
www.db-book.com

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 19: Distributed Databases

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan19.2Database System Concepts - 6th Edition

Chapter 19: Distributed Databases

Heterogeneous and Homogeneous Databases

Distributed Data Storage

Distributed Transactions

Commit Protocols

Concurrency Control in Distributed Databases

Availability

Distributed Query Processing

Heterogeneous Distributed Databases

Directory Systems

©Silberschatz, Korth and Sudarshan19.3Database System Concepts - 6th Edition

Distributed Database System

A distributed database system consists of loosely coupled sites that share

no physical component

Database systems that run on each site are independent of each other

Transactions may access data at one or more sites

©Silberschatz, Korth and Sudarshan19.4Database System Concepts - 6th Edition

Homogeneous Distributed Databases

In a homogeneous distributed database

All sites have identical software

Are aware of each other and agree to cooperate in processing user

requests.

Each site surrenders part of its autonomy in terms of right to change

schemas or software

Appears to user as a single system

In a heterogeneous distributed database

Different sites may use different schemas and software

 Difference in schema is a major problem for query processing

 Difference in software is a major problem for transaction

processing

Sites may not be aware of each other and may provide only

limited facilities for cooperation in transaction processing

©Silberschatz, Korth and Sudarshan19.5Database System Concepts - 6th Edition

Distributed Data Storage

Assume relational data model

Replication (Αντιγραφή)

System maintains multiple copies of data, stored in different sites,

for faster retrieval and fault tolerance.

Fragmentation (Κατακερματισμός)

Relation is partitioned into several fragments stored in distinct sites

Replication and fragmentation can be combined

Relation is partitioned into several fragments (τμήματα): system

maintains several identical replicas of each such fragment.

©Silberschatz, Korth and Sudarshan19.6Database System Concepts - 6th Edition

Data Replication

A relation or fragment of a relation is replicated if it is stored

redundantly in two or more sites.

Full replication(πλήρης αντιγραφή) of a relation is the case where the

relation is stored at all sites.

Fully redundant databases are those in which every site contains a

copy of the entire database.

©Silberschatz, Korth and Sudarshan19.7Database System Concepts - 6th Edition

Data Replication (Cont.)

Advantages of Replication

Availability (Διαθεσιμότητα): failure of site containing relation r does

not result in unavailability of r if replicas exist.

Parallelism (Παραλληλισμός): queries on r may be processed by

several nodes in parallel.

Reduced data transfer (Μειωμένος χρόνος μεταφοράς): relation r is

available locally at each site containing a replica of r.

Disadvantages of Replication

Increased cost of updates: each replica of relation r must be updated.

Increased complexity of concurrency control: concurrent updates to

distinct replicas may lead to inconsistent data unless special

concurrency control mechanisms are implemented.

 One solution: choose one copy as primary copy (πρωτεύον

αντίγραφο) and apply concurrency control operations on primary

copy

©Silberschatz, Korth and Sudarshan19.8Database System Concepts - 6th Edition

Data Fragmentation
(Κατακερματισμός Δεδομένων)

Division of relation r into fragments r1, r2, …, rn which contain

sufficient information to reconstruct relation r.

Horizontal fragmentation (Οριζόντιος Κατακερματισμός):

each tuple of r is assigned to one or more fragments

Vertical fragmentation (Κατακόρυφος Κατακερματισμός) :

the schema for relation r is split into several smaller schemas

All schemas must contain a common candidate key

υποψήφιο κλειδί (or superkey υπερ-κλειδί) to ensure

lossless join property.

A special attribute, the tuple-id attribute (κωδικός

εγγραφής) may be added to each schema to serve as a

candidate key.

©Silberschatz, Korth and Sudarshan19.9Database System Concepts - 6th Edition

Horizontal Fragmentation of account Relation

branch_name account_number balance

Hillside

Hillside

Hillside

A-305

A-226

A-155

500

336

62

account1 = branch_name=“Hillside” (account)

branch_name account_number balance

Valleyview

Valleyview

Valleyview

Valleyview

A-177

A-402

A-408

A-639

205

10000

1123

750

account2 = branch_name=“Valleyview” (account)

©Silberschatz, Korth and Sudarshan19.10Database System Concepts - 6th Edition

Vertical Fragmentation of employee_info Relation

branch_name customer_name tuple_id

Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

deposit1 = branch_name, customer_name, tuple_id (employee_info)

1
2
3
4
5
6
7

account_number balance tuple_id

500
336
205
10000
62

1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2 = account_number, balance, tuple_id (employee_info)

©Silberschatz, Korth and Sudarshan19.11Database System Concepts - 6th Edition

Advantages of Fragmentation

Horizontal:

allows parallel processing on fragments of a relation

allows a relation to be split so that tuples are located where

they are most frequently accessed

Vertical:

allows tuples to be split so that each part of the tuple is

stored where it is most frequently accessed

tuple-id attribute allows efficient joining of vertical fragments

allows parallel processing on a relation

Vertical and horizontal fragmentation can be mixed.

Fragments may be successively fragmented to an arbitrary

depth.

©Silberschatz, Korth and Sudarshan19.12Database System Concepts - 6th Edition

Data Transparency

(Διαφάνεια Δεδομένων)

Data transparency: Degree to which system user may remain unaware

of the details of how and where the data items are stored in a distributed

system

Consider transparency issues in relation to:

Fragmentation transparency (Διαφάνεια κατακερματισμού)

Replication transparency (Διαφάνεια αντιγραφής)

Location transparency (Διαφάνεια θέσης)

©Silberschatz, Korth and Sudarshan19.13Database System Concepts - 6th Edition

Naming of Data Items – Criteria

Κριτήρια Ονομασίας Στοιχείων Δεδομένων

1. Every data item must have a system-wide unique name.

2. It should be possible to find the location of data items efficiently.

3. It should be possible to change the location of data items

transparently.

4. Each site should be able to create new data items autonomously.

©Silberschatz, Korth and Sudarshan19.14Database System Concepts - 6th Edition

Centralized Scheme - Name Server

Κεντρικός Διακομιστής Ονομάτων

Structure:

name server assigns all names

each site maintains a record of local data items

sites ask name server to locate non-local data items

Advantages:

satisfies naming criteria 1-3

Disadvantages:

does not satisfy naming criterion 4

name server is a potential performance bottleneck

name server is a single point of failure

©Silberschatz, Korth and Sudarshan19.15Database System Concepts - 6th Edition

Use of Aliases

Χρήση Ψευδονύμων
Alternative to centralized scheme: each site prefixes its own site

identifier to any name that it generates i.e., site 17.account.

Fulfills having a unique identifier, and avoids problems associated

with central control.

However, fails to achieve network transparency.

Solution: Create a set of aliases for data items; Store the mapping of

aliases to the real names at each site (θέση).

The user can be unaware of the physical location of a data item, and

is unaffected if the data item is moved from one site to another.

©Silberschatz, Korth and Sudarshan19.16Database System Concepts - 6th Edition

Distributed Transactions

and 2 Phase Commit

(Κατανεμημένες Συναλλαγές &

Πρωτόκολλο Ολοκλήρωσης 2

Φάσεων)

©Silberschatz, Korth and Sudarshan19.17Database System Concepts - 6th Edition

Distributed Transactions

(Κατανεμημένες Συναλλαγές)

Transaction may access data at several sites (Θέσεις).

Each site has a local transaction manager (διαχειριστής

συναλλαγών – εκτελεί εντολές τοπικά στη θέση) responsible for:

Maintaining a log for recovery purposes

Participating in coordinating the concurrent execution of the

transactions executing at that site.

Each site has a transaction coordinator (συντονιστής

συναλλαγών), which is responsible for:

Starting the execution of transactions that originate at the site.

Distributing subtransactions at appropriate sites for execution.

Coordinating the termination of each transaction that originates at

the site, which may result in the transaction being committed at all

sites or aborted at all sites.

©Silberschatz, Korth and Sudarshan19.18Database System Concepts - 6th Edition

Transaction System Architecture

©Silberschatz, Korth and Sudarshan19.19Database System Concepts - 6th Edition

System Failure Modes

(Καταστάσεις Αποτυχίας του Συστήματος)

Failures unique to distributed systems:

Failure of a site.

Loss of messages

 Handled by network transmission control protocols such as

TCP-IP

Failure of a communication link

 Handled by network protocols, by routing messages via

alternative links

Network partition (τμηματοποίηση δικτύου)

 A network is said to be partitioned when it has been split into

two or more subsystems that lack any connection between

them

– Note: a subsystem may consist of a single node

Network partitioning and site failures are generally indistinguishable.

©Silberschatz, Korth and Sudarshan19.20Database System Concepts - 6th Edition

Commit Protocols

Πρωτόκολλα Εκτέλεσης

Commit protocols are used to ensure atomicity (ατομικότητα) across

sites

a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.

not acceptable to have a transaction committed at one site and

aborted at another

The two-phase commit (2PC) (πρωτόκολλο ολοκλήρωσης 2

φάσεων) protocol is widely used

The three-phase commit (3PC) (πρωτόκολλο ολοκλήρωσης 3

φάσεων) protocol is more complicated and more expensive, but

avoids some drawbacks of two-phase commit protocol. This protocol

is not used in practice.

©Silberschatz, Korth and Sudarshan19.21Database System Concepts - 6th Edition

Two Phase Commit Protocol (2PC)

(Πρωτόκολλο Ολοκλήρωσης 2 Φάσεων)

The two phase commit protocol is a distributed algorithm which lets all

sites in a distributed system agree to commit a transaction. The

protocol results in either all nodes committing the transaction or

aborting, even in the case of site failures and message losses.

Assumes fail-stop model – failed sites simply stop working, and do not

cause any other harm, such as sending incorrect messages to other sites.

The protocol assumes that there is stable storage at each node with a

write-ahead log, that no node crashes forever, that the data in the

write-ahead log is never lost or corrupted in a crash, and that any two

nodes can communicate with each other.

The protocol involves all the local sites at which the transaction

executed

Execution of the protocol is initiated by the coordinator (συντονιστή)

after the last step of the transaction has been reached.

The participants then respond with an agreement message or an abort

message depending on whether the transaction has been processed

successfully at the participant.

©Silberschatz, Korth and Sudarshan19.22Database System Concepts - 6th Edition

Phase 1: Obtaining a Decision

(Λήψη Απόφασης)
Let T be a transaction initiated at site Si, and let the transaction

coordinator at Si be Ci

Coordinator (συντονιστής συναλλαγών) Ci asks all participants to

prepare to commit transaction Ti.

Ci adds the records (προσθέτει την εγγραφή) <prepare T> to the

log (αρχείο καταγραφής) and forces log to stable storage

(σταθερή μνήμη) .

sends prepare T messages to all sites at which T executed

Upon receiving message, transaction manager (διαχειριστής

συναλλαγών) at site determines if it can commit the transaction

if the transaction can not be committed,

 add a record <no T> to the log and

 send abort T message to Ci

if the transaction can be committed, then:

add the record <ready T> to the log

 force all records for T to stable storage

send ready T message to Ci

©Silberschatz, Korth and Sudarshan19.23Database System Concepts - 6th Edition

Phase 2: Recording the Decision

(Καταγραφή Απόφασης)
T can be committed if Ci received a ready T message from all the

participating sites: otherwise T must be aborted.

Coordinator adds a decision record, <commit T> or <abort T>, to

the log and forces record onto stable storage. Once the record

stable storage is written it is irrevocable (even if failures occur)

Coordinator sends a message to each participant informing it of the

decision (commit or abort)

Participants take appropriate action locally.

Coordinator Manager

Prepare T

Ready T / Abort T

Commit T / Abort T

Prepare T

Ready T / no T

Commit T / Abort T

Irrevocable!

Commit T / Abort T

©Silberschatz, Korth and Sudarshan19.24Database System Concepts - 6th Edition

Handling of Failures - Site

Failure

Χειρισμός Προβλημάτων –

Πρόβλημα σε

συμμετέχουσα θέση

When site Sk recovers, it examines its log to determine the fate of

transactions active at the time of the failure.

Log contain <commit T> record: txn had completed, nothing to be done

Log contains <abort T> record: txn had not completed, nothing to be done

Log contains <ready T> record: site must consult Ci to determine the fate of T.

If T committed, redo (T); write <commit T> record

If T aborted, undo (T)

The log contains no control log records abort, commit, ready concerning T
(eg Sk has received a prepare T):

Implies that Sk failed before responding to the prepare T message from Ci

since the failure of Sk precludes the sending of a <ready T> response,
coordinator Ci must abort T

So Sk must execute undo (T)

©Silberschatz, Korth and Sudarshan19.25Database System Concepts - 6th Edition

Handling of Failures-

Coordinator Failure

Χειρισμός Προβλημάτων

– Πρόβλημα Συντονιστή
If coordinator fails while the commit protocol for T is executing then

participating sites must decide on T’s fate:

1. If an active site contains a <commit T> record in its log, then T must be

committed.

2. If an active site contains an <abort T> record in its log, then T must be

aborted.

3. If some active participating site does not contain a <ready T> record in

its log (so it contains a <no T>) , then the failed coordinator Ci cannot have

decided to commit T.

Can therefore abort T; however, such a site must reject any

subsequent <prepare T> message from Ci

4. If none of the above cases holds, then all active sites must have a <ready

T> record in their logs, but no additional control records (such as <abort

T> of <commit T>).

In this case active sites must wait for Ci to recover, to find decision.

Blocking problem (πρόβλημα μπλοκαρίσματος): active sites may have to

wait for failed coordinator to recover.

©Silberschatz, Korth and Sudarshan19.26Database System Concepts - 6th Edition

Handling of Failures -

Network Partition

Τμηματοποίηση

Δικτύου

If the coordinator and all its participants remain in one partition, the

failure has no effect on the commit protocol.

If the coordinator and its participants belong to several partitions:

Sites that are not in the partition containing the coordinator

think the coordinator has failed, and execute the protocol to deal

with failure of the coordinator.

 No harm results, but sites may still have to wait for decision

from coordinator.

The coordinator and the sites in the same partition as the

coordinator think that the sites in the other partition have failed,

and follow the usual commit protocol.

 Again, no harm results

©Silberschatz, Korth and Sudarshan19.27Database System Concepts - 6th Edition

Recovery and

Concurrency Control

Αποκατάσταση & Έλεγχος

Συγχρονικότητας
When site Sk recovers

In-doubt transactions (αμφίβολες συναλλαγές) have a <ready T>,

but neither a

<commit T>, nor an <abort T> log record.

The recovering site must determine the commit-abort status of such

transactions by contacting other sites; this can slow and potentially

block recovery.

Recovery algorithms can note lock information in the log.

Instead of <ready T>, write out <ready T, L> L = list of locks held

by T when the log is written (read locks can be omitted).

For every in-doubt transaction T, all the locks noted in the

<ready T, L> log record are reacquired.

After lock reacquisition, transaction processing can resume; the

commit or rollback of in-doubt transactions is performed

concurrently with the execution of new transactions.

©Silberschatz, Korth and Sudarshan19.53Database System Concepts - 6th Edition

Distributed Query Processing

Example

©Silberschatz, Korth and Sudarshan19.54Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.55Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.56Database System Concepts - 6th Edition

ΙΣΟΔΥΝΑΜΙΕΣ ΣΕ JOINS:

©Silberschatz, Korth and Sudarshan19.57Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.58Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.59Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.60Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.61Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.62Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.63Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan19.64Database System Concepts - 6th Edition

	Slide 1: Chapter 19: Distributed Databases
	Slide 2: Chapter 19: Distributed Databases
	Slide 3: Distributed Database System
	Slide 4: Homogeneous Distributed Databases
	Slide 5: Distributed Data Storage
	Slide 6: Data Replication
	Slide 7: Data Replication (Cont.)
	Slide 8: Data Fragmentation (Κατακερματισμός Δεδομένων)
	Slide 9: Horizontal Fragmentation of account Relation
	Slide 10: Vertical Fragmentation of employee_info Relation
	Slide 11: Advantages of Fragmentation
	Slide 12: Data Transparency (Διαφάνεια Δεδομένων)
	Slide 13: Naming of Data Items – Criteria Κριτήρια Ονομασίας Στοιχείων Δεδομένων
	Slide 14: Centralized Scheme - Name Server Κεντρικός Διακομιστής Ονομάτων
	Slide 15: Use of Aliases Χρήση Ψευδονύμων
	Slide 16: Distributed Transactions and 2 Phase Commit (Κατανεμημένες Συναλλαγές & Πρωτόκολλο Ολοκλήρωσης 2 Φάσεων)
	Slide 17: Distributed Transactions (Κατανεμημένες Συναλλαγές)
	Slide 18: Transaction System Architecture
	Slide 19: System Failure Modes (Καταστάσεις Αποτυχίας του Συστήματος)
	Slide 20: Commit Protocols Πρωτόκολλα Εκτέλεσης
	Slide 21: Two Phase Commit Protocol (2PC) (Πρωτόκολλο Ολοκλήρωσης 2 Φάσεων)
	Slide 22: Phase 1: Obtaining a Decision (Λήψη Απόφασης)
	Slide 23: Phase 2: Recording the Decision (Καταγραφή Απόφασης)
	Slide 24: Handling of Failures - Site Failure Χειρισμός Προβλημάτων – Πρόβλημα σε συμμετέχουσα θέση
	Slide 25: Handling of Failures- Coordinator Failure Χειρισμός Προβλημάτων – Πρόβλημα Συντονιστή
	Slide 26: Handling of Failures - Network Partition Τμηματοποίηση Δικτύου
	Slide 27: Recovery and Concurrency Control Αποκατάσταση & Έλεγχος Συγχρονικότητας
	Slide 53
	Slide 54
	Slide 55
	Slide 56: ΙΣΟΔΥΝΑΜΙΕΣ ΣΕ JOINS:
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

