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Figwre 232 A “world linc" and ils
projections.

Figuwre 2.13 The magritade of the force
exeried by a spring is propartional to the
absolute value of the stretch of the spring,
For an cloagated spring, stretch is positive.

Figure 2.34 The magpitude of the force
exeried by a spring is proportional Lo the
absolute value of the stretch of the spring,
For a compressed spring, stretch is
negative,
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Projections of a “World Line™

Figure 232 illustrates an interesting way to think of the graphs of y vs 1. ¥
vs. L and x vx & The red curve in Figure 232 is a graphical description of the
motion in x, v, and 1 of a ball that moves in the xy planc. Imagine shining a
light on the red curve to project a shadow onto the xy plane, or the yt plane, or
the xt plane. These “projections™ are shown in cvan in the figure. Compare
these projections with the individual graphs shown in Fgures 2.29, 230,
and 2.31.

The red curve, a function of x, y, and ¢, s called a “world line.” World lines
play an important role in textbooks on special relativity. In reality, a world line
should be a function of x, v, 2, and ¢, but it’s very difficult even with a computer
to draw a four-dimensional curve!

2.6 ITERATIVE PREDICTION: VARYING NET FORCE

A familiar example of a force that is not constant is the force exerted by a
spring that is stretched or compressed. The magnitude of this force depends
on the amount of stretch or compression of the spring. The force is directed
along the line of the spring.

The Spring Force

A “force law” describes mathematically how a force depends on the situation.
For a spring, it is determined experimentally that the force exerted by a spring
on an object attached to the spring is given by the following equation:

MAGNITUDE OF THE SPRING FORCE
IFM‘ :ksm
5| is the absolute value of the stretch: s = L - Ly,
Ly is the leapth of the relaxed spring.
L is the length of the spring when stretched or compressed.
ky is the “spring stiffness™ (also called “spring constant™).
The force acts in a direction o restore the spring 1o its relaxed keagth.

The constant & is a positive number, and is a property of the particular spring:
the stiffer the spring, the larger the spring stiffness, and the larger the force
needed 1o stretch the spring, Nole that s is positive if the spring is stretched
(L > Ly, Figure 2.33) and negative if the spring is compressed (L < Lo, Figure
2.34). This equation is sometimes called “Hooke's law.” It s valid as long as the
spring is not stretched or compressed too much.

QUESTION Suppose a certain spring has been calibrated so that we
know that its spring stiffness &y is 500 N/m. You pull on the spring
and observe that itis 0.01 m (1 cm) longer than it was when relaxed.
What is the magnitude of the force exerted by the spnng on your
hand?

The force law gives |F, = (SOON/m)(|+0.0l m|) = SN. Note that the
total length of the spri::ﬁncsn‘l matter; it's just the amount of streich or
compression that matters. Because of the “reaprocity” of the electric forces
between the protons and electrons in the spring and those in your hand,
as we'll study in Chapter 3, the force you exert on the spring is equal in
magnitude and opposite in direction to the force the spring exerts oa your
hand.
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Figure 2.35 The wector £ points from the
location where the spring is attached Lo the
ceiling Lo the location of the mass The
arrow is offsct for clarity in the diagram,
L s the length of the relaxed spring.

QUESTION Suppose that instead of pulling on the spring, you push
on it, so the spring becomes shorter than its relaxed length, If the
relaxed length of the spring is 10 cm, and you compress the spring
1o a length of 9 cm, what is the magnitude of the force exerted by
the spring on your hand?

The stretch of the spring in SI units is
s=L-Lg=(0080m~-010m)=-00Im

The force law gives

|Fiprisg| = (SOON/m)(] — 0.01 m]) = 5N

The magnitude of the force is the same as in the previous case Of course
the direction of the force exerted by the spring on your hand is pow
different, so we will need 1o write a full vector equation to incorporate this
inf -

Checkpoint 6 (1) You pash on a spring whose stiffncss s 11 Nim,
compressing it until it is 2.5 cm shorter than its relaved leagth. What & the
magnitade of the force the spring now exerts on your hand? (2) A different
spring is 0.17m long when it is reluxed. (8) When a force of magaitude
250N is applicd, the spring becomes (124:m long, Wha is the stiffrcss of
this spring? (b) This spring is compressed so that its leagth is 015 m. What
magnitude of force is reguired to do this?

The Spring Force as & Vector

To write an equation for the spring force as a vector, combening magnitude
and direction into one expression, we aced to consider the pencral case. in
which the spring may be stretched both vertically and horizontally. Since
the force exerted by the spring will be directed along the axis of the spring,
we neod a unit vector in that direction. We will get this unit vector from the
vector L, shown in Figure 235, which is a relative position vector: it specifies
the position of the movable end of the spring relative to the fixed end of the
spring. L extends from the point at which the spring is attached 1o a support
10 the mass at the other end of the spring. We can factor the relative position
vector L into the product of a magnitude (the length of the spring) and a unit
veclor:

L=|LL
The stretch of the spring can now be wnitten as
’=|L§—L.

= When the spring is longer than its relaxed lenagth, the value of s will be
positive, but the direction of the force will be given by L.

= When the spring is shorter than its relaxed leagth, the value of 5 will be
negative, but the direction of the force will be given by + L.

The general expression for the vector spring force is therefore:
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THE VECTOR SPRING FORCE
F= kgl

The stretch s = || - L, and may be positive or negative.

The scalar L, is the length of the relaxed spring.

The vector L extends from the point of attachment of the spring
Lo the movabike end.

ky is the “spring stiffness” (also called “spring constant™).

QUESTION Coasider the two stretched springs in Figure 2.33. What
is the unit vector L for cach stretched spring (assuming the usual
coordinate system)? Does L depend on how much the spring is
stretched?

In cach case L = (0,-1,0). Although the mapnitude of L depends on the

stretch, the unit vector L, which has magnitude 1, is the same in both cases.

Similarty, for both compressed springs in Figure 234, L = (0,1,0).
PAAMELE Force Due to a Stretched Spring

Suppose that the stiffness of the rightmost spring shown in Figure 235 is
ON/m, and its relaxed length s 21 cm. At the instant shown, the location
of the green mass is (0.07,-033.0) m relative to an origin at the point of
attachment of the spring. What is the force exerted by the spring on the
groen mass at this instant?

Solution L= (0.07,-033,0)m~ {0,0,0) m = (0.07,-033.0y m

|L}= \/(omn)? H{(-3BmP=033Tm

_{007,-033,0)m
i- e - (0208, 9700)

s=033Tm-021m=012Tm
F= —(9YN/m)0.127 m)(0208, - 9790} = (-0.238,1.12,0) N/'m

Check: The x component of the force is negative, and the y component is
positive, as they should be.

Checkpoint 7 (1) A spring of stiffacss 13 N/m, with relaved leagth 20 cm,
stands vertically on a table as shown in Figure 2.36. Use the usual coondinate
systom, with +x 1o the right, +y up, and +2 out of the page, toward you.
(=) When the spring s compressed 1o a leagth of 13 om, what & the unit
wector L7 (b) Whea the spring is stretched o a lkength of 24 cm, what is the
wnit vector L7 (2) A different spring of stiffness 95 N/m., and with relaxed
Lo lcngth 15 cm. stands vertically oe & tablc, as shown in Figurc 2.36. With your
hund you push struight down on the spring uatil your hand i only 11 cm
above the table. Find (a) the vector L, (b) the magnitude of L, (¢) the uait
wvector L, (d) the stretch s, (e) the force F exeried on your hand by the

wpany.
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Figure 2.36 A relaxed vertical spring, The

tublctop liex in the xz planc, and yisup.as ~ Motion of a Block-Spring System
If we attach a block to the top of a spring, push down on the block, and
then release it the block will oscillate up and down. (This repetitive motion
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EXAMPLE

Solution

Figure 2.37 You compress the spring,
make surc the Bock is at rest, then release
the block. The red arrows show the forces
on the block, duc 1o the surroundings, al
the instant just after you rolease the block.

is described as “peniodic.™) As the spring stretches and compresses, the force
exerted on the block by the spring changes in magnitude and direction.
There is also a constant pravitational foroe on the block. Because the net
force on the block & continually changing, we can'l use a one-step cakulation
1o predict its motion. We need 1o apply the Momentum Principle iteratively to
predict the location and velocity of the block at any instant.

QUESTION Can we use the equations we derved for the constant
force situation?

No, those equations would give us the wrong answer here, because the net
force on the block is not constant. We need to solve the problem iteratively,
using the same procedure we used to find the path of a ball.

= The mitial position of the block
= The initial momentum of the block

We will do the following calculation iteratively (repeatedly &

» Find the net foroe Foy pow 00 the block.

= Apply the Momentum Principie 1o find Pyyam-

® USe (Papene /M) to approximate the average veloaty, and use this to find the
new position of the block.

QUESTION Why is it important to calculate the net force for cach
iteration? Couldn’t we just calculate it once and use this value in
cach iteration?
As the block moves up and down, the leagth of the spring changes, so the force
exerted by the spring on the block is different each time we Lake a step.

Rlock on Spring: 11), Nonconstant Net Force

A spring has a relaxed lenpth of 20cm (0.2m) and its spring stiffness is
EN/m (Figure 2.36). You glue a 60 g block (0.06kg) to the top of the spring,
and push the block down, compressing the spring so its total length is 10cm
(Figure 237). You make sure the block is at rest. then you quickly move
your hand away. The block begins to move upward. because the upward
force on the block by the spring is greater than the dowaward force on the
block by the Earth. Make a praph of y v, time for the block during 2 0.3 5
interval after you release the block.

System: Block
Surroundings: Spring, Earth
Diagram: Figure 237

For convenience we place the origin at the base of the spring. We will use the
shorter notation i and fiy rather than Facow a0d Prwe 1o refer to the momentum
al the beginning and end of each time step.
L= (0,01,0)-(0,0,0) = (0,0.1,00 m
\L| =01
L=1(0,1,0)
Fegris = —ka(|L] — La)(0,1,0) = (0, k(|| - L2).0)
Fezen = (0. -mg.0)



Figure 2.38 At the beginning of time stop
1, the net force on the block = in the +y
dircction, so the y componcnt of the
block's momontum will increase.
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Figure 2.39 At the boginning of time stop
2, the net force oa the block is now in the

~y direction. The block will move upward.
but its upward momentum will decrease.
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Figure 2.40 At the beginning of time stop
3, the net force on the block i in the —y
direction, and the final momeatum of the

block will be downward,
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The initial momentum of the block is zero, since it is al rest when you release it:

P = (0.0,0)

The net force on the block will be the sum of the forces on the block by
the Earth and by the spring. Because both the force by the spring and the
gravitational force by the Earth act in the £y direction, and the initial x and
z components of the block’s momentum are zero, we coukd consider only the
y components of force. momentum, and position in our solution. However,
writing out all the vectors helps considerably in avoiding sign errors in forces
and momenta.

To get an approximate answer, let’s divide the (3 s time interval into three
intervals cach 0.1 s long. (It would be betler to use even shorter intervals, but
this would be unduly tedious if done by hand.)

First time step (Figure 238

IL1=01m
s=01lm-02m=-0Im
Fipring = —8N/m(-0.1m){0,1,0) = (0,+08,0) N
Fegns = (0.-0.06kg -98N/ ke, 0) = (0,-0.588.0) N
Fo = (0.40212,0)N
pr=10.0.0)+ (0.+0212.0)N (0.15) (Momentum Principle)
Py= (0,+0.0212,0) kg-mis
Vawy ™ ¥
gy P 0400120 ky s

m 0.“ ia = (o- +0353.0) M

7= (0.0.1.0) m + (0.4+0353.0) m/s (0.15) (position update)
'! - (0.0135.0) m
Second time step (Figure 2.39)
Now we advance the clock. Al the beginning of time step 2, we need to
recalculate Fpesgy. because the length of the spring has changed. We find that
both the magnitude and the direction of the net force are differeat from the
values we found at the beginning of step 1. The momentum of the block at this
time (“now”) reflects the forces that the block experienced during step 1.
L] =0135m
5= -0064Tm
Figring = (0.40520,0) N
F-!= N.-OW.O)N
Py = (0.0.0141,0) kg-mss
7= {0.0159,0) m

QUESTION What value did we use for py in time step 27
Py from step 1 became py in step 2, as we advanced the clock.
Al the beginning of the thind time step we find that the aet force on the block
has changed again. The momentum of the block reflects the impulses it has

expenienced during the first two steps:
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Figure 241 A graph of the y componeat
of the hlock’s pasition v time for the
threc-step itorative calculation.
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Figure 242 A graph of the y component
of the block s position v time for an
itcratsve caleulation carred out for 10
stepsof Ll s

ol 02 03

(l' L) i A

Time ()
Figure 243 A graph of the y component
of the block’s pesition vx time for an
itcrative calculabion using @ step s of
0Rs

ot

L =019m
s=-004l1m
Foet = (0,-0259.0) N
Py = (0.~0.0118,0) kg-mis
;= (0.0.139,0)m

The graph of y vs. time for our three-step calculation is shown in Figure 2.41.
QUESTION [ this result reasonable?

Yes because we expect the block to oscillate up and down oa the spring.
QUESTION What approximations were made in this calculation?

We made the approximation that the net force did not change significantly over
cach small time step. During cach time stop, we also used the final velocity as
an approximation for the average velocity. (This is simpler than computing the
arithmetic average, and not necessarily worse in a situation where the force
is changing. In this case, it turns out that using the arthmetic average would
actually have piven a less accurate answer.)

Figure 2.42 shows the graph of y vs 1 produced when the iterative
calculation above is carried out for 10 time steps of 0.1

QUESTION What features of the graph in Figure 2.42 reflect
inaccuracies in the cakculations?

Although the graph does show the osaillatory motion of the block, its japped
lines reflect the fact that 0.1 s is too large a step size to produce an accurate
result. There are two issues:

= The graph is japged because we're connecting lemporally distant computed
points by long straight lines.
* The computed points themselves are inaccurate because we used a rather

long time step of 0.1 5, which is clearly large compared 1o the time scale of
the changes occurring in the motion.

Since the motion of the block-spring system repeats over and over, this motion
is called pertodic motion. The time interval between maxima in the plot of y w
tis called the pertod of the motion, and & usually represented by the symbol 7.
From the praph in Figure 242 we can see that for this particular mass-spring
system the period T appears to be around hall a second. To get a better estimate
of the period, we would need a better graph.

Checkpaint 8 (a) In step 7 of the muss-spring cxample above, the net force
on the block was downward, but the block moved upward. Explain why
this was possible, and what the cffect of the net force was during this time
step (b) In step 3 of the mass sprng cxample above, oaly the results of the
calculations are given. Carry out the calculations for this step younsell, to
be sarc you understand in detasl the procedure used. Compare your results
1o the values given above.

Improving Accuracy

QUESTION How could we improve the accuracy of the preceding
calculations?
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Figure 2.44 If we use o time step of
I 5 to predict the maotion of the
mass-sprng system, we predict that the
miss will be more than 3 m above the
floor! Nole that the vertical scale of this
graph is vory different from the scale of the
preceding graphs
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Figure 2.45 Two graphs of the y
componeal of the blocks pesition v time
for an iterative calculation using a step sire
of 0.02 « Blue curve: the velocity at the end
nﬂb:ﬁll:'ll:ﬂd.?,.ml-ilbw
the position. Red carve: the arithmeltic
average, (V; +77)/2, was uscd. In this
calculation the anthmetic average gives
significantly worse resalis

26 lterative Prediction: Varying Net Force Tl

In general, decreasing the time step sive will produce more accurate results,
because the assumption that Foe is constant during the time Af will be more
valid. Using a step size of 0.02 s produces a smoothly oscillating graph of yvs 1,
as shown by the curve in Figure 2.43. Now the straight lines connecting the
computed points are short, making the graph look more smooth, and the
computed points themselves are more accurate thanks to using a shorter time
step, so that the force and velocily are more nearly constant during cach
time interval This prediction is in agreement with experiments with masses
oscillating on springs.

QUESTION Suppose that we had chosen 1o use a Arof 1 s What

effect would this have had on our prediction of the block's motion?

The periodicity of the system’s motion is due to the particular way in which
the net force on the block is changing with time. Since 1 s is actually longer
than the period of the motion, assuming that the net force is constant over this
interval will lead to an extremely inaccurate result. The resulting graph of yvs
1, shown in Figure 2.44, shows that the predicted y position of the mass after 1 s
would be more than 3 m above the floor! A 1 s time step is cleardy too large for
this system: if the motion we want to predict & periodic, we need a lime step
that is much smaller than the period of the motion.

There is no single rule for picking an appropraate time step, and sometimes
we will need to use a guess-and-check stratogy to refine our choice. One
approach to deciding if we have chosen an appropriate value for Afis to try
reducing the step size significantly, and see if the predicted motion changes.
However, it will be much less tedious to do calculations for many small time
steps if we can instruct a compater to do the calculation for us.

QUESTION Would you expect the iterative calculation 1o be more
accurate if we updated the position using (¥ + ¥y)/2 instead of using
the velocity at the end of the time interval?

For the blue curve in Figure 2.45 the velocity at the end of the time interval,
¥y, was used to update the position, whercas for the red curve the arithmetic
average, (vy+ vy)/2, was used. Using the arithmetic average (red curve) clearly
produces a very maccurale prediction: the oscillation will not grow larger and
larger in the real world! Here we see an example of the fact that the arithmetic
average isn't nocessarily the best way to estimate the average veloaty in an
iterative calculation. In more advanced courses on computational modeling
one learns special aumerical techniques for optimizing speed and accuracy.
For our parposes in this introductory course, we get pood results by calculating
the net force, then updating the momentum, then updating the position using
the final velocity.

Why Not Just Use Calculus?

You might woader why we doa't simply use calculus to predict the motion of
physical systems There are two answers to this question:

First: In fact, we actually are using calculus in its most fundamental form.
Step by step, we add up a large number of small increments of the momentum
of an object, and a large number of small displacements of the object, to
calculate a large change in its momentum and position over a long time, and
this corresponds (o a numerical evaluation of an integrak

Athhf--»as/dp:/lFudt
1 '

J
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Figure 2.47 Numencal integration: adding

all the Apis to iy (Flgm: 2.46) gives the
future momentam pa.

When we calculate these summations with finite time steps, we call the process
numerical tntegration (Figures 2.46 and 2.47). The integral sign used in calculus
is a distorted “S™ meaning “sum™ of an nfinite number of infinitesimal
quantitics, from the initial time 1 to the final time f Evaluating a definite
integral in calculus corresponds o taking an infinite number of infinitesimally
smdllincslcpsinumm

Figure 2.46 When we predict motion itcratively, we are numenically adding a large
aumber of small incremeats { Ag;) Lo the starting momeatum o get the momentum at
some future time, as shown in Figure 2.47. This is called “numerical integration.™

Second: A more interesting answer is that the motion of most physical
systems actually cannot be predicted using calculus in any way other than by
uuaﬂm&gnmlnafwmﬂmdaludmmnnwﬂml
without carrying out a numenical integration. For example, we have seen thatan
object subjected to a constant foroe has a coastant rate of change of momentum
and velocity, and calculus can be used 1o obtain a prediction for the position
as a function of time. An analytical solution can be derived for the motion in
one dimension of a mass attached to a very low mass spring. in the absence of
air resistance or friction, as we will see in Chapter 4. The elliptical orbits of two
stars around cach other can be predicted mathematically without an iterative
approach, although the math is quite challenging.

However, in only shightly more complicated situations, an analytical
solution may not be possible at all. For example, the peneral motion of three
stars around each other has never been successfully analyzed in this way. The
basic problem is that # s usually relatively casy to take the derivative of a
known function, but it is often impossible to determine in algebraic form the
integral of a known function, which is what would be involved in loag-term
prediction (adding up a large number of small momentum increments due to
known forces).

In contrast, a step-by-step procedure of the kind we carried out for
the mass-spring system can easily be extended to three or more bodies in
three dimensions. It is also possible 1o include the effects of vanous kinds
of friction and damping in an iterative calculation. This is why we learn to
use the step-by-step prediction method: because it is a powerful technique
of increasing importance in modern science and engineering, thanks to the
availability of powerful computers to do the repetitive work for us

2.7 ITERATIVE CALCULATIONS ON A COMPUTER
While the terative scheme is very general, doing it by hand is tedious. It s not
difficult to program a compater to do these calculations repetitively. Computers
are pow [ast enough that it is possible to get high accuracy simply by taking
very short time steps, so that duning each step the net force and velocity do not
change much.

A computer program is simply a sequence of instructions that specify how
1o perform a calculation. There are many programming languages that can be



Figure 2,48 A snapshol from 2 computer
program to calculate and animate the
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ased 1o do this but the hasic organization of the program will be the same in
almaost all cases:

STRUCTURING ITERATIVE CALCULATIONS
ONA COMPUTER

= Define the values of constants such as g or Ay to use in the program.

® Specify the masses, initial positions, and initial momenta of the
interacting objects.

® Specify an appropriate value for Af, small enough that the objects
don’t move very far during one update.

» Create a “loop” structure for repetitive calculations:

‘[o Calculate the net (vector) force Faey acting on the system.

Z| o Update the momentum of the system: fy = i + Fact At
o Update the position: 7y = £y + Vi AL

As before, we use the approximation Vg, & fi/m.

Figure 2.48 shows a display created by such a computer program.

QUESTION Do computer calculations give answers that are exactly
correct?

motion of a mass—spring system in 3D. This  Neither a computer nor your own calculator give “exact”™ answers, for several

program was writicn in the language

VPython (hatpeiivpython.org ), which
pencrates real-timo 3D visualizations of

reasons. First, when we lake a finite time step AL we are makmg the
approximation that Fae is constant over this time mterval. In a situation in
which the net force is varying, this approximation may never be exactly true.
However, if we take small enough time steps, this approximation can give very
good resulis

Second, real numbers (typically called “floating-point numbers™ in a
computational context) cannot be represented infinitely precisely inside
a calculator or computer. When arithmetic operations are done with
foating-point numbers there is always a small round-off error. For example,
if you start with zero and repeatedly add to it the number 1 x 107, doing this
1 x 10° times, you may pet the result 0.99900000000% instead of 1.0.

Although round-off error does accumulate as the number of steps taken
increases, it turns out that taking more, smaller steps does make cakculations
more accurate. The increased accuracy of a singhke smaller step more than
compensates for the accumulation of round-off error in many steps.

Time Step Size in a Computer Calcnlation

When doing a calculation by hand, there is a trade-off between accuracy and
time required to do many iterations (the smaller the time step, the more
calculations must be done). Since computers are quite fast, it is reasonable
to use much smaller time steps in a computer calculation than one would
use by hand. However, even a fast computer can take a very loag time to
do calculations that use an unnecessarily tiny time step—it would not be
reasonable 10 use a time step of 1 x 10725 in a prediction of the Earth's
motion around the Sun.

If the motion is periodic, as i the case of an oscillating mass-spnng system
or a planet orbiting a star, it & important to use a time step that is much shorter
than the period of the motion (the repetition time).

A standard method of checking the accuracy of a computer cakulation is
to decrease the time step and repeat the calculation. If the results do not change
significantly, the original time step was adequately small.
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# The competational homewoek problems at the
cnd of Chapter |, and the isstroctional wdeos
refersaced there, introduce you 1o the key
concepts neoded to uaderstand VPythos code.

Checkpoint 9 Jupiter poes around the Sun in 4333 Earth days. Which of
the following would be a reasonable value to try for At in a
mmauwunqummum second (d) 8O0

The Euler-Cromer Method of Numerical Integration

If you have progressed far enough in your study of calculus, you may have
recognized that the terative procedures we have been using to predict motion
involve the Euler method of numerical integration. Actually we have been
using a variation on this method, called the Euler-Cromer method, which much
improves the sccuracy of these iterative predictions. The key feature of this
method is the order of the steps:

= First calculate the net force using current positions
» Second, use this force 1o update the momentum of the system
» Third, use this new momentum 1o update the position

Doing these cakculations in a different order gives much less accurate

predictions. (The proof of this is beyond the scope of this textbook: if you are
interested you can find more information online. )

Iterative Calculations in VPython

The most important part of an ilerative computer model is the calculation
loop, which contains all the instructions that need to be repeated for each time
step. Consider the case of a fan cart moving under the influence of the nearly
constant force of the air on the fan. Our computational loop might ook Bke
this code, which is an excerpt from a complete program:

while True:
rate (100)
F fan - vector(-0.4,0,0)
F net « F fan
p_cart = p cart 4+ F net ¥ deltat
cart.pos - cart.pos + (p_cart/m cart) ¢ deltat

In contrast, the computational kop in a program modeling a block hanging
from a vertical spring might look like this:
while True:

rate (100)

F grav - vector(0, -g*m block, 0)

L « block.pos - spring.pos

Lhat = L/mag(L)

s - mag(L) - LO

F opring = -ks ¥ s ¢ Lhat

F net « F grav + F_spring

p_block = p block 4+ F net * deltat

block.pos = block.pos + (p block/m block) * deltat

QUESTION What code is essentially the same in both loops?
The last two lines of code are essentially the same. In the next-to-last line,
although the objects involved have different names (one is a block, one is a
cart), the Momentum Principle is used to update the momentum of cach object.
In the last line, the position update equation is used to update the position of
cach object by approximating the average velocity by py/m.

QUESTION What s the major difference between these two

computations?
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Figure 2.49 Graph of v, vx t (constaat
force), divided into aarrow vertical slices
cach of height v, and width A2
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The forces on the two objects are very different. The fan cart is subject only
to & coastant force, while the net force on the block is the sum of two forces:
a constant pravitational force and a spring force that vanes with the stretch of
the spring.

The instructions that specify how to calculate the spring force mirror what
you would do on paper, using your calculator. If v is the location of the ixed
end of the spnng, then here is a translation of the alpebraic expressions to
VPython expressions:

L=7F- L = block.pos - spring.pos
L=L)L| Lhat = L/mag(L)
s=|L|-LO s - mag(L) - LO

F=—ks-L F spring = ~ka * s * Lhat
QUESTION Where is | L] cakculated?

VPython provides a function for calculating the magnitude of a vector. In the
code above, the mag () function is used to pet the magnitude of L. We could
have calculated it separately instead. giving it a name such as Lmag, as s done
below:

Leag = ogrt(L.x%%2 4 L.y"%2 ; L.z*%2)

Lhat « L/Lmag

Checkpoint 10 Some code would aced to be added in froat of cach
computational loop discussod above in order to make a runnable program.
What things would you nced to instruct the computer to do before
beginning the Joop? (a) Create objects (b) Define constants () Sct initial

28 *DERIVATION: SPECIAL-CASE
AVERAGE VELOCITY

Here are two proofs, one geometric and one algebraic (using caleulus), for the
following specaal-case result concerning average veloaty:
Vs =-("—;Q if vz changes at a constant rate.

The results are similar for vavyy and vaw:.

Geometric Proof

If Faetx is constant, pyy = pu + Faets Af implies that p; changes at a constant
rate. At speeds small compared to the speed of light, vz & pe /m. 5o a graph of
vz V& lime is o straight line, as in Figure 2.49. Using this graph, we form narrow
vertical shices, each of height v; and narrow width Af.

Within each narrow slice vy changes very little, so the change in position
during the briel ime At is approximately Ax = vy At Therefore the change
in x is approximately equal to the area of the slice of height vy and width Ar
(Figure 2.50).

1l we add up the arcas of all these shices, we get approximately the area
under the line in Figure 2.49, and this s also equal to the total displacement
Ax + A+ Axs +--- = Xy~ X If we go 1o the limit of an infinite number of
shices, cach with infinitesimal width, the sum of slices really ty the area, and this



