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()ut!tne.s a preliminary classification of the kinds of justifications that
S ¢ ffer in mathematical contexts, i.e., their "proof schemes." The

cation is b.ased !)rlma.rll_v on the work of students during teaching

1ents and individual interviews, with secondary and post-secondary

b

The dominant, natural proof schemes of most students--even untversity
majors--are not ones accepted in the mathematical community as :
thematical proofs. Transformational proof schemes are viewed as

Jor advancing beyond these schemes; teaching experiments with

y S udents suggest that many students can make pleasing progress toward
‘and giving acceptable mathematical proofs.

“ researchers have given attention to different aspects of the learning and
proof (e.g., Bell, 1976; Chazan, 1993; Fischbein and Kedem, 1982:

)0; Martin and Harel, 1989; Senk, 1985: Yerushalmy, 1993). These

at the ideas of proof are difficult for students to learn, at least as they are
aught. A quote from Poincaré summarizes our position toward the

d learning of proof in mathematics:

difficult for a teacher to teach something which does not satisfy him
rely, but the satisfaction of the teacher is not the unique goal of teaching;
 has at first to take care of what is the mind of the student and what one
its it to become. [via Artigue, 1994; emphasis added]

ly, we have been concerned with attempting to determine what is in the
students, when proof comes up in mathematics. Others have had the same
For example, Chazan (1993) noted that U.S. high school geometry

were skeptical that a deductive proof assured that there were no _
xamples to the assertion proved, and that a proof was only further evidence
njecture is true. Fischbein and Kedem (1982) found that among studcr_ns in
 program of studies involving the greatest concentration on mathematics

ut one-third of the students who had endorsed a statement and its proof

that further checks of specific instances would be superfluous.

approach has been to focus on justifications, and to view a maghcmancal
the type of justification that is usually accepied by the ‘mathemaucal

ity. During interviews, mostly of university students in courses for

ics majors, we have attempted to determine what sorts of justifications

e them, and what sorts of justifications they would offer in orderto

, others. During teaching experiments with university students, th:_ W*ation

n to help students refine their own ideas about what constitutes justific



Categories of Proof Schemes

¢” has been ugef;
statement inc L E uselul to us, pyyy,; ustifus
: tincludes two aspects ascertaning (convineine roving (or Justifying) g
(convincing others). Ap & Oneself) an

. 't even within
Proot scheme" need natt
_ | not-
Perniments have had (he intent 1o

. he INErviews 1o test the sufficie
u:renl!y concetved fall into three Major i
€ proot schemes are lentative, so the reyd v 8
abels as on the brief descriptions and illustruli:m:.

‘ . Mportant to note that "proof™
connote “mathematical proof." The teaching ex

identify and alter students’ proof schemes, and
of the classification. The categories as cur
classes. In a few cases the labels tor th
should rely not so much on the |

ncy -

b . H i

iction proot schemes is that Justific
endorsement of an autho

. . . nt (the ritual proof sche
manipulations of symbols (the symbolic proof scheme).

ations :
rity (the authontarign
me), or meaningless®

i

oritarian Proof Scheme. When students are not concerned with the
question of the burden of proof, and their main source of conviction is a statement

given in a textbook, uttered by a teacher, or offered by a knowledgeable classmate,
they are exhibiting the authoritarian proof scheme. When asked how they might
convince someone of a particular result, statements like *1 would try to find it ina
book™ or “I think my professor said it, so it should be in my notes” would be
offered under this proot scheme. The value of proofs may even be questioned,
perhaps because in so much of the mathematics that the student has experienced |hg
emphasis has been on the results, with little or passing attention to the ru\unmgi\ 4
processes used to arrive at those results. In the teaching cx;x-n::\mlu:x: ::l‘\: ;I:“w y
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Perhaps the most devastating consequence of the symbolic scheme 15 the
behavior of approaching problems without first comprehending the
0 situation and its task. 1t is not unusual w find that immediately atter
g the problem, many students begin their solution with some sorts of symbol
pulation of any expressions nvolved, with little or no time spent on
,_; if ':ht.ndml. the problem statement. Students’ actions take place quite
#pliazundly without a clear purpose and without the formation of a coherent image
problem situation. So. for example. many attempt a solution without
$ng the meaning of some of the 1erms used in the problem stutement. and many
B8 are unable 1o aniculate the exact task they were to sccomplish. For these
versiy students, the symbol manipulation rules they acquired in their earhier
WOl years define the essence of their mathematical world: quantitative

prehension and sense making, wherein lie the value in representations by
Bols, were absent from this world.

cal Proof Schemes
These proof schemes are based solely on examples. As with the authorntanan
ol scheme. reasoning based on examples 15 not entirely bud. Mathematicans

examples highly (see, e g, Halmos, 1985). Psychologists now: “!llH e U'ml
LI
Bural concept formation 1 based on examples and sometimes on rather sped
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]J)_c,j’g,_r;gp!uul Proof Scheme. This proof scheme fits. for example, many
Eeometric »jll‘allfl! ations that might be given by younger students. The perceptual
proot scheme is based solely on visual or tactile perceptions. For example, a
student may examine an isosceles triangle and decide that the base angles are b e
congruent just by visual examination. Older students might be convinced that the ; ;:;:}tl:::‘
medians of a triangle are concurrent by looking at several computer-generated
examples, and lhey mlgh! attempt to convince others by showing them sumilar P
examples, ;

31
The Theoretical Proof Schemes :

3 This stu
forma iQMJ_ifLQQf, ﬁghcmgg, The general characterization of these : $orm
schemes is that students’ Justifications attend to the generality aspects of a conjecture

and involve mental operations that are goal oriented and intended-anticipatory
They are the foundation for all theoretical proof schemes. Here is an example of
transformational reasoning from a case study of a fourth grader (by GH)

abstracts

()
scheme |
represen

. erforme
I asked Ed to think of a triangle with two equal angles and describe what he ¢ Lmk,._m
thought the relationship between the sides opposite them Ed responded W this actis
almost instantly that the two sides must be equal. 1 asked Ed to explain to me B Ll of the
how he had arrived at this conclusion. Using his hands to describe the & crinical s
triangle, Ed said something to the effect that if one angle (he puts nm" . intends t
forearm horizontally and moves the sccuqd tureau;m dmgnn:nlly 1o uI; i ' Hr|| g 13 “
to the other angle (switches between the forearms’ positions), "hcn f 'uo'.lw ’ » ll”.
sides (he puts the two forearms diagonally to form a triangle) are e(! ) . u;,',,,h,m ,
When | continued to press Ed for more cxplmmllvnn, he went m,l u; .s.nyvm r o ', , |..
you launch a rocket from this side (pointing to his night cllmw’:t:; l’nr::j ."gme c’:;l,::‘;m;
his right forearm diagonally to indicate the direction of the ru'g ‘I'ni (:c" :'Ihnw 3 ::mm -
same time you launch another rocket from this side (pointing to hi: > ‘v

’ indic Iec “the other
and moving his left forearm diagonally to indicate the direction of th
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'u'n'kcl), the two rockety will collide and explode at the v
]l‘ lnl.-n parts will go down exactly in the middle of the trig
ittle tnangles. When you put these triangles together, one on top of the other
(he Tines up his two hands along the two little hingers 7

| and then opened and
closed them several times), these two sides would be equal

ertex of the triangle
ngle and make two

- Notice the generality of the thinking and its basis in n
hit the thinking could easily be wrned into the
*,Bd was a fourth-grader, he was not aske

1ental operations. Note also
common mathematical proof (since
d to do this).

The lmnsformnl_innal proof schemes classification includes three types of

} nbfurmutl.unull proot sc‘lycnlcs. Ed s-_lusllhculmn lustrates a gpatial LNALES Proog
Seheme, which n gc_ncml 18 characterized as a transtormational proof scheme in
hwh the context of the justification is of images from spatial intuition
B

i ¥ lie-transf ational proof scheme” is our current label for an
Encapsulated transformational proof scheme that has become  heuristic in devising
nathematical justifications. Repeated applications of transformational proof
schemes, if reflected upon, can potentially result in the formation of proof
heuristics. Hence, a symbolic-transformational proof scheme is a proof heuristic
bStracted from the experience of applying transformational proof schemes. Here is
in example, in which an older student transforms the given algebraic expressions
nto mental images related to graphs:

; Prove that for x 20, log(x+ 1)< x. He first converted this inequality into its

‘ equivalent x+1s¢', then he said: "Both functions [+ + 1 and ¢' | are increasing

but ¢' goes faster. At zero they are equal, so ¢' must be greater.”

'?!? is student then translated this thinking into a more standard mathematical proof
form.

One particularly important example of the symbolic-transformational proot
Scheme is this: To prove or refute a certain conjecture, the conjecture is i
prescmcd algebraically and symbol manipulations on the resulting expressions arc
performed, with the intent 1o derive relevant information that dccpm!s ape's 8
:"lindersmnding of the conjecture and potentially leads to its proot or lﬁfgllflll()fl)'l]‘: 8
this activity, the individual does pot necessarily form conceptual ll‘l:u.gt,hll or ::ﬂ >
~all of the algebraic expressions and relations that result I‘nllhe’ prulL‘Lb.s'. ‘ xn:.:“m y

~ critical stages in this process--viewed as such by the individual--that the per:

~ intends to form such images.

% . i« the constructional proof scheme. In the
2 The third transformational scheme is the mmwwm"m_nm
~ constructional proof scheme a students’ doubts are removed by ac ‘h g
B of abjects, as opposed to mere justifications of the cms!cn_c}c of lh‘f 0 J]:tn‘ i‘l 8
: example En justifying that the inverse of a square matrix is unu||m' (:'1 L'mwm' sy
p ; ustific which the inven ‘

: : s erred a justilicaton in :

linear algebra students have prete R e enid show
m; lis cuns(gmctcd slcp-by-slcp. to the usual assume-there-are-two and

.
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