Effect of external and internal factors on microorganisms growth in foods

Role of microorganisms in foods

Food preservation

Food spoilage

Food pathogens

Microorganisms in foods

Microorganisms in foods

Bacteria				
Acinetobacter	Erwinia	Pediococcus		
Aeromonas	Escherichia	Proteus	Proteus	
Alcaligenes	Flavobacterium	Pseudomonas	Pseudomonas	
Arcobacter	Hafnia	Psychrobacter		
Bacillus	Kocuria	Salmonella		
Brochotrix	Lactococcus	Serratia	Serratia	
Campilobacter	Lactobacillus	Shewanella	Shewanella	
Carnobacterium	Leuconostoc	Shigella	Shigella	
Citrobacter	Listeria	Staphylococcus	Staphylococcus	
Clostridium	Micrococcus	Vagococcus	Vagococcus	
Corynebacterium	Moraxella	Vibrio	Vibrio	
Enterobacter	Paenibacillus	Weissella	Weissella	
Enterococcus	Pantoea	Yersinia	Yersinia 4	

Microorganisms in foods

	Molds		
Alternaria	Cladosporium	Mucor	
Aspergillus	Colletotrichum Penicillium		
Aureobasidum	Fusarium Rhisopus		
Botritis	Geothrichum	Trichotecium	
Byssochlamys	Monilia Wallemia		
		Xeromyces	
	Yeasts		
Bretannomyces	Issatchenkia	Schizosaccharomyces	
Candida	Kluyveromyces Torulaspora		
Cryptococcus	Pichia Trichosporon		
Debaryomyces	Rhodotorula Zygosaccharomyces		
Hanseniaspora	Saccharomyces		
	Protozoa		
Cryptosporidium parvum	Cyclospora cayetanensis	Entamoeba hystolytica	
Giardia lamblia	Toxoplasma gondii		5

- □ First data 10,000 years ago
- 6,000 years ago cereal products through heat treatment (cooking), cereal fermentation

- 3,000 г. BC, Sumerians breeding of domestic animals, dairy products (butter)
- 3,000 1,200 г. BC, Jews salt for food preservation, later adopted in ancient China, Greece and Rome

3,500 г. BC, Assyria - wine

□ 1500 г. BC, Babylon and China – fermented sausages

13th century, Sweden - first legal provisions for mandatory inspection of slaughterhouses

- 17th century, Kircher role of microorganisms for food spoilage
- Antony van Leeuwenhoek, 1680 observed yeast cells

 Nicolas Appert, 1810 – preservation of meat through heat treatment

1857-76, Pasteur - MO (yeasts and bacteria) are responsible for the chemical changes during production and for spoilage of foods and beverages, for acidification of milk; heat treatment to destroy unwanted microorganisms in wine and beer - "pasteurization"

PARIS. - Institut Pasteur, Salle des Com

Growth of MO in food

□ Growth of microorganisms – exponential curve

Growth of MO in food

- Growth rate varies depending on the specific microorganism and food
- Growth inside foods or on their surface

Nutrition of microorganisms

Food components	Microorganisms	
<u>C-sources</u>		
Glucose	All MO, concentration in foods is not significant	
Galactose	Certain MO, concentration in foods is not significant	
Lactose	High concentration in dairy matrices, used by a limited number of MO – lactic acid bacteria, coliforms	
Fats	Only MO with lipase activity - Pseudomonas fluorescens	
Proteins	Only MO with proteolitic activity - Pseudomonas fluorescens	
Aminoacids	All microorganisms	
Citrate	Only certain MO - Klebsiella spp, Lactococcus lactis	
N- sources		
Aminoacids	All microorganisms	
Amonia	All microorganisms	
Urea	Only MO with urease activity - <i>Proteus</i>	
Proteins	Only MO with proteolitic activity - Pseudomonas fluorescens	
<u>Minerals</u>	All microorganisms – essential for growth	
<u>Microelements</u>	All microorganisms – essential for growth	
<u>Vitamins</u>	All microorganisms – essential for growth	
Purines and pyrimidines		

Death factors for microorganisms

- Nutrient depletion
- pH changes in cell environment
- Accumulation of inhibitory metabolites
- Lack of oxygen (aerobic MO)
- Combinations of the above factors

Active antimicrobial agents

- Heat high temperature, steam
- Chemical agents disinfectants, preservatives, antibiotics
- Extreme pH
- Radiation ultraviolet light, ionizing radiation, microwaves
- Low water activity (a_w) (drying, salting, other agents)

Active antimicrobial agents

- Freezing
- Cooling, cold shock

- Reduced reduction potential (Eh) (low oxygen)
- Ultrasonic sound
- Hydrostatic pressure (100-1000 MPa)
- Competitive microflora (fermentations)

Mechanisms of microorganisms death

- Structure of the cell wall
- Cell membranes
- Cellular proteins, including enzymes
- RNA and DNA
- Mechanisms of synthesis of cell wall and cell growth

Effect of organic acids on microbial cells

Effect of pH on microbial cells

Effect of moderate and extreme pH on microbial cells

- Cells of living organisms more than 75% water, bacterial spores – 15% (dormant state, metabolism is not active)
- Water activity (a_w)

 the amount of water available for microbial growth

$$a_w = \frac{Vapour\ pressure\ of\ a\ substance\ or\ solution}{Vapour\ pressure\ of\ water\ at\ the\ same\ temperature}$$

- Water content ≠ water activity
- For each MO specific a... interval for growth

Water activity

Pure water

Limit of microbial growth

Substance	a _w
Distilled Water	1 [4]
Tap water	0.99
Raw meats	0.99[4]
Milk	0.97
Juice	0.97
Salami	.87 ^[4]
Cooked bacon	< 0.85
Saturated NaCl solution	0.75
Point at which cereal loses crunch	0.65
Dried fruits	0.60 ^[4]
Typical indoor air	0.5 - 0.7
Honey	0.5 - 0.7
Dried fruit	0.5 - 0.6

Microorganism Inhibited	a _w
Clostridium botulinum A, B	.97
Clostridium botulinum E	.97
Pseudomonas fluorescens	.97
Clostridium perfringens	.95
Escherichia coli	.95
Salmonella	.95
Vibrio cholerae	.95
Bacillus cereus	.93
Listeria monocytogenes	.92
Bacillus subtilis	.91
Staphylococcus aureus	.86 ^[5]
Most molds	.80 ^[5]
No microbial proliferation	.50

\mathbf{a}_{w}	Microorganisms generally inhibited by a_w at this point	Examples of foods within this range of water activity.
0.950	Pseudomonas, Escherichia, Proteus, Shigella, Klebsiella, Bacillus, Clostridium perfringens, some yeasts	Highly perishable foods (fresh and canned fruits, vegetables, meat, fish) and milk; cooked sausages and breads; foods containing up to 4oz (w/w) sucrose or 7% NaCl
0.910	Salmonella, Vibrio parabaemolyticus, C. botulinum, Serratia, Lactobacillus, Pediococcus, some molds, Rhodotorula, Pichia	Some cheese (Cheddar, Swiss, Muenster, Provolone), cured meat (ham), some fruit juice concentrates foods containing 55% (w/w) sucrose or 12% NaCl
0.870	Many yeasts (Candida, Torulopsis, Hansenula), Micrococcus	Fermented sausage (salami), sponge cakes, dry cheeses, margarine; foods containing 65% (w/w) sucrose (saturated) or 15% NaCl
0.800	Most molds (mycotoxigenic penicillia), Staphylococcus aureus, most Saccharomyces (baillii) spp., Debaryomyces	Most fruit juice concentrates, sweetened condensed milk, chocolate syrup, maple and fruit syrups, flour, rice, pulses containing 15-17% moisture; fruit cake; country style ham, fondants, high-sugar cakes
0.750	Most halophilic bacteria, mycotoxigenic aspergilli	Jam, marmalade, marzipan, glacé fruits some marshmallows

0.650	Xerophilic molds (Aspergillus chevalieri, A. candidus, Wallemia sebi), Saccharomyces bisporus	Rolled oats containing ~10% moisture, grained nougats, fudge marshmallows, jelly, molasses, raw cane sugar, some dried fruits, nuts	
0.600	Osmophilic yeasts (Saccharomyces rouxii), few molds (Aspergillus echinulatus, Monascus bisporus)	Oried fruits containing 15-20% moisture; some toffees and caramels, honey	
0.500		Noodles, spaghetti, etc. containing ~12% moisture; spices containing ~10% moisture	
$0.400 \\ 0.300 \\ 0.030$	No microbial proliferation	Whole egg powder containing -5% moisture Cookies, crackers, bread crusts, etc. containing 3-5% moisture	
0.030		Whole milk powder containing 2-3% moisture; dried vegetables containing -5% moisture; corn flakes containing -5% moisture; dehydrated soups; some cookies, crackers	

The hurdle concept

- Safe foods the use of a single preservative method requires extreme parameter values (high salt/sugar concentrations, high acidity, high concentrations of preservatives, severe heat treatment, etc.) – altered characteristics of the product
- □ Hurdle technology combination of different inhibiting factors at lower levels → effective control and preserved food quality

The hurdle concept

- Experimental determination of heat resistance of microorganisms
 - heating is not instantaneous time lags in heating and cooling
 - complex and expensive apparatus

Example

- □ Cell concentration in a product 10⁶ CFU/cm³ (g)
- Heating up to T > Tmax for MO growth (X°C) for 5 min, sample for analysis
- Plate count to estimate the number of living cells
- Repeat the steps several times

Heationg time, min	Number of killed cells	Number of surviving cells	Log ₁₀ of surviving cells
0	0	10^{6}	6
5	900 000	105	5
10	990 000	104	4
15	999 000	103	3
20	999 900	102	2
25	999 990	101	1
30	999 999	10° (1) (1/ml)	0
35	999 999.9	10 ⁻¹ (1/10 ml)	-1
40	999 999,99	10 ⁻² (1/100 ml)	-2

Survivor curve

For 1 log cycle 90% of microbial cells are killed.

D-values

D-value: the time taken for the population to pass through a log cycle

D₁₂₁: time to kill 90% of a population at 121°C

D-values

- Comparison of the relative heat resistance of microorganisms
- Calculation of sterilization time
- Spores of thermophilic bacteria: D₁₂₁= 4 5 min for Bacillus stearothermophilus
- □ Spores of thermophilic bacteria: $D_{121} = 0.2 0.01$ min
- \Box Vegetative bacteria, yeasts and molds: $D_{65} = 0.5 3$ min

Survivor curve at different temperatures

z-values

z-value: the change of temperature (°C), required to achieve a 10-fold change of the D-value

z-values - application

 Determination of the equivalent D-values for different temperatures

$$z=10^{\circ}C$$
, $D_{121} = 5$ min;

Increase of T from 121°C to 131°C →

$$D_{131} = 0.5 \text{ min};$$

Decrease of T from 121°C to 111°C →

$$D_{111} = 50 \text{ min};$$

z-values

- Molds, yeasts and vegetative cells of bacteria: z = 5-8°C (normally 5°C)
- □ Bacterial spores: z = 6-16°C (normally 10°C)
- Determination of the equivalent D-values for different temperatures

Factors influencing heat resistance

- Growth phase: cells of stationary phase are more resistant than cells in log phase
- Growth temperature: the higher T of growth is, the more resistant are MO
- pH of the environment: higher heat resistance at pH optimal for growth
- □ Fat and protein: protective effect
- Water activity: reduction of a_w increases heat resistance