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Editorial

Understanding the Earth system in the Anthropocene
global warming is underpinned by scientific fraud (Plimer, 2017). But the
continued ugliness and peril of climate change across several regions,
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1. The Anthropocene

The rising environmental challenges in contemporary society are
alarming. From water scarcity, terrific groundwater loss, disappearance
of large surface water bodies, and deforestation, to rise in global mean
sea level, frequent devastating floods, droughts and wildfire events, the
Earth system is experiencing series of transformations (e.g., Hugonnet
et al., 2021; Tellman et al., 2021; Bierkens and Wada, 2019). The com-
plexities and impacts associated with these chain of transformations
will continue to grow, affecting human well-being and constraining the
health of natural ecosystems. These transformations mark the end of
the stable Holocene era, and a transition to the Anthropocene, a new
geologic era characterized by increasingly large human footprints and
impacts of climate change (e.g., Ndehedehe et al., 2023; Di Baldassarre
et al., 2017). The frequency and magnitude of extreme climate events
(e.g., droughts and floods) have intensified in the last century due
to climate change (e.g., Cook et al., 2022), further triggering several
deleterious impacts of climate change on modern-day human society.
But we now live in a new dispensation, the Anthropocene where
the plenitude of human activities (e.g., dam constructions, groundwa-
ter extraction, water transfer and harvesting, etc.) are predominantly
important drivers of environmental change. These Anthropogenic foot-
prints have increased over the last few decades, coalescing with climate
change to further amplify the disturbance and instability of the earth
system in the Anthropocene (e.g., Rounce et al., 2023; Chiang et al.,
2020; Steffen et al., 2018). For instance, much of the groundwater
depletion caused by over extraction will end up in the ocean, through
runoff, and evaporation thus contributing to considerable rise in global
sea level, which in turn leads to severe devastations (e.g., Bierkens and
Wada, 2019).

2. How real is climate change?

The Antarctic ice sheet lost 2720 ± 1390 billion tonnes of ice, which
correspond to a mean sea level rise of 7.6 ± 3.9 mm between 1992
and 2017 (IMBIE, 2018). In the last 20 years, global glaciers showed a
mass loss that is 47% larger than that of the Greenland and Antarctic Ice
Sheet (Hugonnet et al., 2021). By 2100, projected glacier mass loss will
range from 26 ± 6% (+1.5 ◦C) to 41 ± 11% (+4 ◦C) due to increasing
emperatures (Rounce et al., 2023). Apart from the loss of glaciers,
ising temperatures caused by changes in the global climate system
re increasing the duration, frequency, and severity of extreme events
cross several regions of the world (e.g., Ndehedehe et al., 2023; Cook
t al., 2022; Hugonnet et al., 2021; Brito et al., 2018). Climate is indeed
hanging! This has being challenged nonetheless, and some have taken
different perspective on climate science, arguing that the concept of
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hich we have witnessed in our life time attest to its reality. For
nstance, the permanent lost of surface water in one of Africa’s largest
reshwater bodies, the Lake Chad due to prolonged drought in the early
980s and other sundry impacts of unprecedented extreme drought
vents on large hydrological systems (e.g., Ndehedehe, 2022; Peterson
t al., 2021) underscore the reality of climate change. Apart from
rought, the awareness of society to the impacts of climate induced
lood events is evident in the number of flood related social media
weets across the globe (de Bruijn et al., 2019). These tweets and
ther related social media posts facilitate our understanding of where
hese events are occurring on a near and/or real-time basis but much
ore, they remind us of the rapid changes in the Earth system in the
nthropocene. Every year, droughts continue to affect approximately
5 million people globally and between 2000 and 2015, about 290
illion people across several regions of the world were direct recipients

f devastating flood events (Schumacher et al., 2022; Tellman et al.,
021).

. The human side of things

Human population is expected to reach over 10 billion by 2059,
oubling population count from the 5 billion people reported in 1987
UN, 2022). The rise in human population and urban centers will
mpact on biodiversity, forest ecosystems, land cover changes, coastal
esources, and the environment generally (Laurance and Engert, 2022).
cologically, these impacts include, loss of habitats for 30,393 species
f terrestrial vertebrates moving into the future (2015–2050) (Simkin
t al., 2022). The rise in human population will also translate to
ome challenges in agriculture, water use and rising energy demand.
ncreasing food production under a changing climate will require more
reshwater (e.g. surface water and groundwater). Currently, more than
0% of the world’s largest aquifers are under stress due to rapid de-
lines in groundwater storage (e.g., Bierkens and Wada, 2019; Solander
t al., 2017). These losses in groundwater are jeopardizing global food
nd water security and the sustainability of ecosystems, constraining
uman adaptation to climate change (e.g., Ndehedehe et al., 2023;
asechko and Perrone, 2021). Satellite measurements of 227,386 water
odies between late 2018 and mid 2020 revealed that about 57%
easonal surface water storage variability occurred in human-managed
eservoirs (Cooley et al., 2021). The near desiccation and disappearance
f large freshwater bodies like the Lake Mead, Aral Sea, and Lake Chad
re some evidence of climate change underpinned by human water
anagement and the absence of contemporary best practice in guiding
ater management (Donchyts et al., 2016).
nstitute of Ecology and Environment, Nanjing University. This is an open
/by-nc-nd/4.0/).
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4. Maintaining balance and pursuing justice and stability

The alterations of the Earth system are increasingly being driven by
a plethora of anthropogenic activities. Together with climate change,
they coalesce to regulate net contributions to sea level rise (Hugonnet
et al., 2021; WCRP Group, 2018). The collective effort to change the
trajectory of the Earth system in the Anthropocene from potentially
damaging conditions to a more stable habitable state has been advo-
cated (Steffen et al., 2018). The resilience of the Earth system is being
challenged in the Anthropocene and changing this trajectory is thus
crucial. This is because of the interconnection between the biosphere
and the broader Earth system, which also includes the atmosphere and
the climate system and the implications of such connectivity on human
wellbeing and prosperity (Folke et al., 2021). Maintaining balance and
pursuing a safe and just planet within the United Nation’s Sustainable
Development Goals-SDGs (https://sdgs.un.org/goals) is thus critical.
As a sign of progress, the newly launched SDGSAT-1 satellite mission
will accurately collect data on various human activities and provide
data for various SDG indicators to support applications in climate
related hazards and natural disasters, among several others (Guo et al.,
2022). In terms of fixing the biodiversity decline problem, Obura et al.
(2022) detailed six actions to achieving Earth system justice, including
recommendations to ‘‘reduce and reverse direct and indirect drivers causing
decline’’. The assessment of Earth system planetary boundaries to ensure
a safe and just planet is now receiving attention and from a perspective
that acknowledges human well-being as a function of Earth system sta-
bility and resilience. The Earth Commission (https://earthcommission.
org/) is pioneering this assessment underpinned by several working
groups and partnerships with advocacy groups-science, business and
philanthropy, among others (Rockström et al., 2021). In line with
key strategic objectives that complement ongoing assessments by the
Intergovernmental Panel on Climate Change, other reports (e.g., McKay
et al., 2022; de Graaf et al., 2019; IMBIE, 2018), including those of
Earth Commission have documented evidence suggesting that some of
the thresholds for a healthy stable planet and people, e.g., for climate,
water, aerosol, biosphere among others have already been crossed
(https://earthcommission.org/publications/). For instance, thresholds
for groundwater have been transgressed in intensively irrigated areas
of the world. In these regions, groundwater pumping is unsustain-
able, exceeding recharge from rivers and rainfall, and environmental
flow limits are expected to be reached for up to 79% watersheds by
2050 (de Graaf et al., 2019). Achieving resilience and stability of the
Earth system where humans are substantially less vulnerable to risk
is critical and will require that these thresholds and climate tipping
points (McKay et al., 2022) are not exceeded further.
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