.com/watch?v=So9SR3qpWsM
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NI

] I
O0—e—¢—o—o—11
(M ] O—e—e¢—o—o [
EE/OO\:IEI
. O OO o
(a) (b)

(c)

——— — — o
- Gaai(y

-
4‘—
-

O o
Ny
X
Eu
NAY

.....
-

 Interconnection topologies

(IE;) s@ngle switch (d) double torus
(b) ring (e) cube

(c) grid () hypercube



Multicomputer Hardware (2)

CPU 1 Four-port DpLt port
switch OQutput port
A B A B ¢ A B

oooooooooooooooooooooooooooooo

Entire/fiC i+ D i1 i G i+ D 1+ G 1+ D

packet

.......... :k\ ]‘\ CPU 2

Entire Entire
packet packet
() (b) (c)

* Switching scheme
— store-and-forward packet switching



Multicomputer Hardware (3)

Main RAM

. E ororal, 4 E -
on- board

CPU Interface

Interface board
board
RAM

Node 3 Node 4

Network interface boards in a multicomputer



Low-Level Communication Software (1)

* If several processes running on node
— need network access to send packets ...

e Map interface board to all process that need 1t

e It kernel needs access to network ...

» Use two network boards
— one to user space, one to kernel



Low-Level Communication Software (2)

Receive

Send ring ring

Node 1 Node 2

Main RAM |

;" SWitC1 ‘.{,“
. . | '
oS [7olololololo 1[ololololololo OS

Main RAM

RAM

Bit map
Interface board

Node to Network Interface Communication
« Use send & receive rings
e coordinates main CPU with on-board CPU



User Level Communication Software

e Minimum services — _Sererrnming

provided
— send and recelve
commands

* These are blocking  sewernming I+

(synchronous) calls

€

(a) Blocking send call

Trap to kernel,

Sender blocked >

Sender running

A

Y Return from kernel,
sender blpeked sender released
€ Message being sent >
(@)
Sender
blocked
o Sender running
A
Trap Return
Y
~€ > Message being sent >
Message

copiedto a
kernel buffer

(b)

(b) Nonblocking send call



Remote Procedure Call (1)

Client CPU Server CPU

Server
ﬁp - ﬁ»
4
Operating system Operating system

» Steps in making a remote procedure call
— the stubs are shaded gray

Network



Remote Procedure Call (1a)

A client stub 1s responsible for conversion (marshalling) of
parameters used In a function call and deconversion of results
passed from the server after execution of the function. It uses an
interface description language (IDL) to define the intertace between
client and server.



Remote Procedure Call (2)

Implementation Issues

» Cannot pass pointers
— call by reference becomes copy-restore (but might fail)

* Weakly typed languages

— client stub cannot determine size
* Not always possible to determine parameter types

» Cannot use global variables
— may get moved to remote machine



Distributed Shared Memory (1)

Machine 1 Machine 2 Machine 1 Machine 2 Machine 1 Machine 2
Application Application Application Application Application Application
A
Run-time Run-time Run-time Run-time Run-time Run-time
system system system system system system
A
Operating Operating Operating Operating Operating Operating
system system system system system system
A
Hardware Hardware Hardware Hardware Hardware Hardware
Shared memory Shared memory Shared memory

() (b) (c)

* Note layers where it can be implemented

— hardware
— operating system



Distributed Shared Memory (2)

Globally shared virtual memory consisting of 16 pages

Replication
(a) Pages distributed on 4 machines

(b) CPU 0 reads page 10

—~— Memory

1121314 |5|6|7]|8]19]|10111|12]13]14]15
2 5 3 6 4 71111 13| |15
10 12| |14
CPUDO CPU 1 CPU 2 CPU 3

Network
(a)
2115 1 31||6 4 1|7 (11 13| [15
10 12| |14
CPUDO CPU 1 CPU 2 CPU 3
(b)
2115 1 31||6 4 || 7|11 13| [15
10 10 12| |14
CPUO CPU 1 CPU 2 CPU 3




Shared
page

Distributed Shared Memory (3)

A ’—

Code using

variable A

» False Sharing

CPU 2

A and B are unrelated

] X i4—| shared variables that just

faR
. B

Code using
variable B

happen to be on the same page

Network

* Must also achieve sequential consistency



Multicomputer Scheduling
Load Balancing (1)

| | |
| |
Node 1 | Node 2 | Node 3

Process

» (Graph-theoretic deterministic algorithm



Load Balancing (2)
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* Sender-initiated distributed heuristic algorithm
— overloaded sender



Load Balancing (3)
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I’'m bored
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» Recerver-mitiated distributed heuristic algorithm
— under loaded receiver



Distributed Systems (1)

ltem Multiprocessor Multicomputer Distributed System
Node configuration CPU CPU, RAM, net interface | Complete computer
Node peripherals All shared Shared exc. maybe disk | Full set per node
Location Same rack Same room Possibly worldwide
Internode communication | Shared RAM Dedicated interconnect Traditional network
Operating systems One, shared Multiple, same Possibly all different
File systems One, shared One, shared Each node has own

Administration

One organization

One organization

Many organizations

Comparison of three kinds of multiple CPU systems




Distributed Systems (2)

Application

Middleware

Windows

Pentium

|

e

Common base for applications

/

Application

Middleware

Linux

Pentium

|
\/ III

Network

Application

Middleware

Solaris

SPARC

Application

Middleware

Mac OS

Macintosh

Achieving uniformity with middleware



Multiprocessors Review

https://www.youtube.com/watch?v=TIcmpXjt2vE

1:57
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