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Abstract: In this paper, we explore in more detail why knowing advanced mathematics might be 
beneficial for teachers, specifically in relation to their classroom practice. Rather than by listing 
courses or specific advanced topics, as though those were the agents of change, we do so by 
considering advanced mathematical content for teachers in terms of more general forms of 
knowledge. In particular, we identify five forms of knowledge of advanced mathematics for 
teaching: peripheral, evolutionary, axiomatic, logical, and inferential. These categories were 
derived from analysis of an extensive mapping process linking K-12 content to relevant 
advanced mathematics. We connect these forms of knowledge to particular practices that 
teachers engage in so as to clarify the perceived relations to classroom practices. We view such 
work as important to and productive for teacher educators, particularly in conceptualizing and 
structuring mathematics courses for teachers so that content that truly informs the work of K-12 
teaching can be highlighted, and in a manner that facilitates teachers’ formation of those 
connections.  
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 1. Introduction 

Teachers, particularly at the middle and secondary level, are frequently required to take 

advanced mathematics courses (e.g., real analysis, abstract algebra, etc.) as part of their teacher 

preparation program. This is based on a general sense of the importance of strong content 

knowledge for teachers. However, many teachers at some point question the relevance of these 

advanced courses for their future teaching careers (e.g., Zazkis & Leikin, 2010). Indeed, as Monk 

(1994) noted, the quantity of advanced mathematics preparation does not guarantee teaching 

quality; that is, one’s own mathematical understanding does not necessarily translate into an 

ability to enhance the understanding of others. With the recent focus on practice-based 

approaches to conceptualizing teacher’s mathematical knowledge (e.g., Ball, Thames, & Phelps, 

2008; Petrou & Goulding, 2011) – which has led to documenting specific ways teachers use their 

knowledge of mathematics in their professional work – much more needs to be done to identify, 

define, and document how advanced mathematics may inform the actual work of teaching. 

Although this problem has been observed for a long time – Felix Klein (1932) made comments 

about this in the early 20th century – little progress has been made in this regard.  

In contrast to defining specific content areas in advanced mathematics or undergraduate 

course recommendations (e.g., CBMS 2001; 2012), this paper focuses instead on more general 

forms of knowledge of advanced mathematics that may be productive for the teaching of school 

mathematics. Following a grounded theory approach (e.g., Strauss & Corbin, 1990), we 

developed a framework of five forms of knowledge of advanced mathematics for teaching that, 

while not necessarily an exhaustive or exclusive list, moves the discussion of mathematical 

knowledge for teaching – particularly of advanced mathematics – beyond just listing what 

content teachers need to know, and toward a more general conception of how knowing advanced 
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mathematics could positively interact with the work of teaching. We begin by reviewing related 

literature and situating this work within it. 

 

2. Literature 

2.1. Teachers’ Knowledge of advanced Mathematics 

Recent efforts to conceptualize the mathematical knowledge required for teaching have 

incorporated practice-based approaches to teacher knowledge – that is, the content knowledge 

teachers need should be relevant for the practices and work of teaching. In particular, researchers 

have used this perspective to conceptualize different “domains” of knowledge, at both the 

elementary and secondary levels (e.g., Ball, Thames, & Phelps, 2008; McCrory, et al., 2012; 

Heid, Wilson, & Blume, 2015). Notably, many of these – and others’ (e.g., Zazkis & Leikin, 

2010) – allude to the importance of knowing advanced mathematics. For example, the 

Mathematical Knowledge for Teaching (MKT) framework (Ball, Thames, & Phelps, 2008) 

included the domain Horizon Content Knowledge (HCK), which is related the conversation 

about advanced mathematics (e.g., Wasserman & Stockton, 2013; Jakobsen, Thames, & Ribeiro, 

2013; Zazkis & Mamolo, 2011); and in translating to secondary mathematics teaching, McCrory, 

et al. (2012) included knowledge of advanced mathematics as a domain of their Knowledge of 

Algebra for Teaching (KAT) framework. Heid, Wilson, and Blume (2015) described 

Mathematical Understandings for Secondary Teaching (MUST), which, although not connected 

explicitly to advanced courses, have connections to larger mathematical practices in the 

discipline which are often honed in courses such as abstract algebra, real analysis, or an 

introduction to proofs course. Thus, many regard advanced mathematics as important for 

teaching.  
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However, finding explicit connections to practice has been more difficult. This fact is 

perhaps captured best by the “provisional” nature of the HCK domain – it was left less-

developed and less-defined than other parts of the MKT framework. Some have questioned 

whether HCK is in fact a subdomain of knowledge itself (Fernández & Figueras, 2014), while 

others use the terminology “knowledge of the mathematical horizon” (KMH) instead of HCK – 

some differentiating between the two, others not (Guberman & Gorev, 2015; Zazkis & Mamolo, 

2011). The discourse and provisional nature of this domain are indicative of the difficulty in 

meaningfully connecting this knowledge to teaching practice – indeed, very little has been done 

to explicitly connect such advanced mathematical knowledge and the tasks and work of teaching. 

Although courses in advanced mathematics (e.g., abstract algebra, number theory) cover ideas 

that can be related to the content of school mathematics (e.g., McCrory, et al., 2012; CBMS, 

2012), such connections do not necessarily suggest an explicit need for advanced mathematics in 

relation to the tasks of teaching that content. These conversations about advanced mathematics 

echo Klein’s (1932) observation of a “double discontinuity” for teachers in their education. The 

first discontinuity was that the study of university mathematics did not develop from or suggest 

the school mathematics that students (i.e., future teachers) knew. The second discontinuity was a 

disconnect for these future teachers in returning back to school mathematics, where the 

university mathematics appeared unrelated to the tasks of teaching. The first is a comment about 

the teaching of advanced mathematics; the second is a statement about the (advanced) 

mathematical preparation of teachers. While perhaps both discontinuities still exist, it is this 

second discontinuity that is of particular interest in this paper – in exploring how knowing 

advanced mathematics might influence the teaching of school mathematics.  
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We make explicit two additional comments before moving on. In the context of teachers, 

what counts as advanced mathematics might differ depending on the specific content and/or 

grade level at which a teacher teaches. Like Wasserman (2016), we situate advanced 

mathematics as outside the local (epsilon) neighborhood (i.e., nonlocal) of the content a teacher 

teaches. By a local (epsilon) neighborhood, we mean those concepts and ideas that are 

proximally close to the content a teacher teaches – where “close” includes both the degree to 

which mathematical ideas are closely connected but also temporally close in relation to when 

mathematical ideas are typically developed. For the purposes of this study, however, we made an 

arbitrary cut as to what counts as “advanced” mathematics, more in line with (although slightly 

different from) Zazkis & Leikin’s (2010) conceptualization of AMK and McCrory et al.’s (2012) 

subdomain, knowledge of advanced mathematics.  

In particular, for the purposes of this work we defined advanced mathematics as that 

content that is beyond standard K-12 mathematics content, as represented by the Common Core 

State Standards in Mathematics (CCSS-M, 2010)2, which also positions this as knowledge 

outside the typical scope of what a school mathematics teacher would likely teach. Second, when 

we consider ways that advanced mathematics might influence teachers’ practice – i.e., consistent 

with a practice-based approach to conceptualizing teachers’ knowledge of advanced mathematics 

– we are not including the teaching of say, abstract algebra, to secondary students. We view the 

work of school mathematics teachers as teaching school mathematics – not advanced 

mathematics. Thus, our perspective about relating to and being relevant for teaching is aligned 

with what Wasserman (2016) termed a transformational approach: that is, that knowledge of 

advanced mathematics can transform teachers’ own “understanding about and perception of the 
                                                        
2 Within the CCSS-M, there are some “optional” standards, designated with a (+); because that content is not 
required in K-12, we assume it may not be covered in many school settings and so consider content that arises in the 
(+) standards as advanced mathematical content according to our starting definition. 
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content they teach in ways that influence their teaching” (pp. 30). Based on this understanding, 

we now look more closely at how we approached connecting advanced mathematics to teachers’ 

practices. 

 

2.2. Teachers’ Moves in Relation to Practice 

In order to assess the relevance of studying particular advanced mathematical topics, it 

was important to identify concrete ways teachers could leverage that knowledge during the 

course of their teaching. As part of McCrory et al.’s (2012) Knowledge of Algebra for Teaching 

framework, they described three activities that teachers often undertake that make use of their 

content knowledge in teaching: trimming (removing complexity while maintaining mathematical 

integrity), decompressing (unpacking a topic’s mathematical complexity in ways that make it 

comprehensible), and bridging (making connections across topics, assignments, representations, 

and domains). More recently, Wasserman (2015) expanded on and clarified two of these notions 

by considering the neighborhood (local or nonlocal – in relation to the content being taught) of 

the mathematical complexities involved. In particular, based on teachers either highlighting or 

hiding local or nonlocal complexities, Wasserman laid out four teacher moves: unpacking 

complexity, foreshadowing complexity, abridging complexity, and concealing complexity. 

Unpacking (similar to McCrory et al.’s (2012) decompressing, and Ball and Bass’s (2000) 

unpacking) is a response that intentionally highlights and describes some local complexity within 

a topic – a choice to make explicit to students some of the inherent complexities within a topic 

being taught (e.g., making clear our base-ten numeral system for expressing numbers). 

Foreshadowing is a similar response but to some nonlocal complexity – a choice to add 

complexity to a current idea in order to prepare students for a future mathematical transition. 
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Abridging (similar to McCrory et al.’s (2012) trimming) has the opposite response to a nonlocal 

complexity – the shortening and condensing of an idea that intentionally hides the complexity, 

retaining the essence of the concept without going into any unnecessary details and complexities. 

Concealing is a similar response to abridging, but in the context of some local complexity – a 

temporary hiding of some local complexity for the sake of clarity and emphasis (e.g., initially not 

using irrational numbers that make it difficult see a conceptual connection to units and area). 

Along with bridging, these four ideas describe some of the practical actions that teachers make 

that are informed by their content knowledge. We use these as one way, though not the only, of 

connecting advanced mathematics to the work of teaching.  

Yet in contrast to describing how teachers use and apply their knowledge – like bridging, 

unpacking, foreshadowing, abridging, and concealing – in this paper we explore the forms that 

knowledge may take so that a teacher can accomplish those various teaching acts.  

 

2.3. Forms of Knowledge 

As a mathematics education community, scholars have at different points distinguished 

between various forms of knowledge, including conceptual versus procedural knowledge (e.g., 

National Research Council, 2001), intuitive versus analytical knowledge (e.g., Fischbein, 1999), 

knowing that, knowing how, knowing why and knowing to (e.g., Mason & Spence, 1999), etc. 

The overarching claim in these various works is that the forms represent distinct facets of 

knowledge – that is, they describe some meaningful knowledge structure. In many cases, it is 

that the forms exist independently of one another (although they may develop simultaneously) – 

these forms could be represented by disjoint sets. So one can have procedural knowledge when it 

comes to computing area but simultaneously no conceptual knowledge about what is being 



  Stockton & Wasserman 

 

computed – or vice versa. At other times there may be cognitive structures inherent within the 

different forms – a progression of sorts describing how knowledge builds, where the forms could 

be represented by nested sets. So one can “know that” without “knowing why” but “knowing 

why” necessitates “knowing that.”  

Similar to previous efforts, this paper distinguishes different forms of knowledge. 

However, the knowledge being described is specific in nature. These are forms of knowledge of 

advanced mathematics for teaching. In other words, the different forms describe different ways 

that one could know ideas about advanced mathematics. These are different in nature from the 

descriptions and characterizations of advanced mathematical thinking (e.g., Tall, 1991) – they do 

not describe a general process for thinking about mathematics in an advanced way, but rather 

portray different ways that one could know the advanced mathematics. That is, for any idea in 

advanced mathematics, there are many different ways that it can be known to and cognitively 

structured within an individual. This paper focuses specifically on describing those forms of 

knowledge of advanced mathematics that are then also relevant to the practices of teaching of K-

12 mathematics. By relevant, we do not just mean that the advanced mathematical ideas are 

connected to the content of school mathematics, but rather that these forms of knowledge of 

advanced mathematics are in some way productive for the teaching of school mathematics 

content. Frequently, we use examples of specific considerations and moves (e.g., unpacking) in 

teaching to connect the discussion of these forms of knowledge to practice – but our key 

categorizations are not of how knowledge gets used, but rather the forms in which one needs to 

know that knowledge in order to be able to use it productively in teaching.  
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3. Methodology 

In this paper, we address the following research question: what forms should teachers’ 

knowledge of advanced mathematics take that are useful for and relevant to the teaching of 

school mathematics? The process we used to answer this question had two distinct stages – 

elaborated on below. 

 

3.1. Advanced Mathematics from a School Perspective 

The first stage of our process had to do with systematically specifying aspects of 

advanced mathematics that might be useful for the teaching of school mathematics. In order to 

do so, we used the content of school mathematics as a starting point from which we could look 

ahead to advanced mathematics, to capture specific aspects of such knowledge that would be 

relevant for the work of teaching. This approach contrasts with others, including Klein’s (1932) 

“elementary mathematics from an advanced perspective” and the more recent Mathematical 

education of teachers (I/II) reports (CBMS, 2001; 2012), which have arisen mostly from the 

perspective of mathematicians reflecting back on the school mathematics arena. Given the 

relatively broad adoption in the United States and their benchmark to other international 

mathematics standards, the CCSS-M (2010) were used as the source of mathematical content and 

standards for analysis, roughly representative of the types of school mathematics content 

teachers need to be prepared to teach. We state this explicitly because the phrasing of the 

standards themselves may have been influential on identifying connections to teaching; however, 

the general mathematical ideas drawn from this analysis are not unique to the CCSS-M – indeed, 

the resulting mathematical ideas are commonplace in international mathematics education.  
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Two researchers worked together to analyze all of the standards – treating them, in 

totality, as representative of school (K-12) mathematics. As we read each one, we considered the 

question: “Teaching of this CCSS-M standard may be informed by teachers’ knowledge of 

which (if any) advanced mathematical content?” Each author answered this question individually 

and then worked collaboratively to develop consistent descriptions of the hypothesized-as-

relevant advanced content knowledge for each standard. For example, from the specific standard 

8.EE.5: Graph proportional relationships, interpreting the unit rate as the slope of the graph. 

Compare two different proportional relationships represented in different ways. For example, 

compare a distance-time graph to a distance-time equation to determine which of two moving 

objects has greater speed (CCSS-M, 2010), we agreed that teachers would likely benefit from 

knowing the advanced topic of average and instantaneous rates of change in relation to 

derivatives (from Calculus). We proceeded in a collaborative coding process (e.g., Harry, 

Sturges, & Klingner, 2005) following the constant comparative method of a grounded theory 

approach (e.g. Strauss & Corbin, 1990). Our overarching categories included mathematical ideas 

from areas such as Set Theory, Geometry and Measurement, Algebraic Structures, Mathematical 

Foundations, Number Theory, Analysis of Number Systems, Calculus of Functions, Vectors and 

Matrices, and Probability and Statistics. Some findings from this stage of the analysis can be 

found in Wasserman (2016).  

This process was naturally informed by the two researchers’ own mathematical and 

educational backgrounds; it would be hard to identify connections to advanced mathematical 

content we ourselves were unacquainted with, for example. Our mathematical experiences at the 

undergraduate and graduate levels, however, more than cover the typical range of advanced 

mathematical content school mathematics teachers would likely be required to study. The two 
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researchers both have Ph.D.s in Mathematics Education, and both have the equivalent 

coursework of a Master’s degree in Mathematics. One researcher works in an Education 

Department (following 6 years of secondary teaching), teaching pre- and in-service teachers in 

graduate level mathematics content courses for teachers, and having previously taught 

undergraduate mathematics courses. The other researcher works in a Mathematics Department, 

teaching mathematics courses across the entire undergraduate curriculum, including mathematics 

content courses for pre-service teachers and upper level courses for mathematics majors. 

Between our educational backgrounds and professional experiences, including 16 years of 

combined teaching experience, we felt well-positioned to identify connections between school 

mathematics and advanced mathematical content presented at the undergraduate and early 

graduate levels. 

 

3.2. Identifying Forms of Knowledge 

Through this process of specifying facets of advanced mathematics that might be useful 

for teachers’ work in teaching these standards, we began to identify specific kinds of connections 

that kept recurring. The coded set of standards linked to the advanced mathematical content 

therefore served as our corpus of data for the next stage of analysis, presented in this paper. We 

analyzed the linkage of the school mathematics content with the advanced mathematics content 

for specific patterns – why was it that the advanced content had been identified as useful for 

teaching the school mathematics content described in the standards? In answering this question – 

looking across all of the connections we had made in the first stage – we began to identify 

consistent forms of knowledge of advanced mathematics that, through our iterative coding 

process conversations and discussions, we found important for teaching. Via a grounded theory 
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approach (e.g., Strauss & Corbin, 1990), we sought to characterize and categorize the distinct 

forms of knowledge of advanced mathematics for teaching that emerged from this process. We 

reviewed and revised the advanced content connected to each standard, generating examples to 

justify ways that the advanced mathematics would be helpful or even necessary for the work of 

teaching. We iteratively refined our coding and categories, until we developed an emerging 

framework that categorized the connections between advanced mathematical content and the 

work of K-12 teaching into five forms of knowledge of advanced mathematics for teaching.  

 

4. Results: Forms of Knowledge of Advanced Mathematics for Teaching 
 
The forms of knowledge described below attempt to capture more general reasons why 

certain advanced content would be relevant for the teaching of certain K-12 content. By 

“knowledge of advanced mathematics for teaching”, we refer to a teacher’s knowledge and ways 

of thinking, which can then be translated into appropriate teaching actions for conveying the 

related K-12 mathematics content to students. As a reminder, we are not suggesting that the 

teacher should be introducing his/her K-12 students to the advanced mathematical material 

directly, but rather that such knowledge might inform their practices for teaching school 

mathematics. In the sections that follow, we describe each of these five forms of knowledge of 

advanced mathematics for teaching – peripheral knowledge, evolutionary knowledge, axiomatic 

knowledge, logical knowledge, and inferential knowledge – and attempt to illuminate each with 

a selection of examples representing a cross-section of content strands and grade levels.  
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4.1. How simple things become complex later on (Peripheral Knowledge) 

Several mathematical ideas are quite straightforward at an elementary level but gain more 

nuanced complexity as one progresses to advanced mathematical instantiations of the topic. 

Teachers regularly abridge content in their explanations to help crystalize the essence of an idea. 

To help avoid false oversimplifications and misstatements in this process it would be beneficial 

for teachers to have some awareness of the advanced versions of the topic and how that eventual 

complexity is related to the simplified cases under consideration. For example, common 

misstatements from teachers (or students) may include “multiplication makes things larger”, 

“you can’t subtract a larger number from a smaller number”, “anything to the zero power is one” 

or “the even numbers make up half of the whole numbers so there are half as many of them.”  

Statements that may be true within the limited scope being considered at that grade level 

often fail to hold true under all conditions. For example, exponents are often first introduced as 

“repeated multiplication”. This conceptual approach holds for whole number exponents, but 

breaks down when dealing with rational, radical, complex, or integer exponents later on. 

Therefore, when introducing exponents teachers would benefit from an understanding of the 

complications their students will face in later grades (including ways that radicals, limits, Euler’s 

formula, and DeMoivre’s theorem, for example, inform further understanding of exponents). 

This is not to say that describing exponents as repeated multiplication is inappropriate, but rather 

that understanding the limitations of this description due to future complexities has potential 

benefits for instruction, reducing over- and inappropriate- reliance on this relatively simplistic 

and limited description. 

Another example of how middle- and secondary-school material grows complex in later 

mathematics relates to functions. From the first formal introduction of functions through the 
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analysis of functions in high school, certain assumptions are made about the functions’ 

characteristics, domain, range, etc., that apply at the time but may fail to hold in future function 

analysis in advanced contexts. Many of the introduced analytic ‘techniques’ for functions only 

really apply to rectangular graphing scenarios – the vertical line test, for example, fails to hold 

the same meaning in a polar-coordinate graph or graphing on the complex plane. Therefore, it is 

important for teachers to understand not just the trick or shortcut of a technique but also to 

understand, and be able to convey to students, the real mathematical meaning and reasoning 

behind such a ‘test’. Without recognition for how the concept of function gets more complex and 

abstract, teachers would likely be unable to convey the essence of such ‘tests’ to their students, 

relying, inappropriately, on tricks that hold in one context but fail to do so in another. 

Specifically, a teacher’s peripheral knowledge could be used to better foreshadow future 

developments, setting students up for success later on and avoiding inappropriately abridging 

and oversimplifying concepts in ways that will hinder students’ ability to expand their 

conception of a topic or operation to new scenarios. Thus a teachers’ in-depth understanding of 

how future developments “complicate the picture” can support a more-nuanced treatment of the 

initial subject, reflecting one key form of knowing advanced mathematics for teaching.  

 
4.2. How mathematical ideas evolve(d) (Evolutionary Knowledge) 

 
This category highlights mathematics as an ongoing process, driven by the desire to 

answer open questions and resolve unsettled issues. When teachers understand the process by 

which a particular mathematical idea developed over time, or how an elementary idea is drawn to 

completion at advanced levels of mathematics, they are better prepared to set students along a 

fruitful mathematical path that paves the way for both the development of mathematical 

questions of their own and the resolution of those questions later on.  
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 For example, consider the concept of slope as rate of change that is introduced in algebra 

classes. A series of relevant mathematical questions following on from this idea might include 

“what if the rate isn’t constant over time?” or “what if the graph is curved instead of straight – 

what is meant by rate of change then?” Indeed, these and other similar questions could be 

considered a driving force behind the development of Calculus, leading to ideas such as tangent 

lines, limits, infinitesimals, instantaneous rate of change, and derivative. Knowing the 

overarching mathematical direction that particular early ideas point toward could therefore help 

teachers set students up for further study, planting the seeds of those “next” questions in an 

idea’s evolution.  

One example from the CCSS-M standards that calls for this form of knowing is the 

development of rational and irrational numbers as extension of number sets beginning with 

whole numbers. When introducing each “new” number set to students, teachers could motivate 

the extension into new mathematical territory as informed by the advanced mathematical concept 

of group closure: i.e. how closure under subtraction leads to extension to integers; then closure 

under division leads to extension to rational numbers; then further extension to irrationals via 

exponents and historically motivating questions such as doubling the cube. Each new issue or 

problem type (e.g. wanting to find inverse elements under addition) calls for a new number 

concept (e.g. negative integers) and the successive series of questions draws the elementary idea 

of number from strictly whole numbers to the entire real number line.  

The development of ideas through mathematical questioning could also inform the 

teaching of some probability and statistics material, such as how we measure error in terms of 

the distance between points of data and a line of best fit. For example, why have statisticians and 

mathematicians decided to use the vertical distance from a point to the line of best fit, as opposed 



  Stockton & Wasserman 

 

to another common measure in geometry, that of the perpendicular distance from the point to the 

line? When teachers understand the evolution of mathematical and statistical ideas as a process, 

they can better introduce students to the premise that, mathematically, we often have a choice in 

these situations. Students can then be encouraged to explore the ramifications of various choices 

in order to better understand and appreciate the accepted mathematical norms and definitions.  

One particularly prominent subcategory of this form of knowledge is understanding how 

mathematical ideas developed historically – which also echoes Heid, Wilson, and Blume’s 

(2015) inclusion of historical and cultural knowledge in their framework. For teachers, knowing 

how mathematical concepts have evolved historically can be particularly useful for gaining 

student interest (e.g., story-telling), developing concepts by following their historical trajectory, 

and situating mathematics in relevant social, political, and cultural contexts. For example, when 

high school students study Euclidean geometry – in particular, the parallel postulate – it could be 

useful for their teachers to have a deeper understanding of the “unsettled” nature of Euclid’s 

Fifth Postulate for centuries, and how attempts to resolve that question over time led to the 

development of various non-Euclidean geometries such as spherical and hyperbolic. While a 

teacher may not introduce their students to those alternate geometries, their own understanding 

of the attempts to prove or refute the parallel postulate could inform how they introduce certain 

properties in Euclidean geometry that are based on the necessity of assuming the parallel 

postulate as an axiom (such as the interior sum of angles in a triangle) (e.g., Wasserman & 

Stockton, 2013), compared to those that do not require this assumption.  

Indeed, knowing mathematics in this way provides motivation for the more general 

practice of mathematical questioning, providing students with some insight into what it means to 

‘do’ mathematics, both in terms of identifying the arc of questioning that has led to further and 
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further refinement of a single idea over time and in terms of situating mathematical exploration 

as a human endeavor. In other words, in such classrooms, students might be more inclined to ask 

“what-if-not” (e.g., Brown & Walter, 2004) kinds of questions, and be charged with exploring 

the possible ramifications. Knowing mathematics in this way also opens the door to important 

notions in mathematical modeling (as emphasis in the CCSS-M (2010) standards) – of making 

choices and assumptions from a given situation, and then examining the results of the model 

based on such choices. 

 

4.3. How mathematical systems are rooted in specific axiomatic foundations (Axiomatic 
Knowledge) 

 
A necessary precursor to teachers’ development of students’ understanding of 

mathematical ideas is the ability to see the development of an idea from its base principles 

(axioms). Here we use the phrase ‘axiomatic foundations’ in the more modern sense of the word 

‘axiom’, which is to say a building block or starting point of reasoning, rather than the classical 

sense (indicating a self-evident statement for which no proof is necessary). Students themselves 

are regularly asked to consider how a mathematical idea can be broken down into basic 

component pieces, or how definitions and core ideas serve as a starting point from which to build 

additional mathematical results. This process occurs quite visibly in the study of geometric 

systems, for example, when the ideas of perpendicular or parallel lines are developed from the 

building block notions of point, line, plane, distance, etc. Since teachers are required to guide 

students in the development of these richer mathematical ideas, they should therefore have the 

knowledge themselves of the process via which more complex definitions and concepts are 

constructed from those foundational building blocks.  
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As another example, consider the process of determining fraction products as rectangular 

areas calculable by tiling the rectangle with appropriately-sized unit squares – albeit ones split 

into rectangular pieces. Leading students through this process requires that teachers deeply 

understand that measurements require appropriate units and countable additivity, specifically 

thinking about determining length, area, volume, angle, etc. by adding and subtracting non-

overlapping component portions. For teachers, the understanding of these concepts and processes 

could occur at an advanced level in the context of measurement theory or the introductory 

topological concept of metric spaces.  

The relevance of this form of knowing is not limited to geometry and measurement. 

Throughout the majority of fields within advanced mathematics – such as real analysis, abstract 

algebra, etc. – teachers would be exposed to the mathematical practice of building from 

foundational axiomatic structures. Algebraic structures such as groups, rings, and fields form the 

underlying foundation of much of school mathematics content. For example, even in the simplest 

of equations, such as x + b = c and ax = c, algebraic structure is present. In these equations, the 

four group axioms underlay the solving process: it is necessary to assume that addition and 

multiplication on the reals are associative, have inverse elements and an identity element, and are 

closed (see Wasserman, 2014). For a teacher to point students toward important structures that 

underlie all algebraic reasoning and processes, the teachers should understand the axiomatic 

foundations that give rise to these similarities, across different objects and different operations. 

The teacher’s formation of these connections will be particularly valuable when students 

encounter future objects which incorporate similar structures, such as functions and matrices or 

polynomials as compared to the ring of integers. Within the CCSS-M standards themselves, in 

fact, parallel structures are suggested: “HSA-APR.A.1. Understand that polynomials form a 
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system analogous to the integers, namely, they are closed under the operations of addition, 

subtraction, and multiplication; add, subtract, and multiply polynomials.” (CCSS-M, 2010) For 

teachers, then, more complete understanding of the axiomatic foundations that give rise to these 

similarities, across different objects and different operations, becomes important. 

Fundamentally, we argue that familiarity with axiomatic systems would help teachers 

understand something of the foundation of mathematics. In particular, this form of knowledge is 

useful for providing an overarching framework within which teachers present mathematics; it 

informs teachers of particularly important ideas and concepts in mathematics, giving them eyes 

to “see” consistent structures in a topic (e.g., the countable additivity axiom for measurement, the 

collective importance of arithmetic properties – group axioms – for solving equations, the 

parallel structures between the ring of integers and of polynomials, the rigorous development of 

the real numbers and real-numbered functions in analysis, or the probabilistic underpinnings 

throughout statistics) in order to unpack them with students.   

 

4.4. How mathematical reasoning employs logical structures and valid rules of inference 
(Logical Knowledge) 
 

The standard for mathematical practice (CCSS-MP3): construct viable arguments and 

critique the reasoning of others highlights the importance of this form of knowledge for teachers 

of mathematics. Given how regularly students are asked to explain why an algorithm works or 

how they solved a problem, it is clear that teachers need to have a deep understanding of 

different processes for mathematical proof and the ability both to generate their own logically-

sound explanations and to interpret and respond to arguments provided by students. All of these 

tasks are supported by a teacher’s knowledge of valid logical rules of deductive inference and 

ability to apply logical structures to mathematical scenarios (such as use of precise mathematical 
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language and definitions, for example). As early as elementary school, teachers have an 

opportunity to lay foundations for strong mathematical reasoning, such as pushing students to 

justify patterns and properties mathematically, based on definitions or conceptual models rather 

than just a few concrete cases. These foundations relate directly to a student’s ability to 

generalize later on – to move from concrete examples to more abstract representations or from 

selected cases to more comprehensive mathematical explanations.  

One important facet of assessing student work is recognizing when a student’s reasoning 

is valid even though it doesn’t take the same form of explanation the teacher had generated or 

expected. This form of knowing therefore highlights the ability for teachers to apply their 

knowledge of logical structures (e.g. equivalent arguments, contrapositive, counterexample, or 

negation of a false statement) and rules of deductive inference to identify alternative reasoning 

and argumentation schemes. For example, when teaching the Pythagorean Theorem and its 

converse, a teacher should be deeply familiar with multiple proofs of the Pythagorean Theorem, 

but also needs to recognize that the proofs of the theorem and its converse are substantially 

different. More generally, the teachers’ understanding of these proofs would be enhanced by 

their understanding that in many circumstances, just because an “if… then…” statement is true 

does not mean its converse is true. Therefore, we posit that teachers should know the meaning 

and use of logical operators and concepts (e.g. and, or, not, if, then, contrapositive, converse, 

inverse, logical equivalence, existence, uniqueness, if and only if, structure of mathematical 

definitions, etc.).  

An important foundation for logical reasoning in mathematics is the use of precise 

mathematical language and the ability to work with mathematical definitions. Indeed, defining is 

a mathematical activity – one that students frequently struggle with (e.g., Zandieh & Rasmussen, 
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2010). For students, these mathematical skills are called upon as early as elementary school, 

when they are asked to name and categorize various shapes according to specific attributes. It 

would therefore be helpful for teachers to understand the nuances and precision of various 

mathematical definitions and how such definitions form a basis for further logical reasoning 

about shapes and their properties. In particular, to know that definition statements have an “if 

and only if” structure, but that the same object can have multiple definitions, where definitions 

only determine the starting point of reasoning. For example, while the more common definition 

of a parallelogram is two pairs of opposite sides that are parallel, another appropriate definition 

would be a quadrilateral in which the diagonals bisect each other. Both statements are bi-

implications. 

Even in statistical settings, logical ideas are important considerations. One example is a 

common confusion about conditional probabilities (i.e., confusion of the inverse – Falk, 1986), 

informed by Bayesian ideas. Given a statistic that, say, 75% of smokers will get lung cancer, the 

common incorrect extrapolation that the chance of someone who has lung cancer having been a 

smoker is similarly high stems from a misunderstanding of the logical structure of implications. 

That is, if you are a smoker, then you have a high chance of getting lung cancer, but it is not 

necessarily the case that if you have lung cancer, then you have a high chance of having been a 

smoker. It is precisely the logical structure of an implication (if…then) that is not a bi-

implication (if and only if) that informs this distinction. 

The fundamental concepts underlying logic and mathematical proof serve as yet another 

disciplinary cornerstone that crosses content areas and relates directly to ways of doing, 

knowing, and communicating mathematics. They continue to inform teachers’ conceptions of 

what mathematics is as a discipline and what the practice of doing mathematics entails, 
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especially in ways that inform how teachers need to respond to students as they develop their 

own sense of mathematical reasoning and justification. 

 

4.5. How statistical inference differs from other forms of mathematics reasoning 
(Inferential Knowledge)  
 

As a field of study, mathematics has historically inquired into and made conclusions 

about certainties. The Pythagorean theorem, for example, gives a certain and specific answer to 

the length of a right triangle’s hypotenuse (in Euclidean geometry); the law of cosines similarly 

extends this conclusion about side lengths to more general triangles. In fact, rigorous deductive 

proof provides absolute certainty about these conclusions. So, for much of history, when dealing 

with uncertainties, and uncertain events, mathematicians did not feel that there were sufficient 

mathematical tools to explain events of chance and variability. This changed with the rigorous 

development of probabilistic, and later statistical, ideas. Although mathematics teachers are 

frequently charged with teaching probability and statistics, statistics educators argue that the two 

fields are fundamentally different (e.g., see Franklin et al.’s (2005), Guidelines for Assessment 

and Instruction in Statistics Education (GAISE) K-12 Report). One particular difference in 

statistics has to do with the non-deterministic nature of conclusions drawn from data, due to the 

omnipresence of variability.  Now, that is not to say that you cannot make certain conclusions 

about uncertain events – you can. But this only reiterates our point: given the need to disentangle 

the conclusions and interpretations you can and cannot make about results in probability and 

statistics, we found it especially important for teachers to attend to how statistical inference 

differs from other forms of mathematical reasoning. 

For example, particular attention should be paid when considering lines of best fit. 

Although in mathematics, there is a deterministic answer for the missing value for a function, in 
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statistics, lines of best fit frequently provide a non-deterministic estimate for missing values. 

This is contrasted by the fact that, regardless of whether a set of data appears linearly related, or 

whether there appear to be outliers, there is a deterministic answer for the least squares 

regression line (a mathematical question) – even if that line may not be considered well-

representative of the given set of data (a statistical question). For teachers, being able to 

differentiate between these various mathematical and statistical aspects is important – though, as 

Casey & Wasserman (2015) report, teachers frequently struggle to do so.  

Similar issues arise when discussing the Central Limit Theorem and confidence intervals, 

such as when making inferences about a population from sample statistics. Indeed, the Central 

Limit Theorem provides a deterministic result that we can claim with certainty: regardless of the 

original distribution, the distribution of n-sized sample means approaches a normal distribution 

(for n large enough) of . Confidence intervals leverage this fact to infer the true mean 

of a population, based on desired levels of probabilistic certainty. Yet we cannot know, with 

absolute certainty, that the true population mean in fact lies in this confidence interval – by 

definition, it would lie outside the interval some of the time. In addition, many of the 

deterministic results that are important in statistics, such as the “68-95-99.7 rule” for standard 

deviations, rely on particular assumptions (often regarding the normality of data). While many 

phenomena can be modeled by normal distributions, teachers should be particularly aware of 

these assumptions in order to recognize and point out limitations appropriately with students. 

Awareness of useful distributions that model different situations, such as Poisson or Bernoulli 

distributions, may also provide an important perspective on inferences.  

The inherent intermingling between both statistical and mathematical reasoning requires 

teachers to be particularly attentive to how statistical ideas are presented and treated. Probability 
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and statistics are largely about understanding and interpreting events of chance, whereas 

mathematical reasoning aims to conclude about events of certainty. The duality present with 

regard to interpreting probabilistic and statistical ideas and inferences represent an important 

form of knowledge of advanced mathematics for teaching.  

 
 

5. Discussion 
 

Because we chose to focus this paper’s analysis solely on identified advanced 

mathematical content useful for teaching, our forms of knowledge do not necessarily incorporate 

the many other types of content a teacher should be know. Many of these other types of 

knowledge (e.g. Specialized Content Knowledge (Ball et al., 2008)) naturally form a cornerstone 

of teacher preparation programs, and seem to have already been more clearly defined. We opted 

to retain our focus on the how or form of knowing for this paper, rather than (again) producing a 

list of what exact content teachers should know, since these forms of knowledge can inform a 

wide variety of teaching actions more generally. Several of the forms of knowledge focus on 

understanding mathematical processes and modes of reasoning, highlighting some critical 

aspects of mathematics as a discipline rather than specifying exactly which advanced topics a 

teacher might need to know. It may well be the case that some of the forms of knowledge we 

identified for advanced mathematical content therefore also apply to non-advanced material. So 

we do not claim the forms are exclusive, but hope that they do inform the work of teacher 

educators responsible for engaging pre- and in-service teachers with advanced mathematical 

content.  

Additionally, these forms of knowledge could contribute to a more robust understanding 

of Ball et al.’s (2008) horizon content knowledge as an aspect of mathematical knowledge for 



 TME, vol. 14, nos1,2&.3, p. 599 
 

 

teaching. In other words, not just any understanding of advanced mathematics is useful for 

teaching – rather, by specifying these five forms of knowledge, we get at some of the kinds of 

understandings of mathematics that make up a teacher’s mathematical horizon and are 

correspondingly particularly useful for teaching. Simon (2006) described a related notion of key 

developmental understandings (KDU): characterized by conceptual advances – changes in an 

ability to “think about and/or perceive particular mathematical relationships” (p. 362). We argue 

that the five forms of knowledge detailed here may serve to foster KDUs for teachers, but in a 

specific sense: knowledge of advanced mathematics serving as a KDU for school mathematics in 

ways that inform instruction. 

 

5.1 Envisioned Teaching Actions  

Part of the process of identifying these forms of knowledge of advanced mathematics for 

teaching consisted of envisioning teaching practices that would rely on a teacher’s advanced 

content knowledge at some point in the process of planning, teaching, or responding to student 

thinking on a particular topic. For example, one action that knowing “how simple things become 

complicated later on” (i.e., Peripheral Knowledge) would especially prepare teachers to 

undertake is foreshadowing or abridging (Wasserman, 2015). This form of knowledge should 

help the teacher provide clear descriptions and generalizations of content that are appropriate for 

current student learning but that also leave room for and/or point toward correct conceptual 

development in the future. When teachers focus on “how mathematical ideas evolve” (i.e., 

Evolutionary Knowledge) and are drawn to completion, or how different concepts draw on 

similar axiomatic foundations (i.e, Axiomatic Knowledge), they are helping students construct 

bridges (McCrory, et al., 2012) across related content areas in mathematics. Another teaching 
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action entails unpacking (Ball & Bass, 2000; Wasserman, 2015) complexity for students – a task 

informed by a teacher’s deep understanding of both the foundational underpinnings of the topic 

(i.e, Axiomatic Knowledge) and logical reasoning processes (i.e., Logical Knowledge) that was 

followed to reach mathematically valid conclusions from those starting axioms. The five forms 

of knowledge also suggest potential implications for teachers’ mathematical exposition (e.g., 

Peripheral Knowledge and avoiding mis-statements), as well as on classroom discourse (e.g., 

Logical and/or Inferential Knowledge and hearing students’ justifications). 

 

5.2 Implications for teacher educators 

Previous efforts to define mathematical content requirements for teacher education seem 

to have focused more on the course level – i.e., teachers should take Abstract Algebra, or 

Statistics, or a course in Geometry. There has also been a growing trend within some of the 

recommendations, such as the MET II report (CBMS, 2012), toward recommending courses such 

as “Mathematics for Elementary School Teachers” or “Secondary Mathematics from an 

Advanced Perspective”. Defining courses and possible content to cover is helpful, yet how, 

precisely, should teacher educators go about presenting this content to future teachers? In other 

words, how is it that teachers should understand the content from an “abstract algebra” course or 

a “secondary mathematics from an advanced perspective” course – so that the knowledge they 

gain is relevant to their future professional practice? This is where we see the forms of 

knowledge discussed in this paper as potentially productive in teacher education. Beyond any 

content area recommendations, these forms of knowledge of advanced mathematics might 

inform the structure and approach of teaching any mathematics content course for teachers.  
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As an example, teacher educators might examine a particular standard or topic in K-12 

mathematics, and then ask pre-service teachers: “How does this idea become complex later?”; 

“How did this or does this mathematical idea evolve?”; “What axiomatic foundations undergird 

this idea?”; “What logical or inferential structures are present in this topic?”; or “How is this 

representative of statistical or mathematical inference?” These questions are at the heart of 

having pre-service teachers develop their knowledge of advanced mathematics in ways that can 

become productive for teaching. Doing so helps situate the study of advanced mathematics in 

relation not only to school mathematics content, but also its teaching. For example, when looking 

at exponents, the question “how does this idea become complex later on?” points to some very 

interesting mathematics – what does 5π mean? Or how about (5+2i)2/3 or eiπ? These questions 

bring out some important conceptions of real numbers, such as limits of sequences of rational 

numbers. Some additional layers of complexity involve the extension to complex numbers, such 

as DeMoivre’s theorem and polar representations, and also include Euler’s famous historical 

equation, eiπ +1=0. As teachers begin to understand advanced mathematics in this light – as 

related to how a simple ideas becomes complex later on – there are specific advantages in 

relation to their actual teaching. As mentioned previously, this form of knowledge might be 

useful for helping teachers abridge mathematical ideas in ways that are both cognitively 

appropriate for students and also mathematically correct.  

Taking this same content area, exponents, and looking at its axiomatic foundations also 

helps clarify that fulfilling exponent laws (e.g., abac=ab+c) captures how mathematicians decided 

on the value for 3-1, etc. Although the notation of exponents started as a way to represent 

repeated multiplication, trying to understand 3-1 as “3 multiplied by itself -1 times” is 

nonsensical – it was fulfillment of certain properties of exponents that ultimately led to our 
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current definitions and conceptions of exponent values. And as teachers begin to understand the 

axiomatic foundations on which ideas are built, there are natural connections to teaching, such as 

helping appropriate proper emphasis on things that are conceptually important, either within their 

own mathematical explanations or as evident with tasks they design for students. In addition, 

such knowledge can also convey a sense of how mathematics has and does evolve. And there are 

plenty of other examples that we might discuss. However, more generally, approaching the 

teaching of advanced mathematics content to teachers using these questions – related to the five 

forms of knowledge – as a lens could help make the links between K-12 and the advanced 

mathematics more clear, and in specific ways that are potentially useful for teaching.  

Teacher educators have the two-pronged task of making advanced mathematics content 

relatable for their students (i.e., pre-service teachers) and assisting the development of the skills 

necessary for effective teaching. One way to make the advanced material feel accessible and gain 

teacher buy-in for the need to study such content is highlighting its relevance both the to K-12 

content itself, and also – perhaps more importantly – to the teaching of said content. An 

emphasis on the forms of knowledge of advanced mathematics that could prove fruitful in the 

course of the students’ day-to-day work of teaching would help teacher educators address both of 

their primary goals. 

 

5.3 Limitations 
 

All identifications of advanced content connections necessarily stem from our own depth 

of knowledge and experience with advanced mathematical content (as well as with K-12 

standards). Our results are therefore necessarily dependent on our own mathematical and 

teaching experiences, but we hope that by extending the discussion on forms of knowledge of 
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advanced mathematics for K-12 teaching to the mathematics education community we may 

generate an expanded set of examples as others bring their own sets of experiences to bear on the 

question at hand.  

 

6. Conclusion 
 
 Following an extensive mapping process linking the CCSS-M standards to relevant 

advanced mathematical content, we subsequently characterized several forms of knowledge of 

advanced mathematics for teaching:  

1. Peripheral Knowledge: Understanding how simple things become complex later on 

2. Evolutionary Knowledge: Understanding how mathematical ideas evolve 

3. Axiomatic Knowledge: Understanding how mathematical systems are rooted in specific 

axiomatic foundations  

4. Logical Knowledge: Understanding how mathematical reasoning employs logical 

structures and valid rules of inference  

5. Inferential Knowledge: Understanding how statistical inference differs from other forms 

of mathematics reasoning 

Through this process, we aimed to justify more fully why teachers should know advanced 

mathematics, by framing an approach to advanced mathematical content for teachers in terms of 

more general forms of knowledge rather than focusing solely on a laundry list of courses or topic 

sequences. We connect these forms of knowledge to particular practices that teachers engage in, 

such as abridging, concealing, foreshadowing, bridging, and unpacking. Additionally, we posit 

that these forms contribute to a more robust understanding of our conception of teachers’ horizon 

content knowledge, as they describe particularly productive ways of developing key 
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developmental understandings for teachers. Analyzing advanced mathematical content with this 

lens may help teacher educators conceptualize and structure mathematics courses for teachers 

highlighting content that truly informs the work of K-12 teaching and in a manner that facilitates 

teachers’ formation of those connections.  
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