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ΘΕΜΑΤΑ (και λύσεις)

ΘΕΜΑ 1

Υπολογίστε:

(i) το εµβαδό της επιϕάνειας του µοναδιαίου δίσκου, και

(ii) την περίµετρο του µοναδιαίου δίσκου.

Λύση. (i) Αρκεί να υπολογίσουµε το διπλό ολοκλήρωµα
∫
Ω
1, όπου Ω είναι ο µοναδιαίος

δίσκος µε κέντρο το (0, 0), δηλαδη

Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Με αλλαγή µεταβλητών σε πολικές συντεταγµένες, είναι∫
Ω

1 =

∫ 1

0

∫ 2π

0

ρ dϑdρ =

∫ 2π

0

1dϑ

∫ 1

0

ρ dρ = 2π
[ρ2
2

]ρ=1

ρ=0
= π.

(ii)Αρκεί να υπολογίσουµε το επικαµπύλιο ολοκλήρωµα
∫
∂Ω

1, όπου ∂Ω είναι ο µοναδιαίος

κύκλος µε κέντρο το (0, 0), δηλαδη

∂Ω = {(x, y) ∈ R2 : x2 + y2 = 1}.

1ος τρόπος:

Για τον υπολογισµό του

∫
∂Ω

1 χρειαζόµαστε µια παραµετρικοποίηση του ∂Ω. Μια παραµε-

τρικοποίηση είναι η

σ⃗(ϑ) = (cosϑ, sinϑ), όπου ϑ ∈ [0, 2π).

Είναι ∥σ⃗′(ϑ)∥ = 1, άρα (σύµϕωνα µε τον ορισµό του επικαµπύλιου ολοκληρώµατος α΄ ε-
ίδους) έχουµε ∫

∂Ω

1 =

∫ 2π

0

1dϑ = 2π.

2ος τρόπος: ∫
∂Ω

1 =

∫
∂Ω

x2 + y2 =

∫
∂Ω

(x, y) · (x, y) =
∫
∂Ω

(x, y) · ν⃗,



όπου ν⃗ = (x, y) είναι το µοναδιαίο κάθετο στον κύκλο ∂Ω µε ϕορά προς το εξωτερικό του.

Με εϕαρµογή του Θ. Gauss, παίρνουµε∫
∂Ω

1 =

∫
Ω

div(x, y) =

∫
Ω

2 = 2π,

λόγω (i).

3ος τρόπος: Το εµβαδόνA(r) του δίσκου ακτίνας r, δίνεται από τον τύποA(r) = πr21. Από
τον Απειροστικό Λογισµό ΙΙΙ (ή ΙΙ;, ή Ι;), γνωρίζουµε ότι η περίµετρος του δίσκου ακτίνας r,
δίνεται από την παράγωγο A′(r). Όµως A′(r) = 2πr, εποµένως A′(1) = 2π είναι η

περίµετρος του µοναδιαίου δίσκου.

ΘΕΜΑ 2

Υπολογίστε το

∫∫∫
BR(0)

e−x2−y2−z2 dxdydz, όπουBR(0) είναι η µπάλα κέντρου κέντρου

(0, 0, 0) και ακτίνας R. Θεωρώντας γνωστό ότι

∫∞
0

e−t2dt = 1
2

√
π, δείξτε παίρνοντας το

όριοR → ∞, ότι

∫∞
−∞

∫∞
−∞

∫∞
−∞ e−x2−y2−z2dxdydz = π3/2

.

Λύση.Με αλλαγή µεταβλητών σε σϕαιρικές συντεταγµένες, είναι∫∫∫
BR(0)

e−x2−y2−z2 dxdydz =

∫ R

0

∫ 2π

0

∫ π

0

e−ρ2ρ2 sinφ dφdϑdρ

=

∫ 2π

0

1 dϑ

∫ π

0

sinφ dφ

∫ R

0

e−ρ2ρ2 dρ = −2π

∫ R

0

ρ d(e−ρ2)

= 2π

∫ R

0

e−ρ2 dρ− 2πRe−R2

,

όπου εκτελέστηκε ολοκλήρωση κατα µέρη στην τελευταία ισότητα. Εποµένως

lim
R→∞

∫∫∫
BR(0)

e−x2−y2−z2 dxdydz = 2π

∫ ∞

0

e−ρ2 dρ = 2π
1

2

√
π = π3/2.

Αυτό σηµαίνει ότι

∫∫∫
R3 e

−x2−y2−z2 dxdydz = π3/2
, άρα και το ζητούµενο.

ΘΕΜΑ 3

Επαληθεύστε τοΘ.Gauss για το τετράγωνοµε κορυϕές (1, 1), (−1, 1), (−1,−1)και (1,−1),

και τη συνάρτηση F⃗ (x, y) = (x4,−y2 − x3).

1
Αυτό αν θέλετε µπορείτε να το αποδείξετε ακριβώς όπως στο (i) ερώτηµα, δηλ.∫

Ω

1 =

∫ r

0

∫ 2π

0

ρ dϑdρ = 2π

∫ r

0

ρ dρ = ... = πr2.

2



Λύση.Πρέπει να δείξουµε ότι ∫
∂Ω

F⃗ · ν⃗ =

∫
Ω

divF⃗ , (1)

όπου F⃗ (x, y) = (x4,−y2 − x3), Ω = [−1, 1] × [−1, 1] και ν⃗ είναι το µοναδιαίο κάθετο

στην καµπύλη ∂Ω µε ϕορά προς το εξωτερικό τουΩ.

• Για το διπλό ολοκλήρωµα στο δεξί µέλος της (1), επειδή

[
divF⃗

]
(x, y) =

∂(x4)

∂x
+

∂(−y2 − x3)

∂y
= 4x3 − 2y,

παίρνουµε∫
Ω

divF⃗ =

∫ 1

−1

∫ 1

−1

(4x3−2y) dxdy =

∫ 1

−1

[
x4−2xy

]x=1

x=−1
dy = −

∫ 1

−1

4y dy = 0.2

• Για να υπολογίσουµε το επικαµπύλιο ολοκλήρωµαστο αριστερό µέλος της (1), παρατηρούµε

πρώτα ότι

ν⃗(x, y) = (0,−1) για κάθε (x, y)που ανήκει στο ευθύγραµµο τµήµαAB που ενώνει

ταA(−1,−1) καιB(1,−1),

ν⃗(x, y) = (1, 0) για κάθε (x, y) που ανήκει στο ευθύγραµµο τµήµαBC που ενώνει

ταB(1,−1) καιC(1, 1),

ν⃗(x, y) = (0, 1) για κάθε (x, y) που ανήκει στο ευθύγραµµο τµήµαCD που ενώνει

ταC(1, 1) καιD(−1, 1), και

ν⃗(x, y) = (−1, 0) για κάθε (x, y)που ανήκει στο ευθύγραµµο τµήµαDAπου ενώνει

ταD(−1, 1) καιA(−1,−1).

Εποµένως,∫
∂Ω

F⃗ · ν⃗ =

∫
AB

(y2 + x3) +

∫
BC

x4 +

∫
CD

(−y2 − x3) +

∫
DA

(−x4). (2)

Για να υπολογίσω κάθε ένα απο τα 4 επικαµπύλια ολοκληρώµατα, χρειάζοµαστε ισάριθµες

παραµετρικοποιήσεις. Τέτοιες είναι οι

σ⃗AB(t) = (t,−1) µε t ∈ (−1, 1),

σ⃗BC(t) = (1, t) µε t ∈ (−1, 1),

σ⃗CD(t) = (−t, 1) µε t ∈ (−1, 1),

σ⃗DA(t) = (−1,−t) µε t ∈ (−1, 1).

2
ή,

∫
Ω
divF⃗ =

∫ 1

−1

∫ 1

−1
(4x3 − 2y) dydx =

∫ 1

−1

[
4x3y − y2

]y=1

y=−1
dx = 8

∫ 1

−1
x3 dx = 0.
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Εποµένως (σύµϕωνα µε τον ορισµό του επικαµπύλιου ολοκληρώµατος α΄ είδους) έχουµε∫
AB

(y2 + x3) =

∫ 1

−1

(1 + t3)∥σ⃗′
AB

(t)∥dt =
∫ 1

−1

(1 + t3) ∥(1, 0)∥︸ ︷︷ ︸
=1

dt = ... = 2,

∫
BC

x4 =

∫ 1

−1

14∥σ⃗′
BC

(t)∥dt =
∫ 1

−1

∥(0, 1)∥︸ ︷︷ ︸
=1

dt = 2,

∫
CD

(−y2−x3) =

∫ 1

−1

(−1+t3)∥σ⃗′
CD

(t)∥dt =
∫ 1

−1

(−1+t3) ∥(−1, 0)∥︸ ︷︷ ︸
=1

dt = ... = −2,

∫
CD

(−x4) =

∫ 1

−1

[−(−1)4] ∥σ⃗′
DA

(t)∥dt = −2.

Αντικαθιστώντας τις τιµές αυτές στην (2) βλέπουµε ότι

∫
∂Ω

F⃗ · ν⃗ = 0. Αρα τα δύο µέλη
της (1) είναι ίσα.

ΘΕΜΑ 4

Επαληθεύστε το Θ. Stokes για την συνάρτηση F⃗ (x, y, z) = (−y3, x3, 0) στην επιϕάνεια
που ορίζεται από τις σχέσεις x2 + y2 = π και x+ y + z = 2.

Λύση.Πρέπει να δείξουµε ότι ∫
S

curlF⃗ =

∫
∂S

F⃗ , (3)

όπου F⃗ (x, y, z) = (−y3, x3, 0) και S είναι η επιϕάνεια που ορίζεται από τις σχέσεις x2 +
y2 = π και x+ y + z = 2, είναι δηλαδή το κοµµάτι του επιπέδου x+ y + z = 2 που έχει
για προβολή στο xy-επίπεδο τον κύκλο κέντρου (0, 0) ακτίνας

√
π. Υπολογίζουµε αρχικά το

[
curlF⃗

]
(x, y) =

∣∣∣∣∣∣
i⃗ j⃗ k⃗

∂/∂x ∂/∂y ∂/∂z
−y3 x3 0

∣∣∣∣∣∣ = (0, 0, 3x2 + 3y2) = 3(x2 + y2)k⃗.

• Για τον υπολογισµό του επιϕανειακού ολοκληρώµατος του αριστερού µέλους της (3), χρεια-

ζόµαστε µια παραµετρικοποίηση της S. Μια παραµετρικοποίηση είναι η

Φ⃗(ρ, ϑ) = (ρ cosϑ, ρ sinϑ, 2− ρ cosϑ− ρ sinϑ), όπου (ρ, ϑ) ∈ [0,
√
π]× [0, 2π).

Είναι

[
Φ⃗ρ × Φ⃗ϑ

]
(ρ, ϑ) =

∣∣∣∣∣∣
i⃗ j⃗ k⃗

cosϑ cosϑ − cosϑ− sinϑ
−ρ sinϑ ρ cosϑ ρ sinϑ− ρ cosϑ

∣∣∣∣∣∣ = ρ(1, 1, 1),
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άρα (σύµϕωνα µε τον ορισµό του επιϕανειακού ολοκληρώµατος β΄ είδους) έχουµε∫
S

curlF⃗ =

∫ √
π

0

∫ 2π

0

[
curlF⃗

]
(Φ⃗(ρ, ϑ)) ·

[
Φ⃗ρ × Φ⃗ϑ

]
(ρ, ϑ) dϑdρ

= 3

∫ √
π

0

ρ

∫ 2π

0

(ρ2 cos2 ϑ+ ρ2 sin2 ϑ)k⃗ · (1, 1, 1) dϑdρ

= 3

∫ √
π

0

ρ3
∫ 2π

0

1 dϑdρ = 6π
[ρ4
4

]ρ=√
π

ρ=0
=

3

2
π3.

• Για το επικαµπύλιο ολοκλήρωµα του δεξιού µέλους της (3), χρειαζόµαστε µια παραµετρι-

κοποίηση της ∂S. Μια παραµετρικοποίηση είναι η

σ⃗(t) = (
√
π cos t,

√
π sin t, 2−

√
π cos t−

√
π sin t), όπου t ∈ [0, 2π).

Είναι

σ⃗′(t) = (−
√
π sin t,

√
π cos t,

√
π sin t−

√
π cos t) =

√
π(− sin t, cos t, sin t−cos t),

άρα (σύµϕωνα µε τον ορισµό του επικαµπύλιου ολοκληρώµατος β΄ είδους) έχουµε∫
∂S

F⃗ =

∫ 2π

0

F⃗ (σ⃗(t)) · σ⃗′(t) dt

=
√
π

∫ 2π

0

(−
√
π
3
sin3 t,

√
π
3
cos3 t, 0) · (− sin t, cos t, sin t− cos t) dt

= π2

∫ 2π

0

(sin4 t+ cos4 t) dt = π2(3π/4 + 3π/4) =
3

2
π3,

όπου χρησιµοποιήσαµε τη σχέση (;;). Αρα τα δύο µέλη της (3) είναι ίσα.

ΘΕΜΑ 5

Επαληθεύστε το Θ. Gauss για την µπάλα ακτίνας R κέντρου (0, 0, 0), και τη συνάρτηση

F⃗ (x, y, z) = (−y, x, z).

Λύση.Πρέπει να δείξουµε ότι ∫
∂Ω

F⃗ · ν⃗ =

∫
Ω

divF⃗ , (4)

όπου F⃗ (x, y, z) = (−y, x, z),Ω = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ R2} και ν⃗ είναι

το µοναδιαίο κάθετο στην επιϕάνεια ∂Ω µε ϕορά προς το εξωτερικό τουΩ.

• Για το τριπλό ολοκλήρωµα στο δεξί µέλος της (4), επειδή

[
divF⃗

]
(x, y, z) =

∂(−y)

∂x
+

∂x

∂y
+

∂z

∂z
= 1,
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παίρνουµε µε αλλαγη µεταβλήτων σε σϕαιρικές συντεταγµένες∫
Ω

divF⃗ =

∫
Ω

1 =
4

3
πR3.

• Για το επιϕανειακό ολοκλήρωµα στο αριστερό µέλος της (4), επειδή για κάθε (x, y, z) ∈
∂Ω έχουµε ν⃗(x, y, z) = 1

R
(x, y, z), παίρνουµε∫

∂Ω

F⃗ · ν⃗ =
1

R

∫
∂Ω

(−y, x, z) · (x, y, z) = 1

R

∫
∂Ω

z2.

Για τον υπολογισµό του επιϕανειακού αυτού ολοκληρώµατος χρειαζόµαστε µια παραµετρικο-

ποίηση της ∂Ω, δηλαδή της σϕαίρας κέντρου (0, 0, 0) ακτίνας R. Μια παραµετρικοποίηση

είναι η

Φ⃗(ϑ, φ) = (R sinφ cosϑ,R sinφ sinϑ,R cosφ), όπου (ϑ, φ) ∈ [0, 2π)× [0, π).

Είναι ∥
(
Φ⃗ϑ × Φ⃗φ

)
(ϑ, φ)∥ = R2 sinφ, άρα (σύµϕωνα µε τον ορισµό του επιϕανειακού

ολοκληρώµατος α΄ είδους) έχουµε

1

R

∫
∂Ω

z2 =
1

R

∫ 2π

0

∫ π

0

R2 cos2 φR2 sinφdφdϑ

= 2πR3

∫ 0

π

cos2 φ d(cosφ) = 2πR3
[cos3 φ

3

]φ=0

φ=π
=

4

3
πR3.

Αρα τα δύο µέλη της (4) είναι ίσα.

ΚΑΛΗ ΤΥΧΗ
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ΠΟΛΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

∀ (x, y) ∈ R2 \ {(0, 0)}, ∃!(ρ, ϑ) ∈ [0,∞)× [0, 2π) ώστε

{
x = ρ cosϑ

y = ρ sinϑ.

Έχουµε

det(Ιακωβιανού πίνακα) = ρ.

Επίσης, είναι ρ =
√

x2 + y2, αρα για κάθε ρ > 0 έχουµε την ακόλουθη παραµετρικοποίηση
της καµπύλης κύκλου κέντρου 0 και ακτίνας ρ:

σ⃗(ϑ) = (ρ cosϑ, ρ sinϑ), ϑ ∈ [0, 2π).

Έχουµε

σ⃗′(ϑ) = ρ(− sinϑ, cosϑ), ϑ ∈ [0, 2π),

εποµένως

∥σ⃗′(ϑ)∥ = ρ, ϑ ∈ [0, 2π).

ΣΦΑΙΡΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

∀ (x, y, z) ∈ R3\{(0, 0, 0)}, ∃!(ρ, ϑ, φ) ∈ [0,∞)×[0, 2π)×[0, π) ώστε


x = ρ sinφ cosϑ

y = ρ sinφ sinϑ

z = ρ cosφ.

Έχουµε

det(Ιακωβιανού πίνακα) = −ρ2 sinφ.

Επίσης, είναι ρ =
√

x2 + y2 + z2, αρα για κάθε ρ > 0 έχουµε την ακόλουθη παραµετρικο-
ποίηση της επιϕάνειας σϕαίρας κέντρου 0 και ακτίνας ρ:

Φ⃗(ϑ, φ) = (ρ sinφ cosϑ, ρ sinφ sinϑ, ρ cosφ), (ϑ, φ) ∈ [0, 2π)× [0, π).

Έχουµε(
Φ⃗ϑ×Φ⃗φ

)
(ϑ, φ) = −ρ2 sinφ(sinφ cosϑ, sinφ sinϑ, cosφ), (ϑ, φ) ∈ [0, 2π)×[0, π).

Εποµένως

∥
(
Φ⃗ϑ × Φ⃗φ

)
(ϑ, φ)∥ = ρ2 sinφ, (ϑ, φ) ∈ [0, 2π)× [0, π).

ΕΝΑΤΡΙΓΩΝΟΜΕΤΡΙΚΟΟΛΟΚΛΗΡΩΜΑ

∆ίνεται ότι ∫ 2π

0

cos4 dx =

∫ 2π

0

sin4 dx =
3π

4
.


