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Distributed Database System

A distributed database system consists of loosely coupled sites that share 

no physical component

Database systems that run on each site are independent of each other

Transactions may access data at one or more sites
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Homogeneous Distributed Databases

In a homogeneous distributed database

All sites have identical software 

Are aware of each other and agree to cooperate in processing user 

requests.

Each site surrenders part of its autonomy in terms of right to change 

schemas or software

Appears to user as a single system

In a heterogeneous distributed database

Different sites may use different schemas and software

 Difference in schema is a major problem for query processing

 Difference in software is a major problem for transaction 

processing

Sites may not be aware of each other and may provide only 

limited facilities for cooperation in transaction processing
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Distributed Data Storage

Assume relational data model

Replication (Αντιγραφή)

System maintains multiple copies of data, stored in different sites, 

for faster retrieval and fault tolerance.

Fragmentation (Κατακερματισμός)

Relation is partitioned into several fragments stored in distinct sites

Replication and fragmentation can be combined

Relation is partitioned into several fragments (τμήματα): system 

maintains several identical replicas of each such fragment.
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Data Replication

A relation or fragment of a relation is replicated if it is stored 

redundantly in two or more sites.

Full replication(πλήρης αντιγραφή) of a relation is the case where the 

relation is stored at all sites.

Fully redundant databases are those in which every site contains a 

copy of the entire database.
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Data Replication (Cont.)

Advantages of Replication

Availability (Διαθεσιμότητα): failure of site containing relation r does 

not result in unavailability of r if replicas exist.

Parallelism (Παραλληλισμός): queries on r may be processed by 

several nodes in parallel.

Reduced data transfer (Μειωμένος χρόνος μεταφοράς): relation r is 

available locally at each site containing a replica of r.

Disadvantages of Replication

Increased cost of updates: each replica of relation r must be updated.

Increased complexity of concurrency control: concurrent updates to 

distinct replicas may lead to inconsistent data unless special 

concurrency control mechanisms are implemented.

 One solution: choose one copy as primary copy (πρωτεύον 

αντίγραφο) and apply concurrency control operations on primary 

copy
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Data Fragmentation
(Κατακερματισμός Δεδομένων)

Division of relation r into fragments r1, r2, …, rn which contain 

sufficient information to reconstruct relation r.

Horizontal fragmentation (Οριζόντιος Κατακερματισμός): 

each tuple of r is assigned to one or more fragments

Vertical fragmentation (Κατακόρυφος Κατακερματισμός) : 

the schema for relation r is split into several smaller schemas

All schemas must contain a common candidate key

υποψήφιο κλειδί (or superkey υπερ-κλειδί) to ensure 

lossless join property.

A special attribute, the tuple-id attribute (κωδικός 

εγγραφής) may be added to each schema to serve as a 

candidate key.
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Horizontal Fragmentation of account Relation

branch_name account_number balance

Hillside

Hillside

Hillside

A-305

A-226

A-155

500

336

62

account1 = branch_name=“Hillside” (account )

branch_name account_number balance

Valleyview

Valleyview

Valleyview

Valleyview

A-177

A-402

A-408

A-639

205

10000

1123

750

account2 = branch_name=“Valleyview” (account )
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Vertical Fragmentation of employee_info Relation

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = branch_name, customer_name, tuple_id (employee_info )

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62

1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = account_number, balance, tuple_id (employee_info )
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Advantages of Fragmentation

Horizontal:

allows parallel processing on fragments of a relation

allows a relation to be split so that tuples are located where 

they are most frequently accessed

Vertical: 

allows tuples to be split so that each part of the tuple is 

stored where it is most frequently accessed

tuple-id attribute allows efficient joining of vertical fragments

allows parallel processing on a relation

Vertical and horizontal fragmentation can be mixed.

Fragments may be successively fragmented to an arbitrary 

depth.
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Data Transparency

(Διαφάνεια Δεδομένων)

Data transparency: Degree to which system user may remain unaware 

of the details of how and where the data items are stored in a distributed 

system

Consider transparency issues in relation to:

Fragmentation transparency (Διαφάνεια κατακερματισμού)

Replication transparency (Διαφάνεια αντιγραφής)

Location transparency (Διαφάνεια θέσης)
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Naming of Data Items – Criteria

Κριτήρια Ονομασίας Στοιχείων Δεδομένων

1.  Every data item must have a system-wide unique name.

2.  It should be possible to find the location of data items efficiently.

3.  It should be possible to change the location of data items 

transparently.

4.  Each site should be able to create new data items autonomously.
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Centralized Scheme - Name Server

Κεντρικός Διακομιστής Ονομάτων

Structure:

name server assigns all names

each site maintains a record of local data items

sites ask name server to locate non-local data items

Advantages:

satisfies naming criteria 1-3

Disadvantages:

does not satisfy naming criterion 4

name server is a potential performance bottleneck

name server is a single point of failure
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Use of Aliases

Χρήση Ψευδονύμων
Alternative to centralized scheme: each site prefixes its own site 

identifier to any name that it generates i.e., site 17.account.

Fulfills having a unique identifier, and avoids problems associated 

with central control.

However, fails to achieve network transparency.

Solution: Create  a set of aliases for data items; Store the mapping of 

aliases to the real names at each site (θέση).

The user can be unaware of the physical location of a data item, and 

is unaffected if the data item is moved from one site to another.
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Distributed Transactions 

and 2 Phase Commit

(Κατανεμημένες Συναλλαγές &

Πρωτόκολλο Ολοκλήρωσης 2 

Φάσεων)
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Distributed Transactions

(Κατανεμημένες Συναλλαγές)

Transaction may access data at several sites (Θέσεις).

Each site has a local transaction manager (διαχειριστής 

συναλλαγών – εκτελεί εντολές τοπικά στη θέση) responsible for:

Maintaining a log for recovery purposes

Participating in coordinating the concurrent execution of the 

transactions executing at that site.

Each site has a transaction coordinator (συντονιστής 

συναλλαγών), which is responsible for:

Starting the execution of transactions that originate at the site.

Distributing subtransactions at appropriate sites for execution.

Coordinating the termination of each transaction that originates at 

the site, which may result in the transaction being committed at all 

sites or aborted at all sites.
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Transaction System Architecture
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System Failure Modes

(Καταστάσεις Αποτυχίας του Συστήματος)

Failures unique to distributed systems:

Failure of a site.

Loss of messages

 Handled by network transmission control protocols such as 

TCP-IP

Failure of a communication link

 Handled by network protocols, by routing messages via 

alternative links

Network partition (τμηματοποίηση δικτύου)

 A network is said to be partitioned when it has been split into 

two or more subsystems that lack any connection between 

them

– Note: a subsystem may consist of a single node 

Network partitioning and site failures are generally indistinguishable.



©Silberschatz, Korth and Sudarshan19.20Database System Concepts - 6th Edition

Commit Protocols

Πρωτόκολλα Εκτέλεσης

Commit protocols are used to ensure atomicity (ατομικότητα) across 

sites

a transaction which executes at multiple sites must either be 

committed at all the sites, or aborted at all the sites.

not acceptable to have a transaction committed at one site and 

aborted at another

The two-phase commit (2PC) (πρωτόκολλο ολοκλήρωσης 2 

φάσεων) protocol is widely used 

The three-phase commit (3PC) (πρωτόκολλο ολοκλήρωσης 3 

φάσεων) protocol is more complicated and more expensive, but 

avoids some drawbacks of two-phase commit protocol.  This protocol 

is not used in practice.
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Two Phase Commit Protocol (2PC)

(Πρωτόκολλο Ολοκλήρωσης 2 Φάσεων)

The two phase commit protocol is a distributed algorithm which lets all 

sites in a distributed system agree to commit a transaction. The 

protocol results in either all nodes committing the transaction or 

aborting, even in the case of site failures and message losses.

Assumes fail-stop model – failed sites simply stop working, and do not 

cause any other harm, such as sending incorrect messages to other sites.

The protocol assumes that there is stable storage at each node with a 

write-ahead log, that no node crashes forever, that the data in the 

write-ahead log is never lost or corrupted in a crash, and that any two 

nodes can communicate with each other. 

The protocol involves all the local sites at which the transaction 

executed

Execution of the protocol is initiated by the coordinator (συντονιστή) 

after the last step of the transaction has been reached. 

The participants then respond with an agreement message or an abort 

message depending on whether the transaction has been processed 

successfully at the participant.
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Phase 1: Obtaining a Decision

(Λήψη Απόφασης)
Let T be a transaction initiated at site Si, and let the transaction 

coordinator at Si be Ci

Coordinator (συντονιστής συναλλαγών) Ci asks all participants to 

prepare to commit transaction Ti.

Ci adds the records (προσθέτει την εγγραφή) <prepare T> to the 

log (αρχείο καταγραφής) and forces log to stable storage

(σταθερή μνήμη) .

sends prepare T messages to all sites at which T executed

Upon receiving message, transaction manager (διαχειριστής 

συναλλαγών) at site determines if it can commit the transaction

if the transaction can not be committed, 

 add a record <no T> to the log and 

 send abort T message to Ci

if the transaction can be committed, then:

add the record <ready T> to the log

 force all records for T to stable storage

send ready T message to Ci
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Phase 2: Recording the Decision

(Καταγραφή Απόφασης)
T can be committed if Ci received a ready T message from all the 

participating sites: otherwise T must be aborted.

Coordinator adds a decision record, <commit T> or <abort T>, to 

the log and forces record onto stable storage. Once the record 

stable storage is written it is irrevocable (even if failures occur)

Coordinator sends a message to each participant informing it of the 

decision (commit or abort)

Participants take appropriate action locally.

Coordinator Manager

Prepare T

Ready T / Abort T

Commit T / Abort T

Prepare T

Ready T / no T

Commit T / Abort T

Irrevocable!

Commit T / Abort T
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Handling of Failures - Site 

Failure

Χειρισμός Προβλημάτων –

Πρόβλημα σε 

συμμετέχουσα θέση

When site Sk recovers, it examines its log to determine the fate of

transactions active at the time of the failure.

Log contain <commit T> record: txn had completed, nothing to be done

Log contains <abort T> record: txn had not completed, nothing to be done

Log contains <ready T> record: site must consult Ci to determine the fate of T.

If T committed, redo (T); write <commit T> record

If T aborted, undo (T)

The log contains no control log records abort, commit, ready concerning T  
(eg Sk has received a prepare T):

Implies that Sk failed before responding to the  prepare T message from Ci 

since the failure of Sk precludes the sending of a <ready T> response, 
coordinator Ci must abort T

So Sk must execute undo (T)
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Handling of Failures- 

Coordinator Failure

Χειρισμός Προβλημάτων 

– Πρόβλημα Συντονιστή
If coordinator fails while the commit protocol for T is executing then 

participating sites must decide on T’s fate:

1. If an active site contains a <commit T> record in its log, then T must be 

committed.

2. If an active site contains an <abort T> record in its log, then T must be 

aborted.

3. If some active participating site does not contain a <ready T> record in 

its log (so it contains a <no T>) , then the failed coordinator Ci cannot have 

decided to commit T.  

Can therefore abort T; however, such a site must reject any 

subsequent <prepare T> message from Ci 

4. If none of the above cases holds, then all active sites must have a <ready 

T> record in their logs, but no additional control records (such as <abort 

T> of <commit T>). 

In this case active sites must wait for Ci to recover, to find decision.

Blocking problem (πρόβλημα μπλοκαρίσματος): active sites may have to 

wait for failed coordinator to recover.
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Handling of Failures - 

Network Partition

Τμηματοποίηση 

Δικτύου

If the coordinator and all its participants remain in one partition, the 

failure has no effect on the commit protocol.

If the coordinator and its participants belong to several partitions:

Sites that are not in the partition containing the coordinator 

think the coordinator has failed, and execute the protocol to deal 

with failure of the coordinator.

 No harm results, but sites may still have to wait for decision 

from coordinator.

The coordinator and the sites in the same partition as the 

coordinator think that the sites in the other partition have failed, 

and follow the usual commit protocol.

 Again, no harm results
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Recovery and 

Concurrency Control

Αποκατάσταση & Έλεγχος 

Συγχρονικότητας
When site Sk recovers

In-doubt transactions (αμφίβολες συναλλαγές) have a <ready T>, 

but neither a 

<commit T>, nor an <abort T> log record.

The recovering site must determine the commit-abort status of such 

transactions by contacting other sites; this can slow and potentially 

block recovery.

Recovery algorithms can note lock information in the log.

Instead of <ready T>, write out <ready T, L> L = list of locks held 

by T when the log is written (read locks can be omitted).

For every in-doubt transaction T, all the locks noted in the 

<ready T, L> log record are reacquired.

After lock reacquisition, transaction processing can resume; the 

commit or rollback of in-doubt transactions is performed 

concurrently with the execution of new transactions.
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Distributed Query Processing 

Example
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ΙΣΟΔΥΝΑΜΙΕΣ ΣΕ JOINS:
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