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Drawing on the work of L. S. Shulman (1986), the authors present a conceptualization of the pedagogical
content knowledge and content knowledge of secondary-level mathematics teachers. They describe the
theory-based construction of tests to assess these knowledge categories and the implementation of these tests
in a sample of German mathematics teachers (N = 198). Analyses investigate whether pedagogical content
knowledge and content knowledge can be distinguished empirically, and whether the mean level of knowledge
and the degree of connectedness between the two knowledge categories depends on mathematical expertise.
Findings show that mathematics teachers with an in-depth mathematical training (i.e., teachers qualified to
teach at the academic-track Gymnasium) outscore teachers from other school types on both knowledge
categories and exhibit a higher degree of cognitive connectedness between the two knowledge categories.
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Imagine you are a mathematics teacher. A student puts his hand
up and says: “I don’t understand why —1 times —1 equals +1. I
know it’s the correct result, but it makes no sense to me. Why does
multiplying two negative numbers give a positive number?” How
would you explain this result to your student? Scenarios like these
are typical for the task of teaching. In order to respond appropri-
ately, teachers not only need to understand the mathematical
concepts underlying the question, they also need to know how
these concepts can best be explained to students.

The relevance of teachers’ domain-specific knowledge to high-
quality instruction has been discussed, particularly in the context
of mathematics teaching (Ball, Lubienski, & Mewborn, 2001;
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Fennema & Franke, 1992). Drawing mostly on qualitative data, it
has been shown that a deep understanding of mathematical con-
cepts may enable teachers to access a broad repertoire of strategies
for explaining and representing mathematical content to their
students (Ball, Hill, & Bass, 2005; Ma, 1999). First quantitative
evidence shows that students’ learning gains in mathematics may
be predicted by their teachers’ mathematics-related knowledge
(Hill, Rowan, & Ball, 2005). The precise nature of teachers’
knowledge (i.e., the content and structure of knowledge relating to
specific school subjects) remains empirically uncertain, however.
Following Shulman (1986, 1987), a theoretical distinction is often
drawn between domain-specific subject-matter knowledge, content
knowledge (CK), and the knowledge needed for teaching a specific
subject, pedagogical content knowledge (PCK). These two knowl-
edge categories may be hypothesized to represent conceptually
distinct forms of knowledge, with the former perhaps being the
prerequisite for the development of the latter. Alternatively, it is
conceivable that the two are merged to form a single body of
domain-specific knowledge for teaching (for first results on the
knowledge of elementary teachers, see Hill, Schilling, & Ball,
2004, or Phelps & Schilling, 2004). Despite its great relevance to
the development of teachers’ knowledge and possible implications
for teacher training curricula, this issue remains empirically unre-
solved, primarily because very few instruments are yet available to
tap teachers’ knowledge directly.

In this article, we present an empirical approach to assessing the
knowledge of secondary-level mathematics teachers and investi-
gate whether the theoretical distinction between pedagogical con-
tent knowledge and content knowledge can be verified empirically.
We report on the theory-driven construction of a test to assess the
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knowledge categories of PCK and CK directly, and on its appli-
cation in a German teacher sample. Our investigation of common-
alities and differences in CK and PCK was informed by the
expertise research literature, which has repeatedly found that the
knowledge base of experts is not only more extensive than that of
novices, but also more connected and integrated (Chi, Feltovich, &
Glaser, 1981; Schmidt & Boshuizen, 1992; Simon & Chase, 1973).
We therefore investigated whether the association between PCK
and CK varies according to the level of mathematical expertise,
hypothesizing that the association between the two categories of
knowledge will be substantially closer in teachers high in mathe-
matical expertise, possibly even constituting one inseparable body
of knowledge. We addressed this question by capitalizing on a
quasi-experimental situation that is specific to teacher education in
Germany. The amount (and depth) of content-specific instruction
provided to teacher candidates varies substantially depending on
whether or not they aspire to teach in the academic-track Gymna-
sium (GY). One group of teachers can therefore be identified as
“mathematical content experts.”

The Concepts of Pedagogical Content Knowledge and
Content Knowledge

The distinction between teachers’ knowledge about teaching in
a specific domain (PCK) and their domain-specific subject-matter
knowledge (CK) has been widely embraced by the research com-
munity. The core meaning of pedagogical content knowledge is
best represented by Shulman’s (1986, pp. 9-10) original defini-
tion, which states that pedagogical content knowledge includes
knowledge on how best to represent and formulate the subject to
make it comprehensible to others, as well as knowledge on stu-
dents’ subject-specific conceptions and misconceptions (see also
Grossman, 1990). Content knowledge, on the other hand, describes
a teacher’s understanding of the structures of his or her domain.
According to Shulman, “The teacher need not only understand that
something is so, the teacher must further understand why it is so”
(Shulman, 1986, p. 9), which implies that teachers’ content knowl-
edge should represent a deep understanding of the material to be
mastered by the students. Shulman’s definitions describe teachers’
pedagogical content knowledge and content knowledge in generic
terms. However, domain-specific approaches have been found to
provide more valuable, in-depth insights into instructional pro-
cesses and their prerequisites (Mayer, 2004b).

Mathematics Teachers’ Pedagogical Content Knowledge
and Content Knowledge

Research has identified several aspects that are specifically
important to successful mathematics instruction, and that might
therefore be used to conceptualize pedagogical content knowledge
in a mathematics-specific approach. Most importantly, tasks play a
central role in mathematics instruction (Christiansen & Walther,
1986), accounting for much of the time allocated to mathematics
lessons. Appropriately selected and implemented mathematical
tasks lay the foundations for students’ construction of knowledge
and represent powerful learning opportunities (de Corte, Greer, &
Verschaffel, 1996; Williams, 2002). Knowledge about the poten-
tial of mathematical tasks for learning is thus a first important
aspect of mathematical pedagogical content knowledge. Second,

teachers need to work with students’ existing conceptions and
prior knowledge. Because errors and mistakes can provide valu-
able insights into the implicit knowledge of the problem solver
(Matz, 1982), it is important for teachers to be aware of typical
student misconceptions and comprehension difficulties. Students’
construction of knowledge often only succeeds with instructional
support and guidance (Mayer, 2004a), which may entail various
forms of explanations or the explicit use of representations. The
knowledge of appropriate mathematics-specific instructional
methods is thus a third important component of mathematical
pedagogical content knowledge. Whereas the latter two compo-
nents are based directly on Shulman’s (1986) generic conceptual-
ization, we added the component of knowledge on tasks as a third,
mathematics-specific component of mathematical pedagogical
content knowledge.

The domain-specific conceptualization of teachers’ content
knowledge seems straightforward. Clearly, teacher knowledge
should go beyond an awareness of the material to be mastered by
students; rather, teachers should possess mathematical background
knowledge of the content covered in the school curriculum at a
much deeper level of understanding than their students. This
background knowledge of school curriculum content forms a
knowledge base that is specific to teachers, in that it overlaps only
partially with the mathematics typically taught at university.

The Interplay Between Pedagogical Content Knowledge
and Content Knowledge

Although the distinction between pedagogical content knowl-
edge and content knowledge appears highly plausible at a theoret-
ical level, its empirical basis is far from certain. Despite repeated
calls for reliable and valid measurement assessments of teachers’
knowledge (e.g., Lanahan, Scotchmer, & McLaughlin, 2004), in-
struments suitable for assessing the categories of teachers’ knowl-
edge remain scarce. To date, only a few studies have investigated
PCK and CK empirically. In some of these studies, mathematics
teachers’ content knowledge was not tested explicitly, because
researchers did not want to give the impression of “testing” teach-
ers (e.g., Kennedy, Ball, & McDiarmid, 1993). Other studies
aiming to tap both knowledge categories found that, although it is
possible to construct separate tests in principle, the overlap be-
tween the two categories was in fact so high that a global factor of
knowledge relating to mathematics instruction seemed just as
likely (Hill et al., 2004; Kahan, Cooper, & Betha, 2003). At the
same time, a study with elementary teachers in the domain of
reading found separate categories only, and no common factor
(Phelps & Schilling, 2004). One explanation for these inconclusive
results may be that the structure of knowledge differs across
teacher populations. Studies comparing the knowledge base of
experienced and novice teachers (for an overview see Berliner,
2001) suggest that expert teachers not only know more than novice
teachers, but that their knowledge is differently structured and may
be more highly integrated. This conclusion is in line with findings
from expertise research in other domains, which show that experts’
knowledge bases are usually not only more extensive than those of
novices, but also more connected and integrated (Chi et al., 1981;
Schmidt & Boshuizen, 1992; Simon & Chase, 1973). Whether or
not teachers’ pedagogical content knowledge and content knowl-
edge are separable categories of knowledge may therefore be a
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function of different levels of expertise. All previous empirical
attempts to test models of teachers’ knowledge have looked at
elementary teachers, who can be assumed to have lower levels of
subject-specific expertise. It thus seems worth examining the dis-
tinction between CK and PCK in a sample of secondary-level
teachers.

The Present Investigation

The goal of the present article was to construct and to establish
a test of secondary mathematics teachers’ PCK and CK and to use
this test to examine the level and the connectedness of the two
knowledge categories in two groups of teachers with different
mathematical expertise. To specify our research hypotheses and
make them empirically testable, we first clarified our approach to
the concepts of connectedness and mathematical expertise.

Our methodological approach is based on a structural equation
framework, in which PCK and CK are conceptualized as latent
variables. The latent correlation between PCK and CK is particu-
larly relevant to the issue of distinguishability (see Figure 1a). A
higher latent correlation between PCK and CK indicates higher
cognitive connectedness between the two knowledge categories.
Moreover, a correlation close to one may indicate that the two
knowledge constructs indeed form a single, indistinguishable body
of knowledge on the cognitive level. In the PCK-CK model
(Figure la), the means of the two knowledge constructs are de-
picted by paths from the triangle representing the mean structure to
the two latent variables.

We used a quasi-experimental approach to examine whether
higher connectedness is a function of higher expertise, attributing
expert status on the basis of the teachers’ university training (for an
overview of alternative ways to identify expert teachers, see
Palmer, Stough, Burdenski, & Gonzales, 2005). In Germany, all
candidates entering a teacher training program must have gradu-
ated from the highest track in the school system, the GY, and
received the Abitur qualification. At university, those aspiring to
teach at the secondary level must choose between separate degree
programs qualifying them to teach either at GY or in the other
secondary tracks (e.g., Realschule or Sekundarschule). GY and
non-Gymnasium (NGY) teacher education students are usually
strictly separated during their university training. One of the main
differences in their degree programs is the subject matter covered:
Students training to teach at GY cover an in-depth curriculum
comparable to that of a master’s degree. Relative to their col-
leagues, who receive less subject-matter training (and usually
spend less time at university), GY teachers may therefore be
considered mathematical experts, and the two groups of teachers
may be contrasted in a quasi-experimental approach. Given that
previous studies (e.g., Hill et al., 2004) have presented evidence
for a close connection between the two subject-specific knowledge
categories, and because CK is often discussed as a prerequisite for
PCK, we expected GY teachers would score higher in the PCK test
as well, although the difference would probably not be as pronounced
as for the CK test.

On the basis of this conceptualization of connectedness and
mathematical expertise, we formulated our research hypotheses as
follows:

Hypothesis 1: GY teachers significantly outscore their col-
leagues from NGY school types on CK and PCK.

Hypothesis 2: The latent correlation between PCK and CK is
substantially higher for GY teachers than for NGY teachers
(perhaps even approaching r = 1).

Method

Participants

The present analyses are based on data obtained from 198
secondary mathematics teachers in Germany. Participants taught
mathematics in 10th-grade classes sampled within the framework
of a nationally representative student achievement study (cf.
Kunter et al., 2007). Thus, our teacher sample can be considered
fairly representative of 10th-grade mathematics teachers in Ger-
many. Of the 198 teachers, 85 (55% male) taught at the academic-
track GY, and 113 (43% male) at other secondary school types
(NGY; e.g., Realschule, Sekundarschule). The average age of
participating teachers was 47.2 years (SD = 8.4); 46.4 years (SD =
9.1; range 28-65) in the GY group and 47.8 years in the NGY
group (SD = 7.7; range 28-62). Teachers were paid 60 Euro
(approximately US $60 at the time of the survey) for their partic-
ipation.

Assessment of PCK and CK

PCK test. In line with our theoretical framework, the PCK test
contained three subscales: knowledge of mathematical tasks
(Task), knowledge of student misconceptions and difficulties (Stu-
dent), and knowledge of mathematics-specific instructional strat-
egies (Instruction). Because the potential of tasks for students’
learning can be exploited by considering various solution paths
(e.g., Silver, Ghousseini, Gosen, Charalambous, & Strawhun,
2005), we assessed knowledge of tasks by testing teachers’ aware-
ness of multiple solution paths: four items required teachers to list
as many different ways of solving the task as possible. Knowledge
of student misconceptions and difficulties was assessed by pre-
senting teachers with seven scenarios and asking them to detect,
analyze (e.g., give cognitive reasons for a comprehension prob-
lem), or predict a typical student error or a particular comprehen-
sion difficulty. Knowledge of subject-specific instructional strate-
gies was assessed by 10 items requiring teachers to explain
mathematical situations (e.g., to provide useful representations,
analogies, illustrations, or examples to make mathematical content
accessible to students). Sample items for the three PCK subscales
(Task, Student, Instruction) are displayed in Figure 2, along with
sample responses scoring 1.

CK test. We conceptualized content knowledge as in-depth
background knowledge on the contents of the secondary-level
mathematics curriculum. Thirteen items were constructed to cover
relevant content areas (e.g., arithmetic, algebra, and geometry) and
to tap conceptual or procedural skills (Figure 2 presents a sample
item).

Scoring scheme. All 34 items assessing PCK and CK were
open ended. Items with no response or an incorrect response were
scored 0; each correct answer was scored 1 (for items requiring
several answers, e.g., the multiple solution tasks, the sum of the
correct answers was calculated). Each test item was coded by two
trained raters independently; in the event of rater disagreement,
consensus was reached through discussion. The interrater reliabil-
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1a. Structural Conception of PCK and CK

Latent mean PCK Latent mean CK

Latent correlation
between PCK & CK

2 _ _ _
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1c. Results for the Multi-Group Model

Non-Gymnasium teachers Gymnasium teachers
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RMSEA = .05
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Figure 1. Model for the latent constructs of PCK and CK: (a) structural conception, (b) results for the whole
teacher sample, (c) results for the multigroup model (latent means for the NGY group were set to 0 for purposes
of model identification. Model fit indices and standardized model parameters are shown for (b) and (c). SRMR
values below .08, RMSEA values below .05, and CFI values above .95 can be considered indicative of a good
model fit. PCK = pedagogical content knowledge; CK = content knowledge; GY = Gymnasium; NGY =
non-Gymnasium; SRMR = standardized root mean residual; RMSEA = root-mean-square error of approxima-
tion; CFI = comparative fit index.
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Knowledge
Category Sample Item Sample response (scoring 1)
(Subscale)
Algebraic response
How does the surface area of a square change Area of original square: a’
when the side length is tripled? Show your Area of new square is then (3a)*= 9a’;
reasoning. i.e., 9 times the area of the original square.
PCK .
Task Pl d dif ; Geometric response
ease note down as many different ways o Nine times the area of the original square
solving this problem (and different reasonings) as -
possible. ‘
a { 3a
The area of a parallelogram can be calculated
by multiplying the length of its base by its
altitude.
A
]
| |
i . I
PCK E altitude
Student !
: Note: The crucial aspect to be covered in this
< > teacher response is that students might run
base into problems if the foot of the altitude is
outside a given parallelogram.
Please sketch an example of a parallelogram to
which students might fail to apply this formula.
The “permanence principle,” although it does
A student says: I don’t understand why not prove the statement, can be used to
(=1)-(=1)=1 illustrate the logic behind the multiplication of
two negative numbers and thus foster
Please outline as many different ways as possible | conceptual understanding:
of explaining this mathematical fact to your
student 3 e(-D=-3
PCK :
Instruction 1 @ 2 «(-h=-2 ?4_1
1 o(-1)=-1
0 «(-)=0
(-DeCDH=1
(-2)+(-1)=2
Let0.999...=a
Then 10a=9.99..., hence,
K Is it true that 0.999999.... = 1 ? 10a—a =9.99...-0.999...
Please give detailed reasons for your answer. —_—
9a 9
Therefore a = 1; hence, the statement is true

Figure 2. Sample items and corresponding sample responses (scoring 1) from the three subscales of the pedagogical
content knowledge (PCK) test (Task, Student, Instruction) and from the content knowledge (CK) test.

ity p (Shavelson & Webb, 1991) was satisfactory (on average, p
was .81 with SD = .17).

Procedure. The assessment of PCK and CK was conducted
individually in a separate room at the teacher’s school on a
workday afternoon. It was administered by a trained test admin-
istrator, as a power test with no time constraints. The average time
required to complete the 34 items was about 2 hr (approx. 65 min

for the PCK instrument and 55 min for the CK instrument). The
teachers were not allowed to use calculators.

Statistical Analysis of the PCK—CK Measurement Model

To investigate the structure of knowledge, we employed a
confirmatory factor analysis in which the two knowledge catego-
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ries were conceptualized as latent constructs based on manifest
indicators. The sample size required for structural equation mod-
eling in general and for confirmatory factor analysis in particular
has been a matter of some debate. Some scholars recommend a
sample size of at least N = 200; others argue that no general
recommendations can be made because sample size depends
strongly on the properties of the model investigated and the data to
be analyzed (cf. Jackson, 2003; Marsh, Hau, Balla, & Grayson,
1998). Another way of approaching the issue is to ensure a certain
ratio of estimated parameters to participants. Some authors suggest
a ratio of at least 1:5 (cf. Marsh et al., 1998). Given the 34 items
in our tests (21 measuring PCK and 13 measuring CK), a PCK-CK
(item factor) model in which each of the constructs is measured by
the respective items would give a ratio of about 1:3, which is
unacceptable.

To guarantee that the conclusions derived from our models are
valid given our relatively small sample size of N = 198 teachers,
we therefore used subscale scores and parcel scores rather than
items as manifest indicators (Little, Cunningham, Shahar, & Wida-
man, 2002), thus reducing the number of parameters to be esti-
mated (e.g., instead of 34, there are just 6 factor loadings; see
Figure 1b). This reduction in parameter numbers is particularly
relevant for the second part of the analysis, in which the sample is
divided into two groups. The latent knowledge construct PCK was
measured by the three subscale scores, which were calculated by
summing the corresponding item scores. The latent knowledge
construct CK was measured by three parcel scores (Little et al.,
2002). A preliminary exploratory factor analysis did not identify
specific and interpretable subdimensions of CK, but showed that
the CK items form one single factor. Therefore, four items with the
same stem were assigned to one parcel (ck;) to account for
potential task-specific variance that is represented in the corre-
sponding residual term. The remaining nine (unidimensional)
items were randomly divided into two further parcels (ck, and ck,)
following Little et al. (2002).

To tackle the question of empirical distinguishability, we first
analyzed the PCK-CK model across all teachers (see Figure 1b),
investigating the latent correlation between the two knowledge
categories. We then specified a multigroup model (see Figure 1c)
to address differences between the two groups of teachers. Al-
though our sample size of N = 198 teachers was sufficient to
analyze the PCK—CK model across all teachers (yielding a ratio of
about 1:10; see Figure 1b), the multigroup model (Figure 1c)
requires closer inspection (here the ratio is about 1:6). Although a
ratio of 1:6 seems reasonable, the sample size for the multigroup
model is at the lower limit. We therefore investigated the power of
the statistical analyses conducted. Table 1 lists the four null hy-
potheses, H,,—H,,, that were central to our statistical analyses. H,
is the null hypothesis stating that PCK and CK do not constitute
separable knowledge categories and are not distinguishable in the
whole teacher sample. H,, and H,,; are the null hypotheses corre-
sponding to our research Hypothesis 1, and H, is the null hypoth-
esis corresponding to our research Hypothesis 2. Whereas H,,, can
be seen as a restriction on the model across all teachers (see
Figure 1b), Hy,—H,, can be seen as particular restrictions on the
multigroup model (see Figure 1c). Power can be defined as the
probability to reject the null hypothesis when it is wrong. Taking
this perspective, we followed the methodological recommenda-
tions of Satorra and Saris (1985) and calculated within the latent

Table 1
Power Analysis (N = 198; o = .05)

Null hypotheses to reject Ax? Adf Power
H,, latent correlation rpcg. cx 20.57 1 0.99
is 1 in the total teacher
sample
Hy, latent mean of PCK is 37.80 1 0.99
identical in both groups of
teachers
Hy; latent mean of CK is 106.28 1 1.00
identical in both groups of
teachers
Hy, latent correlation rpcx cx 6.91 1 0.75

is identical in both groups
of teachers

Note. PCK = pedagogical content knowledge; CK = content knowledge.

variable framework the power to reject the null hypotheses H,;, —
H,, given our sample size of N = 198. To this end, we specitied
“null models” for H,,—H,, (e.g., for H,,, the latent correlation in
Figure 1b, was set to 1). The chi-square difference test statistic that
results from subtracting the chi-square test statistic of the original
model (e.g., the latent correlation in Figure 1b is .79) from the
chi-square test statistic of the corresponding “null model” repre-
sents the noncentrality parameter that is necessary to calculate
statistical power from a noncentral chi-square distribution accord-
ing to Satorra and Saris (1985). As shown in Table 1, the statistical
power to test our hypotheses was acceptable with a sample size of
N = 198.

Before comparing the latent means and correlations of two
groups, we had to investigate whether the constructs measured
have the same meaning in both groups. In the structural equation
literature, it is standard procedure to run a series of invariance tests
when doing multigroup comparisons to establish measurement
equivalence by showing that (a) a model with factor loadings and
intercepts of the manifest variables constrained to be equal across
groups fits reasonably well (scalar invariance) and (b) the fit of the
scalar invariant model is not much worse than that of a configural
invariant or a metric invariant model that imposes fewer equality
constraints across groups (Little, 1997; Vandenberg & Lance,
2000). In a configural invariant model, the factorial structure is
assumed to be the same across groups; however, factor loadings
and intercepts may differ. In the metric invariant model, the
factorial structure and factor loadings are assumed to be identical
across groups; however, the intercepts may vary. When local
misfit is identified in one of these models, the corresponding
equality constraint can be relaxed, and a partial invariant model
may allow the same conclusions to be drawn as the full invariant
model (Byrne, Shavelson, & Muthén, 1989). Our results (see Table
2) show that the fit of the metric invariant model was considerably
worse than that of the configural invariant model. However, free-
ing the factor loading of ck; in group GY led to a substantial
improvement in model fit (partial metric invariance). The fit of the
partial scalar invariant model (without equality constraint on the
factor loading of ck;) was worse than that of the partial metric
invariant model. The cause of the misfit was the invariance con-
straint on the intercept of ck;. When this intercept was freely
estimated in the GY group, the fit of the partial invariant model
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Table 2
Series of Models Investigating Measurement Equivalence for the Multigroup Model

Model X2 df P CFI RMSEA SRMR Ax? Adf
M1. Configural invariance 15.79 16 A7 1.00 .00 .04
M2. Metric invariance 36.12 20 .01 0.93 .09 .10
Difference between M1 and M2 24.14™ 4
M3. Partial metric invariance® 19.75 19 41 1.00 .02 .05
Difference between M2 and M3 57.99"" 1
M4. Partial scalar invariance® 41.70 23 .01 0.92 .09 .10
Difference between M4 and M3 25.56""" 4
MS5. Partial scalar invariance® 27.13 22 21 0.98 .05 .06
Difference between M5 and M4 33.82"" 1

Note.

Values for Ay? were calculated according to the formulas provided by B. O. Muthén (1998-2004, p. 22), which generate corrected Ax? statistics

when the maximum likelihood estimator MLM is used. CFI = comparative fit index; RMSEA = root-mean-square error of approximation; SRMR =

standardized root mean residual.

2 Factor loading of ck; in group Gymnasium freely estimated. "Factor loading and intercept of cks in group Gymnasium freely estimated.

" p < .001.

improved and became acceptable (see Table 2). According to
Byrne et al. (1989), the partial scalar invariant model, which is
presented in Figure lc, guarantees measurement equivalence; the
model can therefore be used to investigate our primary research
questions. Furthermore, additional power analyses showed that our
sample size yielded a statistical power of at least .99 to distinguish
between the models reported in Table 2.

Analyses were run with the Mplus 4.2 software package (L. K.
Muthén & Muthén, 1998-2006). Because prior analyses indicated
that the distributions of five of the six sum scores (all but the
subtest Instruction) deviated from normal distributions (skewness
ranged from —.65 to .82; kurtosis ranged from —1.09 to .07),
parameters were computed using the robust maximum likelihood
estimator MLM, which is recommended for nonnormally distrib-
uted data (L. K. Muthén & Muthén, 1998-2006).

Results

Before we address our core hypotheses on the level and con-
nectedness of PCK and CK in the two groups of teachers, we
report the psychometric properties of our test scales and examine
the general distinguishability of the two knowledge categories in
the whole sample of teachers.

Psychometric Properties of PCK and CK and Descriptive
Information

To give a first impression of measurement quality, we report the
psychometric properties of the overall PCK (21 items) and CK (13
items) scales, which were analyzed by means of parameters de-
rived from classical test theory. Both overall scale scores showed
satisfactory reliability, with a Cronbach’s alpha of o = .77 for the
PCK scale and o = .83 for the CK scale. The items forming each
scale discriminated adequately as evident from their (part-whole
corrected) item-total correlations (PCK: M = .33, range: .17 to .45;
CK: M = .48; range: .30 to .66). The means and standard devia-
tions for the subscale scores of PCK and the parcel scores of CK
are given in Tables 3 and 4, along with the respective intercorre-
lations. Table 3 shows these descriptives for the whole teacher
sample; Table 4, for the GY and NGY groups separately. In sum,
these analyses indicate that the newly developed tests succeeded in

reliably assessing the knowledge categories PCK and CK in sec-
ondary mathematics teachers.

Distinguishability of PCK and CK

Figure 1b presents the results (parameter estimations and fit
indices) for the PCK—CK model across all teachers. The fit of the
model, as well as the valence and size of the factor loadings,
indicates that the structure of teachers’ professional knowledge is
accurately captured by two latent constructs representing PCK and
CK. The latent correlation between PCK and CK was rather high,
at .79, indicating that teachers with higher CK also tend to have
higher PCK. To test statistically whether CK and PCK are distin-
guishable constructs, we estimated a model in which the correla-
tion between CK and PCK was constrained to 1. This led to a
statistically significant decline in model fit, as shown by the
chi-square difference test, sz(l, N = 198) = 20.57, p < .001.
Hence, from the perspective of inferential statistics, it can be
concluded that, despite their rather high correlational interdepen-
dence, CK and PCK represent different constructs, at least when
all teachers are considered together.

Table 3

Measures of Teachers’ Professional Knowledge (Subscales and
Parcels): Correlations and Descriptive Statistics for the Total
Teacher Sample

Correlations Task Student Instruction ck, ck, cky

PCK

Task (4 items)

Student (7 items) 43

Instruction (10 items) .43 .56
CK

ck, (4 items) .33 A48 45

ck, (5 items) .30 A4 .50 .60

cks (4 items) .29 .39 40 52 48
M 696 493 7.87 1.89 147 258
SD 2,16 1.98 3.34 1.32 1.27 150
Note. Task, Student, and Instruction are the subscales of pedagogical

content knowledge (PCK); ck,, ck,, and ck; are the parcels of content
knowledge (CK).



PROFESSIONAL KNOWLEDGE OF MATHEMATICS TEACHERS 723

Table 4

Measures of Teachers’ Professional Knowledge (Subscales and
Parcels): Correlations and Descriptive Statistics by Teacher
Group

Correlations Task  Student  Instruction ck, ck, cks
PCK
Task .28 .39 34 .30 11
Student A8 .53 44 .26 11
Instruction 40 A7 .46 55 24
CK
ck, 22 .23 23 43 .04
ck, .18 .36 .30 46 21
cky .30 .29 33 44 .38
NGY
M 6.60 4.27 6.96 1.18 096  1.88
SD 2.02 1.85 3.16 097 1.02 150
GY
M 7.45 5.81 9.08 284 216 351
SD 227 1.80 3.19 1.11 123 0.88
Cohen’s d
(mean GY
vs. NGY) 0.40 0.85 0.67 1.60 1.08 128

Note. The correlations for Gymnasium (GY) and non-Gymnasium
(NGY) teachers are above and below the diagonal, respectively; Task,
Student, and Instruction are the subscales of pedagogical content knowl-
edge (PCK); ck,, ck,, and ck; are the parcels of content knowledge (CK);
positive d values indicate that GY teachers outperformed NGY teachers.
According to Cohen (1992), d = .3 represents a small effect, d = .5
represents a medium effect, and d = .8 represents a large effect. All mean
differences are significant at p < .01.

Level of Knowledge and Cognitive Connectedness in the
Two Groups of Teachers

As expected, GY teachers and NGY teachers differed substan-
tially in their mean levels of knowledge (Table 4 gives the means,
standard deviations, and intercorrelations of the manifest measures
for each teacher group separately). As indicated by Cohen’s d, the
group differences were particularly pronounced in the CK parcels,
substantiating our assumption that GY teachers show much deeper
mathematical understanding. This finding was further corroborated
by the results of the multigroup model, in which PCK and CK were
estimated as latent constructs in both groups simultaneously, thus
eliminating measurement error (Figure 1c). The results show that
GY teachers clearly have a more extensive knowledge base than
NGY teachers in both knowledge categories. The latent means of
the GY group (PCK: .99, CK: 2.01) were substantially higher than
those of the NGY group (fixed to O for both constructs; cf. Little,
1997). The corresponding effect sizes were d = 1.00 for latent
PCK and d = 2.15 for latent CK. These differences were statisti-
cally significant, as confirmed by two separate chi-square differ-
ence tests between the model depicted in Figure 1¢ and models in
which the latent means of CK or PCK, respectively, were con-
strained to be the same (i.e., 0) across groups (CK: Ax’[1, N =
198] = 106.28, p < .001; PCK: Ax?[1, N = 198] = 37.80, p <
.001), thus corroborating research Hypothesis 1.

Most important, the multigroup model showed that the two teacher
groups differed not only in their knowledge level, but also in the
structure of their knowledge base. As Figure 1c shows, the findings
also supported research Hypothesis 2, that cognitive connectedness is
dependent on the level of mathematical expertise: the latent correla-

tion between CK and PCK was .96 in the GY group and .61 in the
NGY group. The statistical significance of the difference between
these correlations was again confirmed in a chi-square difference test,
Ax?(1, N = 198) = 6.91, p < .05, thus showing a substantially higher
degree of cognitive connectedness between the two knowledge cate-
gories for teachers in the GY group.

Given the extremely high correlation between PCK and CK in the
group of GY teachers, the question arises of whether Shulman’s
(1986, 1987) two subject-specific knowledge categories are in fact
empirically distinguishable in this group of highly knowledgeable
teachers. To address this question, we compared the multigroup
model (Figure 1c) with a model in which the correlation between the
two constructs was fixed to 1 for the GY group. The chi-square
difference test between the two nested models was not significant,
Ax*(1, N = 198) = 0.14, p = .72, indicating that the two knowledge
categories form one body of connected knowledge and that PCK and
CK are almost indistinguishable in the group of GY teachers. By
contrast, when the correlation between the two constructs was fixed to
1 for the NGY group, the chi-square difference was significant,
Ax?(1, N = 198) = 20.38, p < .001, indicating that the two knowl-
edge categories are separate in the group of NGY teachers.

The results thus demonstrate that the two groups of teachers, whose
university education differed substantially, differ in both the level and
structure of their knowledge. However, we cannot yet rule out the
possibility that this finding is simply a manifestation of differences
that existed between the groups prior to their teacher training. Al-
though both teacher training tracks have the same formal require-
ments (Abitur qualification, no entrance exams), it is reasonable to
assume that higher achieving students tend to opt to teach at Gym-
nasium. We investigated this possibility by looking at the teachers’
own Abitur grade (which corresponds to the U.S. grade-point aver-
age), which was assessed in a biographical questionnaire (the Abitur
grade was z-standardized for our analyses, with higher values indi-
cating a better grade). The GY teachers indeed had substantially
higher Abitur grades than the NGY teachers (NGY: M = —.22,SD =
1.03; GY: M = .26, SD = 92;d = 49, p < .001). To test whether
this difference might explain the differences found between the two
teacher groups to some degree (Figure 1c), we reran the analyses, with
mean differences in the Abitur grade between the two groups of
teachers being partialed out of the manifest indicators (subscale scores
and parcel scores). The latent means and correlations obtained in the
multigroup model were thus adjusted for the mean differences in the
Abitur grade. The findings confirmed the pattern of results from our
previous analyses: the mean differences found between the two
teacher groups were of similar magnitude (standardized latent means
of the GY teachers (PCK: .88, d = .88; CK: 1.79, d = 1.95), as were
the latent correlations between PCK and CK (GY: r = .94, NGY: r =
.60). Although the Abitur grade is just one indicator of prior differences,
these analyses suggest that, even given the same levels of prior knowl-
edge, it is only in GY teachers that pedagogical content knowledge and
content knowledge fuse to form one inseparable category of knowledge.

Discussion

In previous studies, most conclusions about the nature of teachers’
knowledge have been drawn using indicators that are rather distal to
the concept, such as university grades, number of subject matter
courses taken at university (cf. Hill et al., 2005), or questionnaire data
on beliefs or subjective theories (cf. Pajares, 1992). Consequently,
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numerous calls have been made in the literature for more valid and
reliable assessments of teacher knowledge (e.g., Lanahan et al., 2004).
In the present study, we constructed and implemented tests to assess
the pedagogical content knowledge and content knowledge of sec-
ondary mathematics teachers directly. We took a subject-specific
approach, thus responding to repeated calls in the literature for general
educational psychological theories to be specified for specific school
subjects (e.g., Mayer, 2004b); here, for mathematics. Both knowledge
categories were measured reliably, the fit for a corresponding struc-
tural model was satisfactory, and the mean differences between teach-
ers with different educational backgrounds provided evidence for the
empirical validity of the tests.

Our findings provide further evidence for the applicability of Shul-
man’s (1986, 1987) taxonomy of teacher knowledge in empirical
settings. More specifically, being informed by literature on expertise
research, they offer a possible interpretation for previous inconclusive
findings on the distinguishability of CK and PCK (Hill et al., 2004;
Kahan et al., 2003; Phelps & Schilling, 2004). Our findings show that
the degree of cognitive connectedness between PCK and CK in
secondary mathematics teachers is a function of the degree of math-
ematical expertise. Capitalizing on the quasi-experimental situation of
teacher training in Germany, which allowed us to identify teachers
with different levels of mathematical expertise, we found that it was
not possible to distinguish the two knowledge categories empirically
in the high-expertise group of GY teachers, but that this distinction
was clearly visible in the group of NGY teachers. Our findings are
thus consistent with findings from other domains of expertise research
showing that higher expertise often involves stronger integration of
different knowledge categories, or “encapsulated knowledge”
(Schmidt & Boshuizen, 1992). Consequently, subject-specific knowl-
edge seems to form a common body of expertise in GY teachers, with
high levels of CK and PCK alike. Given that GY teacher candidates
receive additional in-depth mathematics training at university, but no
additional training in teaching mathematics (relative to NGY teacher
candidates), their substantially higher PCK scores are remarkable, and
may—although very tentatively—be interpreted as a first indication
that CK supports the development of PCK.

Practically, our results have at least two implications. First, our
instrument might find more widespread application as a psychometric
assessment tool that measures teachers’ competence directly. In the
light of recent developments in the area of teacher education, selec-
tion, and accountability—which have raised questions about the com-
petences to be transmitted in teacher education, how schools or
districts can evaluate the quality of their teachers, and how to provide
teachers with feedback on their strengths and weaknesses—this aspect
is of increasing importance. To date, most assessments of teacher
quality rely on distal indicators such as university courses, degrees, or
grades (Zumwalt & Craig, 2005). Our research identifies another way
of gauging teacher qualifications in terms of the assets that seem most
important for their primary task of teaching. Due to its pioneer
character, our instrument is not yet suitable for use in high-stakes
situations that require utmost reliability in identifying different levels
of competence. We do not yet know enough about issues such as
retest reliability or suitability for other samples, but addressing these
questions is an important objective of our ongoing research agenda.

Second, our study provides some valuable insights into the
“long arm” of university teacher training. Although our analyses
suggest that the two teacher groups probably differed in certain
background variables even prior to teacher training, they also

indicate that there must be something specific about either GY
teacher training or professional development at GY schools—over
and above the different starting levels—that facilitates more ex-
tensive knowledge development in this context. Moreover, be-
cause no positive correlation was found between years of teaching
practice and the two knowledge categories (see Brunner et al.,
2006), teacher training can be assumed to be at the core of the
development of the two knowledge categories. Future research
may be able to provide deeper insights into the acquisition of PCK
and CK during teacher training. For instance, longitudinal imple-
mentation of our tests at several critical stages in teacher education
might provide more accurate information on the timing (e.g., in
which phase of teacher education are PCK and CK acquired?) and
mechanisms (e.g., which is needed to acquire the other?) of pro-
fessional expertise development. Such studies may help to create
instructional programs (at university and in the classroom) to
foster the CK and PCK of student teachers, and to monitor their
learning progress with respect to these knowledge categories.

The limitations of our study raise further interesting research ques-
tions. First, our study can only provide limited insights into the
external validity of our measures. The finding that the teachers with
more in-depth training in mathematics scored significantly higher in
the content knowledge test may be seen as a first indication of the
measure’s external validity, but other approaches to the validity issue
are also required. For instance, the convergent and discriminant va-
lidity of our measures should be investigated by employing our
instrument in combination with other direct measures of mathematics
teachers’ professional knowledge (e.g., the newly developed standard-
ized PRAXIS series; Educational Testing Service, 2006). Even more
important, because our knowledge measures were assessed in a stan-
dardized testing situation, their implications for authentic learning
situations remain to be investigated. Additional research is needed to
examine precisely how PCK and CK regulate teaching behavior, and
crucially their impact on student learning. Drawing on previous stud-
ies (e.g., Fennema & Franke, 1992; Ma, 1999), teachers with higher
PCK might be expected to display a broader repertoire of instructional
strategies and to be more likely to create cognitively stimulating
learning situations. Indeed, first empirical findings indicate that teach-
ers with higher PCK scores on our test tend to set tasks with higher
potential for cognitive activation but do not seem to differ from their
peers in terms of classroom management (Kunter et al., 2007). These
findings provide first evidence for the discriminant validity of our
instrument (for the approach of investigating the construct validty of
PCK and CK by examining other populations, e.g., subject-matter
experts or biology and chemistry teachers, with the tests, see Krauss,
Baumert, & Blum, in press). Finally, strictly speaking, the generaliz-
ability of our results is limited to secondary mathematics teachers in
Germany. Before final conclusions can be drawn about the dimen-
sionality of teacher knowledge, our results need to be replicated in
other samples; for instance, with teachers from countries with difter-
ent educational systems. Last but not least, it is our hope that the
present article might not only activate discussion on the professional
knowledge of mathematics teachers, but also initiate similar endeav-
ors for other school subjects.
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