
Chapter	5.	Pygame	and	3D
In	our	previous	chapters,	we	developed	our	2D	games	with	Python	modules	that	are	built
on	top	of	a	graphical	user	interface	library,	such	as	Tkinter	and	Pyglet.	This	allowed	us
to	start	coding	our	games	without	worrying	about	the	lower-level	details.

Now	we	will	develop	our	first	3D	game	with	Python,	which	will	require	an	understanding
of	some	basic	principles	of	OpenGL,	a	popular	multiplatform	API	for	building	2D	and	3D
applications.	You	will	learn	how	to	integrate	these	programs	with	Pygame,	a	Python
library	commonly	used	to	create	sprite-based	games.

In	this	chapter,	we	will	cover	the	following	topics:

A	steady	approach	to	PyOpenGL	and	Pygame
Initializing	an	OpenGL	context
Understanding	the	different	modes	that	can	be	enabled	with	OpenGL
How	to	render	lights	and	simple	shapes
Integrating	OpenGL	with	Pygame
Drawing	primitives	and	performance	improvements

Installing	packages
PyOpenGL	is	a	package	that	offers	Python	bindings	to	OpenGL	and	related	APIs,	such	as
GLU	and	GLUT.	It	is	available	on	the	Python	package	Index,	so	you	can	easily	install	it
via	pip:

$	pip	install	PyOpenGL

However,	we	will	need	freeglut	for	our	first	examples,	before	we	integrate	OpenGL	with
Pygame.	Freeglut	is	a	third-party	library	that	is	not	included	if	you	install	the	package
from	PyPI.

On	Windows,	an	alternative	is	to	download	and	install	the	compiled	binaries	from
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl.	Remember	to	install	the	version	for
Python	3.4.

Pygame	is	the	other	package	that	we	will	need	in	this	chapter.	It	can	be	downloaded	from
the	official	website	at	http://www.pygame.org/download.shtml.	You	can	install	it	from
source	if	you	want	to;	the	compilation	page	contains	the	steps	for	building	Pygame	on
different	platforms.

Windows	users	can	directly	use	the	MSI	for	Python	3.2	or	download	Unofficial	Windows
Binaries	from	the	Christoph	Gohlke’s	website
(http://www.lfd.uci.edu/~gohlke/pythonlibs/).

Macintosh	users	can	find	the	instructions	required	to	compile	it	from	source	on	the
Pygame	website	at	http://pygame.org/wiki/macintosh.

http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyopengl
http://www.pygame.org/download.shtml
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://pygame.org/wiki/macintosh

Getting	started	with	OpenGL
OpenGL	is	a	broad	topic	in	itself,	and	it	is	possible	to	find	plenty	of	tutorials,	books,	and
other	resources,	usually	targeted	at	C	or	C++.

Since	this	chapter	is	not	intended	to	be	a	comprehensive	guide	for	this	specification,	we
will	take	advantage	of	GLUT,	which	stands	for	OpenGL	Utility	Toolkit.	It	is	widely	used
in	small	applications	because	of	its	simplicity	and	portability,	and	the	bindings	are
implemented	in	PyOpenGL.

GLUT	will	help	us	perform	some	basic	operations,	such	as	creating	windows	and	handling
input	events.

Tip
GLUT	licensing

Unfortunately,	GLUT	is	not	in	the	public	domain.	The	copyright	is	maintained	by	its
author,	Mark	Kilgard,	who	wrote	it	for	the	sample	programs	included	in	Red	Book,	the
official	OpenGL	programming	guide.

This	is	the	reason	we	are	using	freeglut,	one	of	the	open	source	alternatives	that
implement	the	GLUT	API.

Initializing	the	window
The	first	lines	of	our	script	will	be	the	import	statements	as	well	as	the	definition	of	our
App	class	and	its	__init__	method.

Apart	from	the	OpenGL	API	and	GLUT,	we	import	the	OpenGL	Utility	Library	(GLU).
GLU	is	usually	distributed	with	the	basic	OpenGL	package,	and	we	will	use	a	couple	of
functions	offered	by	this	library	in	our	example:

import	sys

import	math

from	OpenGL.GL	import	*

from	OpenGL.GLU	import	*

from	OpenGL.GLUT	import	*

class	App(object):

				def	__init__(self,	width=800,	height=600):

								self.title	=	b'OpenGL	demo'

								self.width	=	width

								self.height	=	height

								self.angle	=	0

								self.distance	=	20

You	may	wonder	what	the	b	before	the	'OpenGL	demo'	string	means.	It	represents	a	binary
string,	and	it	is	one	of	the	differences	between	Python	2	and	3.	Therefore,	if	you	find	a
GLUT	program	written	in	Python	2,	remember	that	the	string	title	of	the	window	must	be
defined	as	a	binary	string	in	order	to	work	with	Python	3.

With	these	instance	members,	we	can	call	our	OpenGL	initialization	functions:

				def	start(self):

								glutInit()

								glutInitDisplayMode(GLUT_DOUBLE	|	GLUT_DEPTH)

								glutInitWindowPosition(50,	50)

								glutInitWindowSize(self.width,	self.height)

								glutCreateWindow(self.title)

								glEnable(GL_DEPTH_TEST)

								glEnable(GL_LIGHTING)

								glEnable(GL_LIGHT0)

Step	by	step,	our	start	method	performs	the	following	operations:

glutInit():	This	initializes	the	GLUT	library.	While	it	is	possible	to	pass	parameters
to	this	function,	we	will	leave	this	call	without	any	arguments.
glutInitDisplayMode():	This	sets	the	display	mode	of	the	top-level	window	that	we
will	create.	The	mode	is	the	bitwise	OR	of	a	few	GLUT	display	mode	masks.
GLUT_DOUBLE	is	the	mode	for	the	double	buffer,	which	creates	separate	front	and	back
buffers.	While	one	of	these	buffers	is	being	displayed,	the	other	one	is	being
rendered.	On	the	other	hand,	GLUT_DEPTH	requests	a	depth	buffer	for	the	window.	It
stores	the	z	coordinate	of	each	generated	pixel,	and	if	the	same	pixel	is	rendered	for	a
second	time	because	two	objects	overlap,	it	determines	which	object	is	closer	to	the

camera,	that	is,	reproducing	the	depth	perception.
glutInitWindowPosition()	and	glutInitWindowsSize():	These	set	the	initial	position
of	the	window	and	its	size.	According	to	our	width	and	height	instance	members,	it
indicates	to	create	a	window	of	800	x	600	pixels	with	an	offset	of	50	pixels	in	the	x
and	y	axes	from	the	top-left	corner	of	the	screen.
glutCreateWindow():	This	creates	the	top-level	window	of	our	application.	The
argument	passed	to	this	function	is	a	binary	string	for	use	as	the	window	title.
glEnable():	This	is	the	function	used	to	enable	the	GL	capabilities.	In	our	app,	we
call	it	with	the	following	values:

GL_DEPTH_TEST:	This	performs	depth	comparisons	and	updates	the	depth	buffer.
GL_LIGHTING:	This	enables	lighting.
GL_LIGHT0:	This	enables	Light0.	PyOpenGL	defines	a	specific	number	of	light
constants—from	GL_LIGHT0	to	GL_LIGHT8—but	the	particular	implementation	of
OpenGL	that	you	are	running	might	allow	more	than	this	number.

Tip
Lighting	and	colors

When	lighting	is	enabled,	the	colors	are	not	determined	by	the	glColor	functions	but	by
the	combination	of	the	lighting	computation	and	the	material	colors	set	by	glMaterial.	To
combine	lighting	with	glColor,	it	is	required	that	you	enable	GL_COLOR_MATERIAL	first:

glEnable(GL_COLOR_MATERIAL)

#	...

glColor4f(r,	g,	b,	a)

#	Draw	polygons

Once	we	have	initialized	GLUT	and	enabled	the	GL	capabilities,	we	complete	our
start()	method	by	specifying	the	clear	color,	setting	the	perspective,	and	starting	the
main	loop:

				def	start(self):

								#	...

								glClearColor(.1,	.1,	.1,	1)

								glMatrixMode(GL_PROJECTION)

								aspect	=	self.width	/	self.height

								gluPerspective(40.,	aspect,	1.,	40.)

								glMatrixMode(GL_MODELVIEW)

								glutDisplayFunc(self.display)

								glutSpecialFunc(self.keyboard)

								glutMainLoop()

				def	keyboard(self,	key,	x,	y):

								pass

These	statements	perform	the	following	operations:

glClearColor():	This	defines	the	clear	values	for	the	color	buffer;	that	is,	each	pixel
will	have	this	value	if	no	other	color	is	rendered	in	this	pixel.
glMatrixMode():	This	sets	the	matrix	stack	mode	for	matrix	operations,	in	this	case

to	the	projection	matrix	stack.	OpenGL	concatenates	matrix	operations	for
hierarchical	modes,	making	it	easy	to	compose	the	transformation	of	a	child	object
relative	to	its	parent.	With	GL_PROJECTION,	we	set	the	matrix	mode	for	the	projection
matrix	stack.
gluPerspective():	The	previous	statement	sets	the	projection	matrix	stack	as	the
current	stack.	With	this	function,	we	can	generate	the	perspective	projection	matrix.
The	parameters	that	generate	this	matrix	are	as	follows:

fovy:	The	view	angle	in	degrees	in	the	y	direction.
aspect:	This	is	the	aspect	ratio	of	the	field	of	view.	It	is	the	ratio	of	the	viewport
width	to	the	viewport	height.
zNear:	The	distance	from	the	viewer	to	the	Near	plane.
zFar:	The	distance	from	the	viewer	to	the	Far	plane.

With	glMatrixMode(GL_MODELVIEW),	we	set	the	modelview	matrix	stack,	which	is	the
initial	value,	as	the	current	matrix	mode.

The	last	three	GLUT	calls	do	the	following:

glutDisplayFunc():	This	receives	the	function	that	will	be	invoked	to	display	the
window.

glutSpecialFunc():	This	sets	the	keyboard	callback	for	the	current	window.	Note	that
this	callback	will	be	triggered	only	when	the	keys	represented	by	the	GLUT_KEY_*
constants	are	pressed.
glutMainLoop():	This	starts	the	main	loop	of	the	application.

With	the	OpenGL	context	initialized,	we	are	able	to	call	the	OpenGL	functions	that	will
render	our	scene.

Tip
The	OpenGL	and	GLUT	reference

As	you	may	have	already	noticed,	the	OpenGL	and	GLUT	specifications	define	a	large
number	of	functions.	You	can	find	the	bindings	of	these	APIs	implemented	by	PyOpenGL
on	the	official	website	at	http://pyopengl.sourceforge.net/documentation/manual-
3.0/index.html.

http://pyopengl.sourceforge.net/documentation/manual-3.0/index.html

Drawing	shapes
Our	display()	function	performs	the	very	common	tasks	of	a	main	game	loop.

It	first	clears	the	screen,	then	sets	up	a	viewing	transformation	(we	will	see	what	this
means	after	the	snippet),	and	finally	renders	the	light	and	draws	the	game	objects:

				def	display(self):

								x	=	math.sin(self.angle)	*	self.distance

								z	=	math.cos(self.angle)	*	self.distance

								glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT)

								glLoadIdentity()

								gluLookAt(x,	0,	z,

																		0,	0,	0,

																		0,	1,	0)

								glLightfv(GL_LIGHT0,	GL_POSITION,	[15,	5,	15,	1])

								glLightfv(GL_LIGHT0,	GL_DIFFUSE,	[1.,	1.,	1.,	1.])

								glLightfv(GL_LIGHT0,	GL_CONSTANT_ATTENUATION,	0.1)

								glLightfv(GL_LIGHT0,	GL_LINEAR_ATTENUATION,	0.05)

								glPushMatrix()

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	[1.,	1.,	1.,	1.])

								glutSolidSphere(2,	40,	40)

								glPopMatrix()

								glPushMatrix()

								glTranslatef(4,	2,	0)

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	[1.,0.4,0.4,1.0])

								glutSolidSphere(1,	40,	40)

								glPopMatrix()

								glutSwapBuffers()

These	are	the	operations	that	display()	performs:

glClear():	With	the	GL_COLOR_BUFFER_BIT	and	GL_DEPTH_BUFFER_BIT	masks,	this
clears	the	color	and	depth	buffers.
glLoadIdentity():	This	loads	the	identity	matrix	as	the	current	matrix.	The	identity
matrix	is	a	4	x	4	matrix	with	ones	in	the	main	diagonal	and	zeros	everywhere	else.
This	makes	the	stack	matrix	start	over	at	the	origin,	which	is	useful	if	you	have
previously	applied	some	matrix	transformations.
gluLookAt():	This	creates	a	viewing	matrix.	The	first	three	parameters	are	the	x,	y,
and	z	coordinates	of	the	eye	point.	The	next	three	parameters	are	the	x,	y,	and	z
coordinates	of	the	reference	point,	that	is,	the	position	the	camera	is	looking	at.
Finally,	the	last	three	parameters	specify	the	direction	of	the	up	vector	(usually,	it	is	0,
1,	0).
glLightfv():	This	sets	the	parameters	of	light	source	0	(GL_LIGHT0).	The	following
parameters	are	specified	in	our	example:

GL_POSITION:	This	defines	the	position	of	the	light

GL_DIFFUSE:	This	sets	the	RGBA	intensity	of	the	light
GL_CONSTANT_ATTENUATION:	This	specifies	the	constant	attenuation	factor
GL_LINEAR_ATTENUATION:	This	specifies	the	linear	attenuation	factor

Once	the	lighting	attributes	are	set,	we	can	start	rendering	basic	shapes	with	GLUT.	If	we
draw	the	objects	first,	lighting	will	not	be	applied	correctly:

glPushMatrix():	This	pushes	a	new	matrix	into	the	current	matrix	stack,	identical	to
the	one	below	it.	While	we	do	this,	we	can	apply	transformations	such	as
glTranslate	and	glRotate,	to	this	matrix.	We	will	render	our	first	sphere	at	the
origin,	but	the	second	one	will	be	transformed	with	glTranslate.
glTranslate():	This	multiplies	the	current	matrix	by	the	translation	matrix.	In	our
example,	the	translation	values	for	the	second	sphere	are	4	for	the	x	axis,	and	2	for
the	y	axis.
glMaterialfv():	This	sets	the	material	parameters	of	the	front	face,	as	it	is	called	with
GL_FONT.	With	GL_DIFFUSE,	we	specify	that	we	are	setting	the	RGBA	reflectance	of
the	material.
glutSolidSphere():	Through	GLUT,	this	routine	allows	us	to	easily	draw	a	solid
sphere.	It	receives	the	sphere’s	radius	as	the	first	argument,	and	the	number	of	slices
and	stacks	into	which	the	sphere	will	be	subdivided.	The	greater	these	values	are,	the
rounder	the	sphere	will	be.
glPopMatrix():	This	pops	the	current	matrix	from	the	stack.	If	we	did	not	do	this,
each	new	object	rendered	would	be	a	child	of	the	previous	one.

Finally,	we	switch	the	buffers	with	glutSwapBuffers().	If	double	buffering	was	not
enabled,	we	should	call	the	single	buffer	equivalent—glFlush().

Running	the	demo
As	usual,	we	check	whether	the	module	is	the	main	script	for	starting	the	application:

if	__name__	==	'__main__':

				app	=	App()

				app.start()

If	you	run	the	complete	application,	the	result	will	look	like	what	is	shown	in	the
following	screenshot:

Refactoring	our	OpenGL	program
As	you	may	have	seen,	this	example	uses	enough	OpenGL	calls	to	grow	out	of	control	if
we	do	not	structure	our	code.	That’s	why	we	are	going	to	apply	some	object-oriented
principles	to	achieve	a	better	organization,	without	modifying	the	order	of	the	calls	or
losing	any	functionality.

The	first	step	will	be	to	define	a	Light	class.	It	will	hold	the	attributes	needed	to	render	the
light:

class	Light(object):

				enabled	=	False

				colors	=	[(1.,1.,1.,1.),	(1.,0.5,0.5,1.),

														(0.5,1.,0.5,1.),	(0.5,0.5,1.,1.)]

				def	__init__(self,	light_id,	position):

								self.light_id	=	light_id

								self.position	=	position

								self.current_color	=	0

Besides,	this	modularization	will	help	us	implement	a	new	functionality:	changing	the
color	of	the	light.	We	set	the	current	color	index	to	0,	and	we	will	iterate	over	the	different
colors	defined	in	Light.colors	each	time	the	switch_color()	method	is	called.

The	render()	method	respects	the	original	implementation	of	lighting	from	our	non-
refactored	version:

				def	render(self):

								light_id	=	self.light_id

								color	=	Light.colors[self.current_color]

								glLightfv(light_id,	GL_POSITION,	self.position)

								glLightfv(light_id,	GL_DIFFUSE,	color)

								glLightfv(light_id,	GL_CONSTANT_ATTENUATION,	0.1)

								glLightfv(light_id,	GL_LINEAR_ATTENUATION,	0.05)

				def	switch_color(self):

								self.current_color	+=	1

								self.current_color	%=	len(Light.colors)

Finally,	we	wrap	the	call	to	enable	lighting	with	the	enable()	method	and	a	class
attribute:

				def	enable(self):

								if	not	Light.enabled:

												glEnable(GL_LIGHTING)

												Light.enabled	=	True

								glEnable(self.light_id)

Another	improvement	is	the	creation	of	a	Sphere	class.	This	class	will	allow	us	to
customize	the	radius,	position,	and	color	of	each	instance:

class	Sphere(object):

				slices	=	40

				stacks	=	40

				def	__init__(self,	radius,	position,	color):

								self.radius	=	radius

								self.position	=	position

								self.color	=	color

				def	render(self):

								glPushMatrix()

								glTranslatef(*self.position)

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	self.color)

								glutSolidSphere(self.radius,	Sphere.slices,	Sphere.stacks)

								glPopMatrix()

With	these	classes,	we	can	adapt	our	App	class	and	create	the	instances	that	we	will	render
in	the	main	loop:

class	App(object):

				def	__init__(self,	width=800,	height=600):

								#	...

								self.light	=	Light(GL_LIGHT0,	(15,	5,	15,	1))

								self.sphere1	=	Sphere(2,	(0,	0,	0),	(1,	1,	1,	1))

								self.sphere2	=	Sphere(1,	(4,	2,	0),	(1,	0.4,	0.4,	1))

Remember	that	before	rendering	the	light	object,	we	need	to	enable	OpenGL	lighting
through	the	light.enable()	method:

				def	start(self):

								#	...

								glEnable(GL_DEPTH_TEST)

								self.light.enable()

								#	...

Now	the	display()	method	becomes	succinct	and	expressive,	since	the	application
delegates	the	OpenGL	calls	to	the	object	instances:

				def	display(self):

								x	=	math.sin(self.angle)	*	self.distance

								z	=	math.cos(self.angle)	*	self.distance

								glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT)

								glLoadIdentity()

								gluLookAt(x,	0,	z,

																		0,	0,	0,

																		0,	1,	0)

								self.light.render()

								self.sphere1.render()

								self.sphere2.render()

								glutSwapBuffers()

To	complete	our	first	sample	application,	we	will	add	input	handling.	It	allows	the	player
to	rotate	the	camera	around	the	spheres	and	move	forward	or	away	from	the	center	of	the
scene.

Processing	the	user	input
As	we	saw	earlier,	glutSpecialFunc	takes	a	callback	function	that	receives	the	pressed	key
as	the	first	argument,	and	the	x	and	y	coordinates	of	the	mouse	when	the	key	was	pressed.

We	will	use	the	right	and	left	arrow	keys	to	move	around	the	spheres,	and	the	up	and	down
arrow	keys	to	approximate	or	move	away	from	the	spheres.	Besides	all	of	this,	the	color	of
the	light	will	change	if	we	press	F1,	and	the	application	will	be	closed	if	the	Insert	key	is
pressed.

To	do	so,	we	will	check	the	values	of	the	key	argument	with	the	respective	GLUT
constants:

				def	keyboard(self,	key,	x,	y):

								if	key	==	GLUT_KEY_INSERT:

												sys.exit()

								if	key	==	GLUT_KEY_UP:

												self.distance	-=	0.1

								if	key	==	GLUT_KEY_DOWN:

												self.distance	+=	0.1

								if	key	==	GLUT_KEY_LEFT:

												self.angle	-=	0.05

								if	key	==	GLUT_KEY_RIGHT:

												self.angle	+=	0.05

								if	key	==	GLUT_KEY_F1:

												self.light.switch_color()

								self.distance	=	max(10,	min(self.distance,	20))

								self.angle	%=	math.pi	*	2

								glutPostRedisplay()

Note	that	we	trimmed	the	value	of	the	self.distance	member,	so	its	value	is	always
between	10	and	20,	and	self.angle	is	also	always	between	0	and	2π.	To	notify	that	the
current	window	needs	to	be	redisplayed,	we	call	glutPostRedisplay().

You	can	check	out	the	Chapter5_02.py	script,	which	contains	this	refactored	version	of
our	application.

When	you	run	it,	press	the	arrow	keys	to	rotate	around	the	spheres	and	F1	to	see	how	the
lighting	affects	the	spheres’	materials.

Adding	the	Pygame	library
With	GLUT,	we	can	write	OpenGL	programs	quickly,	primarily	because	it	was	aimed	to
provide	routines	that	make	learning	OpenGL	easier.	However,	the	GLUT	API	was
discontinued	in	1998.	Nonetheless,	there	are	some	popular	substitutes	in	the	Python
ecosystem.

Pygame	is	one	of	these	alternatives,	and	we	will	see	that	it	can	be	seamlessly	integrated
with	OpenGL,	even	simplifying	the	resulting	code	for	the	same	program.

Pygame	101
Before	we	integrate	Pygame	into	our	OpenGL	program,	we	will	write	a	sample	2D
application	to	get	started	with	Pygame.

We	will	import	Pygame	and	its	locals	module,	which	includes	the	constants	that	we	will
need	in	our	application:

import	sys

import	pygame

from	pygame.locals	import	*

class	App(object):

				def	__init__(self,	width=400,	height=300):

								self.title	=	'Hello,	Pygame!'

								self.fps	=	100

								self.width	=	width

								self.height	=	height

								self.circle_pos	=	width/2,	height/2

Pygame	uses	regular	strings	for	the	window	title,	so	we	will	define	the	attribute	without
adding	b.	Another	change	is	the	number	of	frames	per	second	(FPS),	which	we	will	later
find	out	how	to	control	via	Pygame’s	clock:

				def	start(self):

								pygame.init()

								size	=	(self.width,	self.height)

								screen	=	pygame.display.set_mode(size,	DOUBLEBUF)

								pygame.display.set_caption(self.title)

								clock	=	pygame.time.Clock()

								while	True:

												dt	=	clock.tick(self.fps)

												for	event	in	pygame.event.get():

																if	event.type	==	QUIT:

																				pygame.quit()

																				sys.exit()

												pressed	=	pygame.key.get_pressed()

												x,	y	=	self.circle_pos

												if	pressed[K_UP]:	y	-=	0.5	*	dt

												if	pressed[K_DOWN]:	y	+=	0.5	*	dt

												if	pressed[K_LEFT]:	x	-=	0.5	*	dt

												if	pressed[K_RIGHT]:	x	+=	0.5	*	dt

												self.circle_pos	=	x,	y

												screen.fill((0,	0,	0))

												pygame.draw.circle(screen,	(0,	250,	100),

																															(int(x),	int(y)),	30)

												pygame.display.flip()

We	initialize	the	Pygame	modules	with	pygame.init(),	and	then	we	create	a	screen	with	a
given	width	and	height.	The	DOUBLEBUF	flag	is	passed	so	as	to	enable	double	buffering,
which	has	the	benefits	we	mentioned	previously.

The	main	event	loop	is	implemented	with	a	while	block,	and	with	the	Clock	instance,	we
can	control	the	frame	rate	and	calculate	the	elapsed	time	between	frames.	This	value	will

be	multiplied	by	the	speed	of	movement,	so	the	circle	will	move	at	the	same	speed	if	the
FPS	value	changes.

With	pygame.event.get(),	we	retrieve	the	event	queue,	and	if	a	QUIT	event	occurs,	the
window	is	closed	and	the	application	finishes	its	execution.

The	pygame.key.get_pressed()	returns	a	list	with	the	pressed	keys,	and	with	the	key
constants,	we	can	check	whether	the	arrow	keys	are	pressed.	If	so,	the	circle’s	position	is
updated	and	it	is	drawn	on	the	new	coordinates.

Finally,	pygame.display.flip()	updates	the	screen’s	surface.

The	Chapter5_03.py	script	contains	the	full	code	of	this	example.

Tip
The	Pygame	documentation

Since	Pygame	is	divided	into	several	modules,	each	one	with	various	functions,	classes,
and	constants,	the	official	documentation	is	a	useful	reference.

We	are	using	some	functions	from	the	key	module;	you	can	find	further	information	about
it	at	https://www.pygame.org/docs/ref/key.html.	The	same	applies	for	the	display	and
time	modules.

https://www.pygame.org/docs/ref/key.html

Pygame	integration
Let’s	see	how	it	is	possible	to	implement	the	same	functionality	with	Pygame.	The	first
step	is	to	replace	the	OpenGL.GLUT	import	with	the	ones	we	used	in	our	previous	example:

import	sys

import	math

import	pygame

from	pygame.locals	import	*

from	OpenGL.GL	import	*

from	OpenGL.GLU	import	*

The	title	string	is	now	a	regular	string,	and	the	FPS	attribute	can	be	added	as	well:

class	App(object):

				def	__init__(self,	width=800,	height=600):

								self.title	=	'OpenGL	demo'

								self.fps	=	60

								self.width	=	width

								self.height	=	height

								#	...

We	remove	the	GLUT	calls	from	our	start()	method,	and	they	are	replaced	by	the
Pygame	initialization.	Apart	from	DOUBLEBUF,	we	will	add	the	OPENGL	flag	to	create	an
OpenGL	context:

				def	start(self):

								pygame.init()

								pygame.display.set_mode((self.width,	self.height),

																																OPENGL	|	DOUBLEBUF)

								pygame.display.set_caption(self.title)

								glEnable(GL_CULL_FACE)

								#	...

								glMatrixMode(GL_MODELVIEW)

								clock	=	pygame.time.Clock()

								while	True:

												dt	=	clock.tick(self.fps)

												self.process_input(dt)

												self.display()

The	new	process_input()	method	updates	the	scene	and	the	instance	attributes	by
retrieving	the	events	from	the	event	queue	and	processing	the	pressed	keys.

If	a	QUIT	event	occurs	or	the	Esc	key	is	pressed,	the	Pygame	program	is	executed.
Otherwise,	the	camera	position	is	updated	with	the	distance	and	angle	of	rotation,
controlled	by	the	arrow	keys:

				def	process_input(self,	dt):

								for	event	in	pygame.event.get():

												if	event.type	==	QUIT:

																self.quit()

												if	event.type	==	KEYDOWN:

																if	event.key	==	K_ESCAPE:

																				self.quit()

																if	event.key	==	K_F1:

																				self.light.switch_color()

								pressed	=	pygame.key.get_pressed()

								if	pressed[K_UP]:

												self.distance	-=	0.01	*	dt

								if	pressed[K_DOWN]:

												self.distance	+=	0.01	*	dt

								if	pressed[K_LEFT]:

												self.angle	-=	0.005	*	dt

								if	pressed[K_RIGHT]:

												self.angle	+=	0.005	*	dt

								self.distance	=	max(10,	min(self.distance,	20))

								self.angle	%=	math.pi	*	2

The	glutSwapBuffers()	is	replaced	by	pygame.display.flip(),	and	the	new	quit()
method	quits	Pygame	and	exits	Python	gracefully:

				def	display(self):

								#	...

								self.light.render()

								self.sphere1.render()

								self.sphere2.render()

								pygame.display.flip()

				def	quit(self):

								pygame.quit()

								sys.exit()

Another	consequence	of	removing	GLUT	is	that	we	cannot	use	glutSolidSphere	to
render	our	spheres.

Fortunately,	we	can	substitute	it	with	the	gluSphere	GLU	function.	The	only	difference	is
that	we	need	to	create	a	GLUquadratic	object	first,	and	then	call	the	function	with	this
argument	and	the	usual	radius,	number	of	slices,	and	number	of	stacks	into	which	the
sphere	is	divided:

class	Sphere(object):

				slices	=	40

				stacks	=	40

				def	__init__(self,	radius,	position,	color):

								self.radius	=	radius

								self.position	=	position

								self.color	=	color

								self.quadratic	=	gluNewQuadric()

				def	render(self):

								glPushMatrix()

								glTranslatef(*self.position)

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	self.color)

								gluSphere(self.quadratic,	self.radius,

																		Sphere.slices,	Sphere.stacks)

								glPopMatrix()

With	these	changes,	the	GLUT	API	is	now	completely	replaced	by	Pygame.	Check	out	the
chapter5_04.py	script	to	see	the	complete	implementation.

Tip
OpenGL	and	SDL

By	including	Pygame,	we	replace	the	GLUT	API	with	Simple	DirectMedia	Layer
(SDL),	which	is	the	library	that	Pygame	is	built	over.	Like	freeglut,	it	is	another	cross-
platform	alternative	to	GLUT.

Drawing	with	OpenGL
Until	now,	we	have	always	rendered	our	objects	with	a	utility	routine,	but	most	OpenGL
applications	require	the	use	of	some	drawing	primitives.

The	Cube	class
We	will	define	a	new	class	to	render	cubes,	and	we	will	use	the	following	representation	to
better	understand	the	vertices’	positions.	From	0	to	7,	the	vertices	are	enumerated	and
represented	in	a	3D	space.

The	sides	of	a	cube	can	now	be	represented	as	tuples:	the	back	face	is	(0,	1,	2,	3),	the
right	face	is	(4,	5,	1,	0),	and	so	on.

Note	that	we	arrange	the	vertices	in	counterclockwise	order.	As	we	will	learn	later,	this
will	help	us	enable	an	optimization	called	face	culling,	which	consists	of	drawing	only	the
visible	faces	of	a	polygon:

class	Cube(object):

				sides	=	((0,1,2,3),	(3,2,7,6),	(6,7,5,4),

													(4,5,1,0),	(1,5,7,2),	(4,0,3,6))

The	__init__	method	will	store	the	values	of	the	position	and	color,	as	well	as	the
vertex	coordinates	with	respect	to	the	center	position	of	the	cube:

				def	__init__(self,	position,	size,	color):

								self.position	=	position

								self.color	=	color

								x,	y,	z	=	map(lambda	i:	i/2,	size)

								self.vertices	=	(

												(x,	-y,	-z),	(x,		y,	-z),

												(-x,	y,	-z),	(-x,	-y,	-z),

												(x,	-y,	z),	(x,		y,	z),

												(-x,	-y,	z),	(-x,	y,	z))

The	render()	method	pushes	a	new	matrix,	transforms	it	according	to	its	current	position,
and	calls	glVertex3fv()	for	each	vertex	of	the	six	faces	of	cube.

The	glVertex3fv	takes	a	list	of	three	float	values	that	specify	the	vertex	position.	This
function	is	executed	between	the	glBegin()	and	glEnd()	calls.	They	delimit	the	vertices
that	define	a	primitive.	The	GL_QUADS	mode	treats	each	group	of	four	vertices	as	an
independent	quadrilateral.

The	last	statement	pops	the	current	matrix	from	the	matrix	stack:

				def	render(self):

								glPushMatrix()

								glTranslatef(*self.position)

								glBegin(GL_QUADS)

								glMaterialfv(GL_FRONT,	GL_DIFFUSE,	self.color)

								for	side	in	Cube.sides:

												for	v	in	side:

																glVertex3fv(self.vertices[v])

								glEnd()

								glPopMatrix()

Enabling	face	culling
Even	though	a	cube	has	six	faces,	we	can	see	a	maximum	of	only	three	faces	at	once,	and
only	two	or	one	from	certain	angles.	Therefore,	if	we	discard	the	faces	that	are	not	going
to	be	visible,	we	can	avoid	rendering	at	least	50	percent	of	the	faces	of	our	cubes.

By	enabling	face	culling,	OpenGL	checks	which	faces	are	facing	the	viewer	and	discards
the	faces	that	are	facing	backwards.	The	only	requirement	is	to	draw	the	faces	of	the	cube
in	the	counterclockwise	order	of	the	vertices,	which	is	the	default	front	face	in	OpenGL.
The	implementation	part	is	easy;	we	add	the	following	line	to	our	glEnable	calls:

#	...

glEnable(GL_LIGHTING)

glEnable(GL_CULL_FACE)

#	...

In	our	next	application,	we	will	add	some	cubes	and	enable	face	culling	to	see	this
optimization	in	practice.

Basic	collision	detection	game
With	all	of	these	ingredients,	you	are	now	able	to	write	a	simple	game	that	detects	simple
collisions	between	shapes.

The	scene	consists	of	an	infinite	lane.	Blocks	appear	randomly	at	the	end	of	the	lane	and
move	towards	the	player,	represented	as	the	sphere	in	the	following	screenshot.	He	or	she
must	avoid	hitting	the	blocks	by	moving	the	sphere	from	right	to	left	in	the	horizontal	axis.

The	game	is	over	when	the	player’s	character	collides	with	one	of	the	blocks.

This	gameplay	is	direct	and	uncomplicated,	and	it	will	allow	us	to	develop	a	3D	game
without	worrying	too	much	about	more	complicated	physics	calculations.

Since	we	are	going	to	reuse	the	Light,	Cube,	and	Sphere	classes,	we	need	to	define	a	new
class	only	to	represent	our	game	blocks:

class	Block(Cube):

				color	=	(0,	0,	1,	1)

				speed	=	0.01

				def	__init__(self,	position,	size):

								super().__init__(position,	(size,	1,	1),	Block.color)

								self.size	=	size

				def	update(self,	dt):

								x,	y,	z	=	self.position

								z	+=	Block.speed	*	dt

								self.position	=	x,	y,	z

Its	update()	method	simply	moves	the	block	towards	the	player	by	updating	its	z
coordinate	with	uniform	speed.

Our	App	class	sets	the	initial	values	of	the	attributes	that	we	will	need	during	the	execution
of	our	game,	and	creates	the	Light	and	the	game	object	instances	as	in	our	previous
examples:

class	App(object):

				def	__init__(self,	width=800,	height=600):

								#	...

								self.game_over	=	False

								self.random_dt	=	0

								self.blocks	=	[]

								self.light	=	Light(GL_LIGHT0,	(0,	15,	-25,	1))

								self.player	=	Sphere(1,	position=(0,	0,	0),

																													color=(0,	1,	0,	1))

								self.ground	=	Cube(position=(0,	-1,	-20),

																											size=(16,	1,	60),

																											color=(1,	1,	1,	1))

The	start()	method	has	small	variations,	only	adding	glEnable(GL_CULL_FACE),	as	we
mentioned	previously:

				def	start(self):

								pygame.init()

								#	...

								glMatrixMode(GL_MODELVIEW)

								glEnable(GL_CULL_FACE)

								self.main_loop()

The	main_loop()	method	is	now	a	separate	method	and	includes	the	random	generation	of
blocks,	collision	detection,	as	well	as	the	updating	of	the	positions	of	the	blocks:

				def	main_loop(self):

								clock	=	pygame.time.Clock()

								while	True:

												for	event	in	pygame.event.get():

																if	event.type	==	QUIT:

																				pygame.quit()

																				sys.exit()

												if	not	self.game_over:

																self.display()

																dt	=	clock.tick(self.fps)

																for	block	in	self.blocks:

																				block.update(dt)

																self.clear_past_blocks()

																self.add_random_block(dt)

																self.check_collisions()

																self.process_input(dt)

We	will	implement	collision	detection	by	comparing	the	boundaries	of	the	closest	blocks
with	the	extremes	of	the	sphere.	Since	the	sphere’s	width	is	smaller	than	the	block	size,	if
one	of	these	extremes	is	between	the	right	and	left	boundaries	of	a	block,	it	will	be
considered	as	a	collision:

				def	check_collisions(self):

								blocks	=	filter(lambda	x:	0	<	x.position[2]	<	1,

																								self.blocks)

								x	=	self.player.position[0]

								r	=	self.player.radius

								for	block	in	blocks:

												x1	=	block.position[0]

												s	=	block.size	/	2

												if	x1-s	<	x-r	<	x1+s	or	x1-s	<	x+r	<	x1+s:

																self.game_over	=	True

																print("Game	over!")

To	prevent	the	spawning	of	too	many	blocks,	we	defined	a	counter	called	random_dt.	It
accumulates	the	elapsed	time	in	milliseconds	between	frames,	and	it	will	try	to	spawn	a
new	block	only	if	the	sum	is	greater	than	800	milliseconds:

				def	add_random_block(self,	dt):

								self.random_dt	+=	dt

								if	self.random_dt	>=	800:

												r	=	random.random()

												if	r	<	0.1:

																self.random_dt	=	0

																self.generate_block(r)

				def	generate_block(self,	r):

								size	=	7	if	r	<	0.03	else	5

								offset	=	random.choice([-4,	0,	4])

								self.blocks.append(Block((offset,	0,	-40),	size))

If	the	generated	random	number	is	lower	than	0.1,	a	new	block	is	added	to	the	block	list
and	the	random_dt	counter	is	reset	to	0.	In	this	way,	the	minimum	elapsed	time	between
two	blocks	can	be	0.8	seconds,	giving	enough	time	to	leave	a	tolerable	distance	from	one
block	to	another.

Another	operation	that	the	main	loop	performs	is	removing	the	blocks	that	are	located
behind	the	cameras’	viewing	area,	avoiding	the	creation	of	too	many	Block	instances:

				def	clear_past_blocks(self):

								blocks	=	filter(lambda	x:	x.position[2]	>	5,

																								self.blocks)

								for	block	in	blocks:

												self.blocks.remove(block)

												del	block

The	code	for	displaying	the	game	objects	stays	as	succinct	as	usual,	thanks	to	the	transfer
of	the	drawing	primitives	to	the	respective	render()	methods:

				def	display(self):

								glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT)

								glLoadIdentity()

								gluLookAt(0,	10,	10,

																		0,	0,	-5,

																		0,	1,	0)

								self.light.render()

								for	block	in	self.blocks:

												block.render()

								self.player.render()

								self.ground.render()

								pygame.display.flip()

To	finish	our	game,	we	will	modify	the	input	handling	of	our	program.	This	change	is
straightforward,	since	we	only	need	to	update	the	x	component	of	the	character’s	position
and	trim	it	so	that	it	cannot	move	out	of	the	lane:

				def	process_input(self,	dt):

								pressed	=	pygame.key.get_pressed()

								x,	y,	z	=	self.player.position

								if	pressed[K_LEFT]:

												x	-=	0.01	*	dt

								if	pressed[K_RIGHT]:

												x	+=	0.01	*	dt

								x	=	max(min(x,	7),	-7)

								self.player.position	=	(x,	y,	z)

In	the	chapter5_05.py	script,	you	can	find	the	full	implementation	of	the	game.	Run	it
and	feel	free	to	modify	and	improve	it!	You	can	add	pickup	items	and	keep	track	of	the
score,	or	give	the	player	a	number	of	lives	before	the	game	is	over.

Summary
In	this	chapter,	you	learned	how	it	is	possible	to	work	with	Python	and	OpenGL,	and	with
basic	knowledge	about	OpenGL	APIs,	we	were	able	to	develop	a	simple	3D	game.

We	saw	two	cross-platform	alternatives	for	creating	an	OpenGL	context:	GLUT	and
Pygame.	You	can	decide	which	one	better	suits	your	3D	games,	depending	on	the	trade-
offs	of	each	option.	Keep	this	in	mind:	an	advantage	of	using	both	is	that	you	may	adapt
existing	examples	from	one	library	to	the	other!

With	these	foundations	of	3D	covered,	in	the	next	chapter,	we	will	see	how	to	develop	a
3D	platformer	based	on	these	technologies.

