This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

Journal of Educational Psychology
2013, Vol. 105, No. 2, 380-400

© 2012 American Psychological Association
0022-0663/13/$12.00 DOI: 10.1037/a0031084

A Meta-Analysis of the Efficacy of Teaching Mathematics With Concrete

Manipulatives

Kira J. Carbonneau, Scott C. Marley, and James P. Selig

University of New Mexico

The use of manipulatives to teach mathematics is often prescribed as an efficacious teaching strategy. To
examine the empirical evidence regarding the use of manipulatives during mathematics instruction, we
conducted a systematic search of the literature. This search identified 55 studies that compared instruction
with manipulatives to a control condition where math instruction was provided with only abstract math
symbols. The sample of studies included students from kindergarten to college level (N = 7,237).
Statistically significant results were identified with small to moderate effect sizes, as measured by
Cohen’s d, in favor of the use of manipulatives when compared with instruction that only used abstract
math symbols. However, the relationship between teaching mathematics with concrete manipulatives and
student learning was moderated by both instructional and methodological characteristics of the studies.
Additionally, separate analyses conducted for specific learning outcomes of retention (k = 53, N =
7,140), problem solving (k = 9, N = 477), transfer (k = 13, N = 3,453), and justification (k = 2, N =
109) revealed moderate to large effects on retention and small effects on problem solving, transfer, and

justification in favor of using manipulatives over abstract math symbols.
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Results from the 2011 National Assessment of Educational
Progress (National Center for Education Statistics, 2011) indicate
60% of fourth-grade and 57% of eighth-grade United States stu-
dents failed to meet standards of proficiency in mathematics.
Furthermore, with only 10% of fourth graders and 6% of eighth
graders meeting international standards of advanced proficiency,
U.S. students rank below their same-age peers from eight countries
(National Center for Education Statistics, 2008). These results, and
comparable findings from prior years, have provided President
Obama motivation for a recent executive branch initiative known
as Educate to Innovate (The White House, Office of Press Secre-
tary, 2009). This initiative was developed to target student
achievement within science, technology, engineering, and math
education with a focus on increasing domain-specific critical rea-
soning skills. If the goal of Educate to Innovate is to help students
reach high levels of mathematics achievement, efficacious instruc-
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tional strategies need to be identified. Therefore, a careful exam-
ination of contemporary instructional strategies is necessary to
identify strategies that improve mathematics achievement.

Instructional strategies that use manipulatives are often sug-
gested as effective approaches to improve student mathematics
achievement (Giirbiiz, 2010; Sherman & Bisanz, 2009). Math
manipulative-based instructional techniques are approaches that
include opportunities for students to physically interact with ob-
jects to learn target information (Carbonneau & Marley, 2012). As
examples, at the elementary level, teachers use play money to help
students learn basic arithmetic functions, and at the high school
level, teachers use plastic algebra tiles to teach concepts associated
with division and multiplication within an equation. The National
Council of Teachers of Mathematics (NCTM, 2000) has recom-
mended that students be provided access to manipulatives in order
to develop mathematical understanding. In addition, teacher edu-
cation textbooks often contain sections suggesting that teachers
use manipulatives during mathematics instruction (e.g., Billstein,
Libeskind, & Lott, 2009; Copley, 2000). In the cases of national
organizations and textbooks, when an instructional strategy is
prescribed to a professional audience, an underlying assumption is
that sound scientific evidence supports the recommendation. How-
ever, evidence supporting the efficacy of concrete math manipu-
latives is inconsistent. Specifically, the efficacy of manipulatives
in mathematics instruction has not been uniformly observed with
various populations, math topics, and cognitive outcomes. Vari-
ability of the effectiveness within instructional strategies of this
nature may result in the misapplication of the instructional tech-
nique.

The instructional strategies literature is not definitive regarding
the efficacy of concrete manipulatives. Studies have found that
using manipulatives in math instruction, when compared with
instruction that did not use manipulatives, may benefit student
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learning (Giirbiiz, 2010), result in comparable performance
(Canobi, 2005; Dyer, 1996), or reduce student learning (Shoecraft,
1971). These contradictions may exist as a result of systematic
factors. For instance, the level of instructional guidance, type of
manipulative, age of learners, and other characteristics of a learn-
ing environment may impact the effectiveness of the intervention.
Therefore, a systematic review of the math manipulatives literature
is necessary to understand the variations in results observed be-
tween studies.

Sowell (1989) performed the first research synthesis of the
manipulatives literature with a meta-analysis of the use of manipu-
latives applied to mathematics learning. Sowell’s results suggested
that relative to studies that did not use manipulatives, small-sized
statistical differences in favor of the use of manipulatives on
measures of recall were present when instruction was implemented
over a school year. One limitation of Sowell’s synthesis is that it
did not examine whether instructional characteristics moderate the
effectiveness of math manipulatives in terms of student learning.
In addition to this limitation, there has been a considerable expan-
sion of the math manipulatives literature base since Sowell’s 1989
study. Both of these circumstances justify another systematic re-
view of the math manipulatives literature. Therefore, the purposes
of the present meta-analysis were to determine the average effect
of math manipulatives and to identify potential moderators of the
effectiveness of manipulatives. Instructional moderators were
identified based on theoretical explanations for the efficacy of
manipulatives, whereas methodological characteristics were exam-
ined to evaluate the credibility of the literature (Marley & Levin,
2011).

Moderators of the Efficacy of Manipulatives:
Instructional Characteristics

Potential instructional moderators of the efficacy of teaching
with manipulatives can be derived from contemporary human
development and cognitive theories (McNeil & Jarvin, 2007).
According to these theoretical explanations, concrete manipula-
tives facilitate learning by (a) supporting the development of
abstract reasoning (Bruner, 1964; Montessori, 1964; Piaget, 1962),
(b) stimulating learners’ real-world knowledge (Baranes, Perry, &
Stigler, 1989; Rittle-Johnson & Koedinger, 2005), (c) providing
the learner with an opportunity to enact the concept for improved
encoding (Kormi-Nouri, Nyberg, & Nilsson, 1994), and (d) afford-
ing opportunities for learners to discover mathematical concepts
through learner-driven exploration (Bruner, 1961; Papert, 1980;
Piaget & Coltman, 1974). Each of these theoretical explanations
provides instructional characteristics that may reduce or increase
the effectiveness of math manipulatives. The following sections
describe each theoretical explanation and theory-relevant instruc-
tional factors.

Development of Abstract Reasoning

According to developmental theorists (Bruner, 1964; Montes-
sori, 1964; Piaget, 1962), young children are expected to obtain
cognitive benefits from exploring mathematical concepts with
manipulatives. Empirical research examining concrete manipula-
tives are commonly situated through Piagetian developmental sta-
tuses with a focus on children at ages associated with concrete

operations (Fennema, 1972; Fujimura, 2001; Garcia, 2004). In
addition, theoretical perspectives indicate that children in early
childhood (age 7 and younger) should benefit from exploring
mathematical concepts with manipulatives (Montessori, 1964).
Children within both age groups are expected to derive greater
cognitive benefits from manipulatives relative to older children
(Fennema, 1972; Resnick & Omanson, 1987). The reason for this
expectation is that younger children are assumed to have a greater
dependency on physically interacting with their environment to
construct meaning (Bruner, 1964; Piaget & Coltman, 1974).
Through these physical interactions with the environment, young
children are expected to gain proficiency with higher level repre-
sentations in a predictable sequence. This sequence predicts that
the ability for children to capitalize from visual representations
should precede symbolic representations.

Inherent in these theoretical perspectives is the prediction that
the developmental status of students should moderate the efficacy
of teaching math topics with concrete manipulatives. It is expected
that older students who have developed the ability to reason
abstractly can benefit from instruction that consists exclusively of
symbolic representations. Younger children, however, are pre-
dicted to experience more difficulty when provided instruction that
solely consists of symbolic representation. Therefore, the assumed
cognitive benefits of manipulating concrete objects to represent
mathematical concepts should be greater for younger children who
are still developing proficiency with higher level representations.

Stimulating Real-World Knowledge

The use of manipulatives in mathematics instruction has been
cited as a strategy to allow students to draw on their practical
knowledge (Burns, 1996). This line of reasoning suggests that
concrete objects that resemble everyday items should assist stu-
dents in making connections between abstract mathematical con-
cepts and the real world (Brown, McNeil, & Glenberg, 2009).
Support for this argument is provided by evidence indicating that
when prior knowledge of a concept is partial, or absent, providing
known concrete objects may help learners construct context-
relevant schemas (e.g., Tindall-Ford & Sweller, 2006). However,
results from empirical research examining the connection between
student learning and the type of manipulatives used during instruc-
tion has been counterintuitive and could potentially account for
some of the inconsistencies within the manipulation-based litera-
ture. Research examining different types of manipulatives tends to
focus on the perceptual richness of concrete objects and how
details of an object may hinder or aid learning.

Research examining the perceptual richness of a manipulative
has primarily focused on realism or visual details of manipulatives.
These examinations compare realistic manipulatives (e.g., manipu-
latives that look like pizza or money) that are perceptually rich
(McNeil, Uttal, Jarvin, & Sternberg, 2009) to manipulatives that
are nondescript or bland in nature (e.g., manipulatives that repre-
sent geometric shapes or place value). Results from these studies
suggest that perceptually rich manipulatives may hinder learning
of targeted mathematics concepts and/or performance solving
mathematics problems (Kaminski, Sloutsky, & Heckler, 2009;
McNeil et al., 2009). Explanations for why learning is inhibited by
perceptually rich manipulatives have focused on generalizing
learning to other contexts (Martin, 2009), surface information that
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is irrelevant to the target concept (Kaminski et al., 2009; McNeil
et al., 2009), and children not recognizing that concrete objects can
be representative of an actual object and abstract mathematics
concepts (Uttal, O’Doherty, Newland, Hand, & DeLoache, 2009).

Enactment Effects

Instructional strategies that use manipulatives may be effective
because of physical enactment. In other words, the encoding and
subsequent retrieval of target information may occur via nonverbal
coding or a motoric channel. A well-developed literature exists
examining what are known as self-performed tasks (SPTs). SPTs
are tasks that participants physically perform during a learning
activity. Often examined in paired-associate or list-learning con-
texts, SPTs have been found to result in robust encoding that
enhances subsequent retrieval of target information (Engelkamp,
Zimmer, Mohr, & Sellen, 1994; Kormi-Nouri, Nyberg, & Nilsson,
1994).

Dual coding theory offers an explanation for the memory ben-
efits of SPTs. According to this theory, verbal and nonverbal
representations are stored in separate but connected stores in
long-term memory (Paivio, 1986). Consequently, it is proposed
that activation of one form of representation leads to the activation
of the other, resulting in the improved retrieval of target informa-
tion (Clark & Paivio, 1987). In an instructional context, a child
studying math facts using manipulatives to represent quantities is
learning the target concept with both forms of representation
present. Later, when asked to remember the target information, the
child would have access to a verbal code consisting of target math
facts and a nonverbal code consisting of interactions with the
manipulatives. The successful retrieval of one form of representa-
tion is expected to activate the other, which in turn should result in
greater performance on learning outcomes (for relevant discussion,
see Marley & Levin, 2006).

The process of enactment has been demonstrated as an effica-
cious learning strategy within the content area of reading compre-
hension. Manipulating objects as directed by a narrative has been
found to improve memory for spatial relationships and story events
(Biazak, Marley, & Levin, 2010). Likewise, the ability to benefit
from imagery instruction has been associated with the enactment
of manipulatives. For example, Glenberg, Gutierrez, Levin, Japun-
tich, and Kaschak (2004) found that interacting with text-relevant
objects during reading instruction increased comprehension of
stories when participants were subsequently asked to imagine
manipulating the text-relevant objects. This finding has been rep-
licated in studies with children from samples representing diverse
populations (Marley, Szabo, Levin, & Glenberg, 2011; Marley &
Szabo, 2010).

A potential problem with physical enactment has been iden-
tified by several authors (Martin, 2009; Sarama & Clements,
2009). The simple act of moving manipulatives is likely not
sufficient for promoting learning. Without explicit instruction,
children may not move objects in a manner that appropriately
represents the mathematics concept being taught. In other
words, the instructional guidance provided is expected to influ-
ence the efficacy of manipulatives and the process of engaging
in SPTs.

Learner-Driven Exploration

Many have suggested that providing learners with opportunities
to discover mathematical concepts through unstructured learner-
driven exploration will result in robust learning outcomes (Bruner,
1961; Piaget & Coltman, 1974). These theorists propose that
learners are better able to construct meaningful knowledge when
given opportunities to discover concepts (Lefrancois, 1997). Em-
pirical research has provided evidence contradicting this notion
with results indicating that providing learners with instructional
guidance on topics rather than allowing them to work within a
purely unstructured context results in higher levels of student
performance (Mayer, 2004).

Instructional guidance offered to learners can be defined as the
amount of instructional support provided during the learning pro-
cess and falls on a continuum of student- versus teacher-controlled
learning (Kirschner, Sweller, & Clark, 2006; Mayer, 2004). On
one end of this continuum are student-controlled strategies that
allow learners to use manipulatives in an unstructured or less
structured environment (i.e., a low guidance or discovery learning
environment). Students in low guidance scenarios, often identified
as math explorations, are given manipulatives with little or no
instruction on how to manipulate the objects to represent mathe-
matical concepts under study (Hinzman, 1997; Kuhfittig, 1974;
LeBlanc, 1968). On the other end of the continuum are teacher-
controlled strategies in which students interact with manipulatives
as instructed by a teacher (i.e., direct instruction).

A recent synthesis of the instructional guidance literature indi-
cates the provision of instructional guidance results in greater
performance on learning outcomes relative to pure discovery (Alfi-
eri, Brooks, Aldrich, & Tenenbaum, 2011). Reading and listening
strategy research further supports the importance of instructional
guidance when using concrete manipulatives (Glenberg, Brown, &
Levin, 2007; Marley, Levin, & Glenberg, 2007, 2010; Marley et
al., 2011). However, Martin (2009) warned that too much instruc-
tional guidance with concrete manipulatives can impede learning
by confining students to interpretations that do not transfer to
novel circumstances. If this so, it is expected that the provision of
high instructional guidance with manipulatives will result in lower
performance on outcomes related to transfer of learning.

Moderators of the Efficacy of Manipulatives:
Methodological Characteristics

Methodological aspects of a study affect the credibility of the
claims that can be made regarding the causal relationship between
an instructional strategy and beneficial learning outcomes (for
relevant discussions, see Marley & Levin, 2011; Shadish, Cook, &
Campbell, 2002). The robustness of claims derived from a litera-
ture can be assessed by examining the prevalence of studies that
have characteristics linked with limitations in internal (e.g., pre-
and postdesigns) and external (e.g., researcher-implemented treat-
ments) validities. Whether these factors are associated with effect
size is of interest, because educational recommendations should be
based upon a body of scientifically credible evidence. For the
present meta-analytic review, potential moderators of interest were
whether design (pre- and postdesign, quasi-experiment, true ex-
periment), type of test (standardized test, researcher-created tests),
assumption of statistical independence (accounted for in analysis,
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unaccounted for in analysis), implementer (researcher, teacher),
and peer review status (published, unpublished) were associated
with effect size. Although peer review status is not a methodolog-
ical characteristic, it is included because acceptance in a peer-
reviewed publication may serve as a proxy for a study’s method-
ological rigor.

Present Study

The purpose of the present study was to ascertain the effective-
ness of using manipulatives to teach mathematics when compared
with teaching mathematics with only abstract math symbols. Mod-
erators were examined to determine whether efficacy of this strat-
egy differed by instructional and methodological characteristics. In
summary, we sought to answer the following research questions:

1. What is the average effect of using concrete manipula-
tives in mathematics instruction?

2. Does the relationship between using concrete manipula-
tives and student learning vary by learning outcome?

3. Do instructional characteristics of studies moderate the
relationship between using concrete manipulatives and
learning outcomes?

4. Do methodological characteristics of studies moderate
the relationship between using concrete manipulatives
and learning outcomes?

In addition to addressing the primary research questions, we
evaluated the overall quality of the literature by describing the
prevalence of specific design characteristics. For a literature base
to be considered robust in terms of validity of causal inferences
and generalizability, it should primarily consist of studies that
begin with random assignment and are representative of instruc-
tional contexts.

Method

Literature Search

An exhaustive search for studies on manipulatives and mathe-
matics was performed between August 2010 and March 2011 with
relevant keywords and their combinations (e.g., mathematics, ma-
nipulatives, concrete objects, activity-based learning, hands-on
learning) with six major databases in the social sciences (Educa-
tion Resources Information Center, Education Research Complete,
PsycARTICLES, PsycINFO, JSTOR, and ProQuest Digital Dis-
sertations). This search resulted in the identification of 94 articles.
From these articles, ancestral and secondary citations from the
studies’ references were collected and examined for relevance to
the present study. The search of ancestral and secondary citations
resulted in 102 additional references (k = 196). Of the 196 studies,
projects that did not report empirical findings were removed. This
resulted in 101 studies to be reviewed for inclusion in the meta-
analysis.

Criteria for Inclusion

Four conditions were established to restrict studies to those that
empirically examined the efficacy of manipulatives in mathemat-
ics instruction. First, to be included, a study was required to
compare an instructional technique that used manipulatives with a
comparison group that taught math with only abstract math sym-
bols. This comparison group was defined by the following attri-
butes: (a) no manipulatives were present, (b) all students were
taught the same math concept, and (c) no iconic representations
(e.g., pictures of base-10 blocks or virtual manipulatives) were
present. Of the 101 studies, 21 (20.7%) failed to meet these
criteria. This inclusion criterion produces a very specific compar-
ison in which conditions where students physically interacted with
concrete objects were compared with conditions where students
were solely taught mathematics concepts with abstract math sym-
bols.

Second, to be included in the meta-analysis, the examined
instructional treatments must have provided some form of instruc-
tion during which students were able to learn from the manipula-
tives. Studies that examined only the performance of students with
manipulatives were excluded; four studies (3.9%) failed to meet
this criterion. The third criterion is based on the definition of
manipulatives; studies that required students to work with rulers,
scales, or calculators were not included, as these were seen as tools
rather than manipulatives (8.0%, k = 9). Lastly, studies had to
provide sufficient quantitative information to estimate an effect
size, which resulted in the elimination of 11 studies (10.8%).
Additionally, two publications reported results from the same
study; therefore only one was retained in the sample. The screen-
ing process resulted in a total of 55 studies upon which all
meta-analytic procedures were conducted.' Studies meeting the
inclusion criteria along with summative information on design and
findings are presented in Table 1.

Study Coding

All 55 studies were coded with a standardized protocol. The
protocol was developed iteratively as studies were accumulated to
include the moderators of interest. After a final coding scheme was
developed, studies were coded for the characteristics described
below. Two raters independently coded an overlapping random
sample of 18 studies (32%) to assure consistency in coding.
Interrater agreement, as measured by Cohen’s k for the categorical
variables, ranged from .82 to 1.0. Pearson’s r for continuous
variables ranged from .89 to 1.0.

Effect size. Cohen’s d (1988), a measure of effect size, was
calculated for each study in the meta-analysis. Cohen’s d values
are obtained by dividing the difference of the treatment means by
the pooled standard deviation. This measure of effect size is
commonly reported in studies examining the effect of a manipu-
lated independent variable (e.g., manipulatives vs. control) on a
continuous dependent variable (e.g., retention, problem solving,
transfer, or justification). When study statistics were not directly

! Sowell’s 1989 meta-analysis of the math manipulative research con-
sisted of 60 studies, of which approximately 23 contrasted pictures versus
a symbolic representation. The publication does not include a list of
reviewed studies. Sowell kindly responded to a request for a list of
reviewed studies. She no longer had access to the list.
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Table 1

Summary of Study Characteristics

Coded instructional Mean
Study N Days Design® characteristics® Cohen’s d Main findings
Aburime (2007) 185 50 QEX FO, PRM, HG, 0.01 Students in high school taught geometry
GE, GI with manipulatives performed the
same on a measure of retention as
those not taught with manipulatives.

Anderson (1957) 541 40 QEX FO, LG, AR, GI, 0.08 Eighth-grade students taught algebra
with manipulatives performed the
same on a measure of retention as
those taught with a textbook.

Aurich (1963) 90 180 QEX PO, BM, HG, AR, 0.89 First graders taught arithmetic with

GI Cuisenaire rods performed better on
measures of reasoning and retention
than those taught with a textbook.

Babb (1975) 76 25 QEX CO, PRM, LG, —0.05 Second graders taught arithmetic with

AR, GI manipulatives performed the same on
a measure of retention as those taught
without manipulatives.

Battle (2007) 16 5 QEX PO, PRM, LG, —-0.93 First graders taught addition and

AR, GI subtraction with counters performed
worse on a measure of retention than
those taught without counters.

Bring (1972) 102 15 EX CO, PRM, LG, 0.28 Fifth and sixth graders taught algebra

AL, IT with manipulatives performed better
on a measure of retention than those
students taught with a textbook.

Butler et al. (2003) 50 10 WS CO, BM, HG, FR, 2.24 Mathematic disabled seventh graders

GI taught fractions with manipulatives
answered more items correctly on a
postmeasure of retention.

Carmody (1970) 96 11 QEX CO, PRM, HG, 0.43 Sixth graders taught arithmetic with

AR, GI manipulatives performed better on a
measure of transfer than students
taught without manipulatives.
Performance on a measure of
retention was the same for both
groups.

Cook (1967) 66 120 QEX PO, LG, AR, GI 0.08 First-grade students taught arithmetic
with manipulatives performed the
same on a measure of problem
solving than those taught with a
textbook.

Cramer et al. (2002) 1,666 30 QEX CO, PRM, HG, 0.88 Fourth- and fifth-grade students taught

FR, GI fractions with manipulatives
performed better on a measure of
retention than those taught with a
textbook.

Dawson (1955) 280 22 QEX CO, PRM, LG, 0.58 Fourth-grade students taught division

AR, GI with manipulatives performed better
on a measure of retention than
students who were taught without
manipulatives.

Dyer (1996) 90 Unknown QEX FO, BM, LG, AL, 0.00 College-level students taught algebra

GI with algebra tiles performed the same
on a measure of retention than
students taught with a textbook.

Egan (1990) 81 180 QEX CO, BM, LG, AR, —0.30 Second graders taught arithmetic with

GI Cuisenaire rods performed worse on a
measure of retention than those who
were taught with a textbook.

Ekman (1967) 196 18 QEX CO, PRM, HG, 0.09 Third graders taught arithmetic with

AR, GI manipulatives performed the same on

measures of retention and transfer as
those taught with a textbook.
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Study

Days

Design®

Coded instructional
characteristics®

Mean

Cohen’s d

Main findings

Fennema (1972)

Fujimura (2001)

Garcia (2004)

Getgood (2000)

Goins (2001)

Giirbiiz (2010)

Hawkins (1982)

Hiebert et al. (1991)

Hinzman (1997)

Johnson (1970)

Jordan et al. (1999)

King (1976)

Kuhfittig (1974)

95

76

64

287

80

35

25

34

64

125

134

40

14

20

10

Unknown

20

11

45

20

Unknown

5.5

EX

EX

QEX

QEX

QEX

EX

WS

WS

QEX

EX

QEX

EX

EX

CO, BM, HG, AR,
GI

CO, PRM, LG,
AL, II

CO, LG, AR, GI

CO, BM, HG, AL,
GI

FO, BM, HG, AL,
GI

CO, BM, HG, FR,
GI

CO, PRM, HG,
FR, GI

CO, BM, HG, PV,
GI

FO, BM, LG, AL,
GI

CO, PRM, LG,
AL, I

CO, PRM, HG,
FR, GI

CO, PRM, HG,
FR, GI

CO, LG, AR, GI

—0.65

0.73

—0.14

0.07

1.21

3.11

1.60

0.47

0.20

0.99

0.78

—0.02

—0.02

Second graders taught arithmetic with
manipulatives performed worse on a
measure of transfer than students
taught with a textbook.

Fourth graders taught proportions with
manipulatives performed better on a
measure of retention than those
taught without manipulatives.

Third and fourth graders taught
arithmetic with manipulatives
performed the same on a measure of
retention as those taught without
manipulatives.

Sixth graders taught algebra with factor
blocks performed better on a measure
of immediate retention than those
taught with a textbook. Performance
on a second measure of retention was
the same for both groups.

Ninth-grade students who were taught
algebra with algebra tiles performed
better on a postassessment than
students who did not have access to
the tiles.

Seventh-grade students taught fractions
with manipulatives performed better
at word problems pertaining to
probability than students taught
without manipulatives.

Third-grade students taught fractions
with manipulatives answered more
items correctly on a postmeasure of
retention.

Fourth-grade students taught decimals
with manipulatives answered more
items correctly on a postmeasure of
retention with manipulatives. This
gain was not seen on a measure of
retention performed without
manipulatives.

College-level students taught algebra
with manipulatives performed the
same on a measure of retention than
students who were not provided
manipulatives.

Fourth- and fifth-grade students taught
prealgebra with manipulatives
performed better on measures of
retention than students taught without
manipulatives.

Fourth-grade students taught fractions
with manipulatives performed better
on measures of retentions than
students who were taught without
manipulatives.

Fourth-grade students taught fractions
with manipulatives performed the
same on measures of retention and
transfer as those students taught with
a textbook.

Seventh-grade students taught arithmetic
with manipulatives performed the
same on measures of retention and
transfer as those students who were
taught without manipulatives.

(table continues)
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Coded instructional Mean
Study N Days Design® characteristics” Cohen’s d Main findings
Lucas (1966) 104 50 QEX PO, PRM, LG, 0.24 First-grade students taught with attribute
AR, GI blocks performed better on a measure
of problem solving than students who
were not taught with manipulatives.

Lucow (1964) 254 30 QEX CO, BM, HG, AR, 0.76 Third-grade students taught arithmetic

GI with manipulatives scored higher on a
measure of retention than students
taught with a textbook.

McClung (1998) 47 45 QEX FO, BM, LG, AL, —0.70 Tenth- and 11th-grade students taught

GI algebra with manipulatives performed
worse on a measure of retention than
students taught without
manipulatives.

Miller (1964) 114 9 WS CO, PRM, HG, 3.90 Sixth-grade students taught fractions

FR, GI with manipulatives answered more
items correctly on a postmeasure of
retention.

Moody et al. (1971) 90 20 EX CO, PRM, HG, —0.07 Third-grade students taught

AR, GI multiplication with manipulatives
performed worse on measures of
retention and transfer than students
taught with a textbook.

Nasca (1966) 45 180 QEX CO, BM, HG, AR, 0.43 Second-grade students taught arithmetic

GI with rods performed the same on
measures of retention and transfer as
those students taught with a textbook.

Nichols (1972) 267 Unknown WS CO, PRM, LG, 2.12 Third-grade students taught

AR, GI multiplication with manipulatives
answered more items correctly on a
postmeasure of retention.

Nickel (1971) 90 30 QEX CO, PRM, HG, 0.40 Fourth-grade students taught arithmetic

AR, GI with manipulatives performed the
same as students taught without
manipulatives.

Nishida (2007) 78 1 EX PO, BM, HG, FR, 0.11 First-grade students taught fractions

GI with manipulatives performed the
same on a measure of retention as
students taught without
manipulatives.

Norman (1955) 24 10 QEX CO, HG, AR, GI 1.48 Third-grade students taught division
with manipulatives performed better
than students taught with a textbook.

Olkun (2003) 93 2 QEX CO, PRM, LG, 0.37 Fourth- and fifth-grade students taught

GE, I geometry with manipulatives
preformed better on a measure of
retention than students taught without
manipulatives.

Paolini (1977) 26 15 WS PO, LG, AR, GI 0.88 Kindergarten students taught arithmetic
with manipulatives answered more
items correctly on a postmeasure of
retention.

Peterson et al. (1988) 24 9 EX CO, PRM, HG, 0.67 Learning disabled fourth graders taught

PV, GI place value with manipulatives
performed better on measures of
retention and transfer than students
taught without manipulatives.

Prigge (1978) 146 10 QEX CO, PRM, LG, 0.59 Third-grade students taught geometry

GE, I with manipulatives performed better
on measures of retention than
students taught with a textbook.

Robinson (1978) 119 5 EX CO, BM, HG, FR, 0.27 Fourth graders taught fractions taught

GI

fractions with Cuisenaire rods
performed the same on a measure of
retention as students taught without
rods.
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Study

Days

Design®

Coded instructional
characteristics®

Mean

Cohen’s d

Main findings

Shoecraft (1971)

Slaughter (1980)

Smith & Montani (2008)

Threadgill-Sowder & Juilfs (1980)

Steen et al. (2006)

Steger (1977)

Suh & Moyer (2007)

Taylor (2001)

Wallace (1974)

Weber (1970)

Witzel et al. (2003)

Wood (1974)

Yuan et al. (2010)

1096

217

12

147

31

52

36

58

154

30

68

40

60

10

Unknown

12

15

12

Unknown

30

20

EX

QEX

WS

EX

WS

WS

WS

QEX

QEX

QEX

QEX

WS

WS

FO, LG, FR, GI

CO, BM, LG, AR,
GI

CO, BM, HG, AR,
GI

CO, PRM, LG,
GE, GI

PO, HG, GE, GI

PO, BM, HG, PV,
GI

CO, MB, HG, FR,
GI

CO, PRM, LG,

AL, GI

CO, BM, HG, AR,

GI

PO, PRM, HG,
AR, GI

CO, BM, HG, FR,
GI

CO, PRM, LG,
AR, GI

FO, PRM, LG, GE,
GI

—0.04

0.18

0.84

0.47

1.70

0.63

2.76

—0.96

1.42

0.18

0.68

0.12

0.72

Seventh- and ninth-grade students
taught fractions with manipulatives
performed the same on measures of
retention and problem solving as
students taught without
manipulatives.

Third- and fifth-grade taught arithmetic
with manipulatives performed the
same on measures of retention as
students taught with a textbook.

Third graders taught multiplication with
manipulatives answered more
questions correctly on a postmeasure
or retention.

Seventh-grade students taught geometry
with manipulatives performed better
on a measure of retention than
students taught without. Performance
on a measure of transfer favored
students who were taught without
manipulatives.

First-grade students taught geometry
with manipulatives answered more
items correctly on a postmeasure of
retention.

First-grade students taught place value
with manipulatives answered more
items correctly on a postmeasure of
retention.

Third-grade students taught fractions
with manipulatives answered more
items correctly on a postmeasure of
retention.

Fifth-grade students taught probability
with manipulatives performed worse
on a measure of retention than
students taught with a textbook.
Performance on a transfer measure
was the same for both groups.

Fifth-grade students taught arithmetic
with Cuisenaire rods performed better
on a measure of retention than
students taught with a textbook.

First-grade students taught arithmetic
with manipulatives performed the
same on a measure of retention as
students taught with a textbook.

Sixth- and seventh-grade students taught
fractions with manipulatives
performed better on a measure of
retention than students taught without
manipulatives.

Second-grade students taught
multiplication with manipulatives
answered the same amount of
questions correctly on a postmeasure
of retention and transfer.

Eighth-grade students taught geometry
with manipulatives answered more
questions correctly on a
postassessment of problem solving.

2 EX = experiment; QEX = quasi-experiment; WS = within subjects; ® PO = preoperational students; CO = concrete operational students; FO = formal
operational students; PRM = perceptually rich manipulatives; BM = bland manipulatives; HG = high instructional guidance; LG = low instructional
guidance; PV = place value; AR = arithmetic; GE = geometry; FR = fractions; AL = algebra; GI = group instruction; II = individual instruction.
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reported, Cohen’s d values were calculated with reported descrip-
tive statistics or observed F or ¢ statistics (Rosenthal, 1984). Given
that studies with larger samples should have a more precise esti-
mate of the effect of manipulatives, studies were weighted to allow
large samples to have more influence. Weights for each study were
calculated from the reciprocal of the computed variance for d (for
details, see Lipsey & Wilson, 2001).

A number of studies measured several outcomes of interest.
Studies with various outcomes allowed for the coding of multiple
effect sizes. For example, the study by Aurich (1963) measured
three of the four coded learning outcomes (retention, problem
solving, and transfer). This afforded the calculation of three effect
sizes. To avoid the potential for nonindependence of effect sizes,
effect sizes from the same study were averaged (Rosenthal &
Rubin, 1986) to extract one effect size for each study. Effect sizes
were also disaggregated to examine differential effects of manipu-
latives across learning outcomes.

Instructional Moderators

Developmental status. Both age and grade level were coded
from each study. In cases with more than one grade level or age
present, the mean was recorded. Subsequently, the variable of age
was grouped into three categories equivalent to Piaget’s stages of
development, with samples of students from ages 3—6 coded as
preoperational, ages 7-11 coded as concrete operational, and age
12 and older coded as formal operational.

Perceptual richness. Manipulatives were coded as either per-
ceptually rich or bland in nature. A perceptually rich manipulative
is defined as an object that is either representative of a real object
or the actual object. For example, toy pizzas were coded as a
perceptually rich manipulatives (e.g., Ekman, 1967; Peterson,
Mercer, & O’Shea, 1988). Bland manipulatives included objects
that are nondescript such as plain rectangular blocks or tangrams
(e.g., Dyer, 1996; Egan, 1990).

Level of instructional guidance. Support provided to stu-
dents was coded to represent two levels of instructional guidance.
Studies were coded as providing either low or high instructional
guidance. For instance, in a study done by Hinzman (1997),
students worked in groups without instructions on how to use the
manipulatives provided to them. The only instruction provided to
students was the objective of the lesson, to represent equations
using different manipulatives such as colored disks and plastic
cups. In contrast, high instructional guidance was provided within
Getgood’s (2000) study that explicitly taught students the concepts
of greatest common factor and least common multiple with factor
blocks.

Mathematical topic. The math topic of instruction was coded
as a categorical variable with the following five categories: place
value, arithmetic, geometry, fractions, and algebra. The category
of arithmetic was used as a broad term encompassing math oper-
ations such as addition, subtraction, multiplication, and division.
These categories were developed to be exhaustive of all topics
present in the current body of literature.

Group versus individual instruction. Implementation of ma-
nipulatives strategies was coded as a dichotomous variable with
studies being implemented at either the individual or the group
level. Studies that were conducted in both small groups and whole
class instruction were coded as group level. Bring (1972) presented

an example of a study implemented at the individual level. In the
study students were removed from the classroom and asked to
individually complete a series of tasks or worksheets. As examples
of classroom-level implementation, Slaughter (1980) and Battle
(2007) examined the use of manipulatives with students who were
provided instruction in a whole group classroom setting.

Instructional time. The time of treatment implementation
was coded in days and then broken into tertiles to represent
treatment times that were short (less than or equal to 14 days),
medium (15-45 days), or long (greater than or equal to 46 days)
in length. Several studies failed to report the duration of treatment.
These studies were not included in the instructional time moder-
ator analyses.

Outcome measure. The dependent variables from each study
were coded into the following four classifications: retention, prob-
lem solving, transfer, and justification. Retention was defined as an
outcome that required students to solve basic facts (for example
from present sample, see, e.g., Smith & Montani, 2008). Problem
solving included tasks in which students were not explicitly in-
structed on how to complete the assessment (see, e.g., LeBlanc,
1968; Shoecraft, 1971). Studies were classified as having a transfer
outcome when students were asked to extend their knowledge to a
new situation; for example, extending learned concepts of addition
to multiplication (see, e.g., Ekman, 1967; Moody, Abell, & Bau-
sell, 1971). Justification outcomes included activities in which
participants were asked to provide explanations for why they used
a given method to solve a problem (see, e.g., King, 1976).

Methodological Moderators

Peer review status. The publication source of each study was
examined as a proxy variable for the quality of the study. Peer
review status was coded as a dichotomous variable (published, not
published). Studies were identified as published when they were
located within a peer-reviewed journal. Other publication types
such as thesis and dissertation studies found in research indexes
(e.g., ProQuest) were coded as unpublished.

Research design. The design of each study was coded as
either within-subjects, quasi-experimental, or experimental design.
Studies classified as using within-subjects designs were those with
a single group completing pre- and postassessments. The category
of quasi-experimental designs included studies that manipulated
the independent variable, but did not begin with random assign-
ment to conditions. Studies with designs coded as experimental
used random assignment to allocate individuals to conditions.

Implementer. Studies were also coded to identify who deliv-
ered treatment to students: a researcher or a teacher. When it was
clear the person conducting the research was also the teacher of the
students in the study, as was often the case in thesis and disserta-
tion studies, the study was coded as treatment being delivered by
the teacher.

Test type. Outcome measures were categorized as being re-
searcher created or standardized assessments. For example, several
studies used established assessments such as the Woodcock—
Johnson (Woodcock & Johnson, 1989; see, e.g., Smith & Montani,
2008). Other studies used researcher-created materials, which were
designed by the researcher specifically for use within the study
(e.g., Hinzman, 1997).
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Assumption of independence. The statistical assumption of
independence was coded for each study. A dichotomous variable
was created that distinguished studies that accounted for the non-
independence of observations that can occur when students in the
sample are nested within classrooms from those studies that did
not. Studies were coded by examining the degrees of freedom used
in the analysis. For instance, Garcia (2004) implemented the
intervention at the group level and used the classroom as the unit
of analysis, which meets the assumption of independence. In
contrast, Prigge (1978) implemented at the classroom level, but the
degrees of freedom for the analysis indicated that the unit of
analysis was the individual, which does not meet the statistical
assumption of independence.

Analyses

The analysis plan included separate, but parallel, analyses for
the aggregated and disaggregated data. Initially the effect sizes
were examined in the aggregated data set. For the aggregated data,
studies that reported multiple effect sizes were assigned a single
effect size that was the average of the reported or calculated effect
sizes (Rosenthal & Rubin, 1986). This procedure was followed to
avoid the issue of nonindependence that can arise when multiple
effects sizes are nested within a study, and to better address
questions regarding the overall efficacy of the use of manipulatives
on student learning. For the aggregated data, our procedure in-
cluded the following steps. First, we calculated a weighted mean
effect size across all studies. Next, we examined between-study
variation in effect sizes using a Q statistic (Hedges, 1983). If
statistically significant levels of between-study variation were
found, we examined moderation of effect sizes based on both
substantive and methodological features of the studies. All mod-
erator variables were categorical.

A partitioning of variance approach (Hedges, 1982; Hedges &
Olkin, 1985) was used to examine moderation. This approach uses
a Qpoween Statistic to represent the between-group variability in
effect sizes. This value can be referenced against a chi-square
distribution with £k — 1 degrees of freedom to test a null hypothesis
of no difference in effect sizes across levels of the moderator.
When differences were found, and there were more than two levels
of the moderator variable, we conducted post hoc pairwise com-
parisons using an extension of the Scheffé procedure (see Hedges
& Olkin, 1985) to maintain family-wise error rates at .05. As a last
step in our analysis of the aggregated data, we computed a fail-safe
N (Rosenthal, 1979) to assess the possible impact of studies with
nonsignificant findings being overlooked in the analysis.

Examination of the disaggregated data was parallel to that of the
analysis of the aggregated data. For these analyses, four sets of
effect sizes were calculated according to the type of outcome used
within the study. This approach allowed us to address more spe-
cific questions regarding the effect of manipulatives used for
different outcomes while also avoiding any nonindependence
among the effect sizes (no study reported multiple effect sizes
within a single category of outcomes). For each of the four types
of outcomes, we calculated an overall effect size and tested the
level of between-study variation. When statistically significant
levels of between-study variation were found, moderation analy-
ses, as described above, were conducted.
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Results

Coded characteristics of the 55 summarized studies are pre-
sented in Tables 2 and 3. Findings illustrate important differences
among the studies examining the efficacy of math manipulatives.
Of note are the following details: Fifty-five percent were published
in a peer-reviewed scholarly journal; 46% of the studies were done
after Sowell’s 1989 meta-analysis; 56% of the studies were with
third- and fourth-grade children; 76% of the studies were quasi-
experimental or pre- and postdesigns; 75% failed to account for the
statistical assumption of independence; and in 73% of the studies
classroom teachers implemented the intervention.

Aggregated Data

The aggregated mean effect size of 0.37 was statistically sig-
nificant (p < .001, 95% CI [0.30, 0.44]). Hedges’s homogeneity
test for effect sizes was also statistically significant, Q(54) =
277.8, p < .001, suggesting that between-study variation in effect
sizes exceeded what would be expected by sampling error alone.

Moderator analysis. Table 4 summarizes the findings from
the analysis of the moderator variables. The effect of mathematical
topic was found to be statistically significant, Q(4) = 29.8, p <
.001. Post hoc comparisons indicated that the mean effect size for
fractions (d = 0.69) was statistically greater than that for arithme-
tic (d = 0.27) and algebra (d = 0.21). Instructional guidance was
also a statistically significant moderator, Q(1) = 6.3, p = .01, with
the effect size of studies with high instructional guidance (d =
0.46) greater than those with low guidance (d = 0.29). In addition,
developmental status was statistically significant, Q(2) = 11.7,
p = .002; samples consisting of children assumed to be concrete
operational had a greater mean effect size (d = 0.45) than those
with samples consisting of participants assumed to be in formal
operations (d = 0.16). The effect sizes for studies of preopera-
tional (d = 0.33) students was not significantly different from the
effect sizes for studies of either concrete or formal operational
students. Lastly, the instructional variable of time was significant,
0(2) = 9.8, p = .008. Post hoc comparisons indicated that the
mean effect sizes for instruction provided for short lengths of time
(=14 days) and medium lengths of time (15-45 days) were not
statistically significantly different (d = 0.34 and d = 0.45, respec-
tively). However, both mean effect sizes were significantly greater
than the mean effect for long lengths (=46 days; d = 0.14).

Several moderators based on methodological characteristics of
studies were also statistically significant. Test type, O(1) = 3.8,
p = .05, was statistically significant, with studies using standard-
ized assessments having a higher mean effect size (d = 0.49) than
researcher-created assessments of learning (d = 0.33). The statis-
tical assumption of independence, Q(1) = 5.6, was also statisti-
cally significant (p = .01), with studies that met the statistical

Table 2
Descriptive Statistics for Continuous Variables
Range
Variable M SD Minimum Maximum
Age 9.8 years 2.4 55 17.0

Treatment time 25.0 days 42.7 1.0 180.0
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Table 3
Descriptive Statistics for Categorical Variables
Variable Category %
Peer review status Not published 55.3
Published 44.6
Instructional Low 44.6
guidance High 553
Independence Not met 75.0
Met 25.0
Test type Researcher created 73.3
Standardized assessment 26.7
Implementer Teacher 73.3
Researcher 26.7
Research design Within subjects 23.2
Quasi-experimental 535
Experimental 23.2
Mathematical topic Arithmetic 42.8
Place value 5.4
Geometry 10.7
Fractions 232
Algebra 17.8
Perceptual richness Yes 53.0
No 47.0
Group vs. individual Individual 7.1
instruction Group 92.9
Outcome measures Retention 94.6
Transfer 24.5
Justification 3.7
Problem solving 16.0

assumption having a smaller mean effect size (d = 0.19) than
studies that did not meet this assumption (d = 0.41). Additionally,
study design was statistically significant, Q(2) = 91.5, p < .001;
post hoc comparisons revealed that within-subjects studies had a
higher mean effect size (d = 1.22) than quasi-experimental studies
(d = 0.28) or studies using the experimental design (d = 0.16). No
statistical difference between quasi-experimental and experimental
designs was observed. Finally, peer-reviewed status, Q(1) = 5.7,
p = .01, was statistically significant, with published studies having
a greater mean effect size (d = 0.46) than unpublished studies
(d = 0.30).

Disaggregated Data

Analysis of the disaggregated effect sizes by the learning out-
comes revealed a mean effect size for retention of 0.59 (95% CI
[0.52, 0.65]), whereas the mean effect size for problem solving
was 0.46 (95% CI [0.23, 0.68], with both being statistically sig-
nificant (p < .001). The mean effect size for transfer was 0.13
(95% CI [0.02, 0.23]), and the mean effect size for justification
was 0.38 (95% CI [0.06, 0.70], both p < .01). For three outcomes,
examination of between-study variance revealed variation in effect
sizes exceeded what would be expected by sampling error: reten-
tion, Q(52) = 719.2; transfer, Q(12) = 56.7; and problem solving,
0(8) = 56.3, all p < .001. For justification the Q statistic was
found to be nonsignificant, Q(1) = 2.93, p = .23. Moderator
analyses were performed only for the three outcome measures with
statistically significant variation in effect sizes.

Retention. Table 5 summarizes the findings for each of the
coded moderator variables within the learning outcome of reten-
tion. As with the aggregated data, variation among effect sizes was
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impacted by both methodological and instructional variables. For
instructional variables of interest, patterns similar to those found
for the aggregated data emerged. Level of instructional guidance,
Q(1) = 106.5, p < .001, was statistically significant, with high
instructional guidance having a greater mean effect size (d = 0.90)
than low instructional guidance (d = 0.19). Math topic was a
statistically significant moderator, Q(4) = 44.5, p < .001, with
studies concerning fractions (d = 0.93) and algebra (d = 0.84)
having statistically higher mean effect sizes than studies teaching
arithmetic (d = 0.39). Developmental status was significant,
02) = 106.8, p < .001, with post hoc comparisons revealing
significant differences between all pairings of studies using pre-
operational (d = —0.09), concrete operational (d = 0.81), and
formal operational (d = 0.31) samples. Perceptual richness was a
significant moderator, Q(1) = 36.4, p < .001, with studies that
used perceptually rich objects (d = 0.28) having a lower mean
effect size than studies with bland or nondescript objects (d =
0.77). Instructional time was also a significant moderator, Q(2) =
7.4, p = .02. Post hoc comparisons revealed that that the mean
effect size for instruction provided for short lengths of time (d =
0 .59) was significantly greater than studies coded as medium
lengths of time (d = 0.35), but not statistically different from long
lengths of time (d = 0.49). Additionally, the difference between
medium and long lengths of instructional time was not significant.

For methodological characteristics, several moderators were
statistically significant. Peer review status was significant with
published studies having a greater mean effect size (d = 0.97) than
those that were unpublished (d = 0.30), Q(1) = 90.7, p < .001.
Research design was significant, Q(2) = 183.1, p < .001. Studies
using within-subjects designs had greater mean effect size (d =
1.69) than those using either quasi-experimental (d = 0.35) or
experimental (d = 0.47) designs. The difference between studies
using quasi-experimental and experimental designs was nonsignif-
icant. Treatment implementer moderated effect size, Q(1) = 89.1,
p < .001, with researcher-implemented treatments (d = 0.13)
having a smaller mean effect size than teacher-implemented treat-
ments (d = 0.82).

Problem solving. Table 6 contains the findings for the coded
variables for studies measuring problem solving. Level of instruc-
tional guidance had a significant effect, Q(1) = 19.1, p < .001.
High instructional guidance (d = 1.06) studies had a greater mean
effect size than low instructional guidance studies (d = 0.04).
Math topic also was a significant moderator, with Q(3) = 45.1,
p < .001. Studies examining manipulatives with fractions had a
greater mean effect size (d = 2.50) than those examining arith-
metic (d = 0 .02), place value (d = 0 .48), and geometry (d =
0.72). The differences among the latter three were nonsignificant.
Perceptual richness was significant, Q(1) = 15.3, p < .001, with
studies that used perceptually rich objects (d = —0.27) having a
lower mean effect size than studies with bland or nondescript
objects (d = 0.80). Lastly, for instructional variables, time was a
significant moderator, Q(2) = 22.7, p < .001, with instructional
time coded as short (d = 0.86) and long (d = 0.25) in length
having a greater mean effect size than studies coded as medium in
length (d = —0.62). However, the difference between studies that
were coded as short and long was not statistically significant.

Significant moderators related to research methods were
present as well. Peer review status was significant, with pub-
lished studies having a greater mean effect size (d = 0.76) than
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Table 4
Variability of Effect Sizes Within Aggregated Data
Moderator k N d 95% CI Opetween
Methodology characteristics

Peer review status 57,p=.01
Published 24 4,190 0.46 [0.36, 0.56]
Not published 31 3,047 0.30 [0.22, 0.39]

Design 91.5, p < .001
Within subject 12 748 1.22, [1.03, 1.32]
Quasi-experimental 30 5,173 0.28, [0.20, 0.37]
Experimental 13 1,346 0.16,, [0.02, 0.30]

Implementer 1.6,p = .19
Researcher 15 1,285 0.29 [0.14, 0.43]
Teacher 40 5,952 0.39 [0.32,0.47]

Test type 3.8,p=.05
Standardized 15 1,172 0.49 [0.35, 0.63]
Researcher created 40 6,065 0.33 [0.26, 0.41]

Independence 5.6,p = .01
Met 14 1,027 0.19 [0.03, 0.35]
Not met 41 6,210 0.41 [0.33,0.48]

Instructional characteristics

Instructional guidance 6.3,p=.01
High 30 4,275 0.46 [0.36, 0.56]
Low 25 2,962 0.29 [0.20, 0.38]

Mathematical topic 29.8, p < .001
Place value 3 101 0.58,, [0.20, 0.96]
Arithmetic 24 2,309 0.27, [0.16, 0.38]
Geometry 6 662 0.37, [0.19, 0.56]
Fractions 12 2,876 0.69,, [0.55, 0.84]
Algebra 10 1,348 0.21, [0.07, 0.34]

Perceptual richness 0.21,p = .64
Yes 26 4,050 0.36 [0.27, 0.45]
No 24 1,923 0.39 [0.28, 0.50]

Group vs. individual 29,p=.08
Individual 4 388 0.58 [0.33,0.83]
Group 51 6,849 0.35 [0.29, 0.42]

Development status 11.7, p = .002
Preoperational 10 1,256 0.33, [0.16, 0.49]
Concrete 38 5,657 0.45, [0.37,0.53]
Formal 7 324 0.16,, [0.01, 0.31]

Instructional time 9.4, p = .008
=14 days 27 4,340 0.34, [0.24, 0.45]
15-45 days 16 1,353 0.45, [0.34,0.57]
=46 days 6 540 0.14, [—0.01, 0.30]

Note. For moderators with more than two levels, mean effect sizes with different subscripts are statistically different from

one another, based on a family-wise Type I error probability of .05. CI = confidence interval.

those that were unpublished (d = —0.33), O(1) = 18.5, p <
.001. Design was also statistically significant, with Q(2) =
26.3, p < .001. Within-subject designs (d = 1.23) had higher
mean effect sizes than quasi-experimental (d = 0.27) and
experimental designs (d = —0.08). Additionally, implementer
was significant, Q(1) = 23.2, p < .001; teacher-implemented
treatments (d = 0.82) had greater effect sizes than researcher-
delivered programs (d = —0.39). The assumption of statistical
independence was significant, Q(1) = 5.5, p = .01. Studies that
violated the assumption had greater effect sizes (d = 0.61) than
those that met the assumption (d = —0.01).

Transfer. Table 7 contains the findings for each of the coded
moderator variables for the learning outcome of transfer. Level of
instructional guidance, Q(1) = 6.7, p = .009, was statistically
significant. In contrast to the findings from the other outcomes,
low levels of guidance produced a larger mean effect size (d =

0.27) than high levels of guidance (d = 0.00). Perceptual richness
of the manipulative was also statistically significant, Q(1) = 12.2,
p < .001. Again, differing from the results from the other out-
comes, perceptually rich manipulatives had a higher mean effect
size (d = 0.48) than bland manipulatives (d = —0.02) on transfer
outcomes.

Two methodological variables were found to significantly mod-
erate effect sizes: the design of the research, Q(2) = 27.5, p <
.001, and the statistical assumption of independence, Q(1) = 29.3,
p < .001. Unlike previous results, significant differences existed
between studies in favor of experimental design, with experiments
(d = 0.40) having a statistically significant higher mean effect size
than both within-subjects (d = 0.25) and quasi-experiments (d =
—0.21). Studies that met the assumption of independence had a
smaller (and negative) mean effect size (d = —0.67) than those
that did not meet the assumption (d = 0.27).
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Table 5
Variability of Effect Sizes Within Retention
Moderator k N d 95% CI Obetween
Methodology characteristics

Peer review status 90.7, p < .001
Published 23 4,162 0.97 [0.86, 1.07]
Not published 30 2,978 0.30 [0.21, 0.39]

Design 183.1, p < .001
Within subject 12 707 1.69, [1.52, 1.87]
Quasi-experimental 29 5,187 0.35, [0.27, 0.44]
Experimental 12 1,246 0.47, [0.34, 0.60]

Implementer 89.1, p < .001
Researcher 15 6,135 0.13 [0.01, 0.24]
Teacher 38 1,005 0.82 [0.73, 0.90]

Test type 6.9, p = .008
Standardized 14 1,206 0.77 [0.62, 0.92]
Researcher created 39 5,934 0.54 [0.47, 0.62]

Independence 11.9, p < .001
Met 13 937 0.79 [0.66, 0.93]
Not met 40 6,203 0.52 [0.44, 0.60]

Instructional characteristics

Instructional guidance 106.5, p < .001
High 31 4,531 0.90 [0.81, 0.99]
Low 22 2,609 0.19 [0.08, 0.29]

Mathematical topic 44.5, p < .001
Place value 3 101 0.70,, [0.37, 1.04]
Arithmetic 25 2,387 0.39, [0.29, 0.48]
Geometry 5 602 0.57,, [0.37,0.78]
Fractions 13 2,762 0.93, [0.78, 1.08]
Algebra 9 1,288 0.84, [0.65, 1.03]

Perceptual richness 36.4, p < .001
Yes 12 1,395 0.28 [0.14,0.41]
No 34 4,723 0.77 [0.69, 0.85]

Group vs. individual 0.02,p = .87
Individual 5 481 0.57 [0.31, 0.82]
Group 48 6,659 0.59 [0.52, 0.66]

Development status 106.8, p < .001
Preoperational 8 707 —0.09, [—0.26,0.07]
Concrete 40 6,109 0.81, [0.73, 0.89]
Formal 5 324 031, [0.10, 0.52]

Instructional time 74,p=.02
=14 days 25 3,133 0.59, [0.49, 0.69]
1545 days 15 1,261 0.35, [0.21, 0.49]
=46 days 7 952 0.49,, [0.28,0.71]

Note. For moderators with more than two levels, mean effect sizes with different subscripts are statistically different from

one another, based on a family-wise Type I error probability of .05. CI = confidence interval.

Publication Bias

Publication bias refers to the possibility that results from studies
showing statistically significant effects in the expected direction
are more likely to be published than results form studies not
showing such effects. This is commonly referred to as the file-
drawer phenomenon (Rosenthal, 1979). To assess the possible
impact of such bias, we included both published and unpublished
manuscripts in the present review. However, given that our un-
published studies consist primarily of dissertation and thesis proj-
ects, we cannot rule out the possibility that other studies with
nonsignificant findings have been excluded. Therefore, we con-
ducted an analysis of publication bias to assess the potential impact
of missing studies on meta-analytic results. Rosenthal’s (1979)
fail-safe N was calculated to determine how many studies with a
null effect would be needed to attenuate the overall effect size to

nonsignificance. This analysis revealed that approximately 9,501
studies would be needed to decrease the average effect size of
manipulatives to nonsignificance.

Discussion

The purpose of this meta-analytic review was to examine the
effect of using concrete manipulatives for teaching mathematics
when compared with abstract symbolic instructional conditions.
Additional research exploring comparisons of manipulatives
against iconic representations of manipulatives would greatly en-
hance our understanding of instructional strategies that use con-
crete representations of mathematics. Currently, the findings from
the present review of manipulatives suggest a small- to moderate-
sized effect in favor of instructional strategies that use manipula-
tives when compared with abstract symbolic instruction. However,
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Table 6
Variability of Effect Sizes Within Problem Solving
Moderator k N d 95% CI Obetween
Methodology characteristics
Peer review status 18.5, p < .001
Published 7 335 0.76 [0.50, 1.03]
Not published 2 142 —0.33 [—0.07, 0.09]
Design 26.3, p < .001
Within subject 3 146 1.23, [—0.85, 1.60]
Quasi-experimental 3 144 0.27, [—0.20, 0.75]
Experimental 3 187 —0.08, [—0.43, 0.25]
Implementer 23.2, p <.001
Researcher 2 116 —-0.39 [—1.85,0.02]
Teacher 7 361 0.82 [0.55, 1.09]
Test type 8.2,p =.002
Standardized 3 201 —0.03 [—0.43,0.36]
Researcher created 6 276 0.69 [0.42,0.97]
Independence 55,p=.01
Met 2 106 —0.01 [—0.47,0.43]
Not met 7 371 0.61 [0.35, 0.87]
Instructional characteristics
Instructional guidance 19.1, p < .001
High 5 202 1.06 [0.71, 1.42]
Low 4 275 0.04 [—1.30, 1.39]
Mathematical topic 45.1, p <.001
Place value 1 24 0.48, [—0.32, 1.29]
Arithmetic 5 246 0.02, [—0.26, 0.30]
Geometry 1 93 0.72, [0.20, 1.24]
Fractions 2 114 2.50, [1.82,3.18]
Algebra 0
Perceptual richness 15.3, p < .001
Yes 2 100 —0.27 [—0.72,0.18]
No 6 377 0.80 [0.52, 1.08]
Group vs. individual
Individual 0
Group 9 477 0.46 [0.23, 0.68]
Development status 22,p=.33
Preoperational 1 66 0.08 [—0.58, 0.75]
Concrete 7 318 0.45 [0.18, 0.72]
Formal 1 93 0.72 [0.20, 1.24]
Instructional time 227, p < .001
=14 days 6 290 0.86, [0.56, 1.16]
1545 days 1 76 —0.62, [—1.17, —0.62]
=46 days 2 111 0.25, [—0.19, 0.69]
Note. For moderators with more than two levels, mean effect sizes with different subscripts are statistically different from

one another, based on a family-wise Type I error probability of .05. CI = confidence interval.

these results cannot be used as evidence that manipulatives are
beneficial for learning when making comparisons to other math-
ematic instructional strategies. Furthermore, an examination of
effect sizes across instructional characteristics and learning out-
comes revealed that the effectiveness of manipulatives is complex
and requires consideration of instructional characteristics and
learning outcomes.

Concrete manipulatives have been proposed as an effective
strategy in aiding students in problem solving and transfer of
mathematical understanding (Burns, 1996; NCTM, 2000). Ef-
fect sizes when separated by learning outcome did not follow
this assumed pattern. In fact, instruction that used manipula-
tives produced a moderate- to large-sized effect when students
were measured on retention and small effects when higher level
outcomes such as problem solving, transfer, and justification
were considered. Taken as a whole, the aggregated and disag-

gregated findings indicate that concrete manipulatives may
have a differential impact on learning outcomes. These differ-
ential outcomes should be considered for future empirical ex-
amination and when teaching mathematics concepts with ma-
nipulatives.

Instructional Characteristics

Level of instructional guidance, mathematical topic, devel-
opment status, perceptual richness, and instructional time were
statistically significant moderators of the effects of using con-
crete manipulatives. The moderators of developmental status,
level of instructional guidance, type of manipulative, and in-
structional time are of particular interest due to the connections
between these moderators and current developmental and in-
structional theories.
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Table 7
Variability of Effect Sizes Within Transfer
Moderator k N d 95% CI Opetween
Methodology characteristics

Peer review status 22,p=.13
Published 8 2,871 0.19 [0.05, 0.32]
Not published 5 582 0.04 [—0.15,0.25]

Design 27.5,p < .001
Within subject 2 72 0.25,, [0.69, 0.12]
Quasi-experimental 6 702 —-0.21, [—0.39, —0.03]
Experimental 5 2,415 0.40, [0.25, 0.56]

Implementer 14,p=.23
Researcher 4 259 0.06 [—0.20, 0.33]
Teacher 9 3,194 0.16 [0.04, 0.29]

Test type 0.92,p = .33
Standardized 1 60 0.18 [—0.43, 0.80]
Researcher created 12 3,393 0.14 [0.03, 0.26]

Independence 29.3, p < .001
Met 3 225 —0.61 [—0.91, —0.31]
Not met 10 3,228 0.27 [0.15, 0.39]

Instructional characteristics

Instructional guidance 6.7, p = .009
High 8 2,385 0.00 [—0.16, 0.16]
Low 5 1,068 0.27 [0.12,0.43]

Mathematical topic 1.5,p = .83
Place value 1 12 0.33 [—0.28, 0.96]
Arithmetic 7 757 0.16 [0.00, 0.36]
Geometry 1 147 0.24 [—0.15, 0.65]
Fractions 3 1,996 0.09 [—0.14,0.32]
Algebra 1 541 0.09 [—0.18, 0.36]

Perceptual richness 12.2, p < .001
Yes 5 1,359 0.48 [0.25, 0.62]
No 6 2,094 —0.02 [—0.23,0.17]

Group vs. Individual
Individual
Group

Developmental Status
Preoperational
Concrete 13 3,453 0.14 [0.03, 0.26]
Formal

Instructional time 3.6,p = .06
=14 days 7 1,625 0.03 [—0.13,0.21]
1545 days [§ 1,828 0.22 [0.07,0.37]
=46 days

Note. For moderators with more than two levels, mean effect sizes with different subscripts are statistically different from

one another, based on a family-wise Type I error probability of .05. CI = confidence interval.

Developmental status. Several contemporary theorists pro-
pose that ability to reason abstractly is the pinnacle of cognitive
development. According to these theorists, concrete manipula-
tives should be provided when younger learners begin studying
abstract mathematical concepts (Bruner, 1964; Piaget, 1962).
Within this developmental framework, it is expected that pro-
viding manipulatives allows educators to represent abstract
concepts with concrete representations. These concrete repre-
sentations are expected to facilitate the construction of meaning
for pre- and concrete operational children and result in positive
cognitive consequences. In contrast, students who are assumed
to have reached formal operations are not expected to derive
comparable cognitive benefits from the provision of concrete
manipulatives.

Our findings provide partial support for these developmental
predictions. At the aggregated level, studies that included children

assumed to have facility with concrete operations showed medium
to large effect sizes, whereas studies comprising formal opera-
tional students had relatively smaller effect sizes. Within the
learning outcome of retention, the pattern of manipulatives being
the most efficacious for students within the assumed concrete
operations stage remains; however, studies consisting of samples
of preoperational-age children revealed a statistically lower and
negative mean effect size (d = —0.09) than studies consisting of
samples of assumedly concrete or formal operational students.
Recently, developmental theorists have proposed explanations for
why concrete manipulatives may be less effective with younger
children. According to these explanations, concrete manipulatives
may not be as effective with younger children because they may
struggle with the concept that an object can stand for the item
while simultaneously representing a larger mathematical concept
(DeLoache, 2000; Uttal et al., 2009). Future research should ex-
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amine how concrete manipulatives assist in developing founda-
tional mathematical concepts with younger children.

Instructional guidance. Conflicting recommendations have
been provided to practitioners concerning the level of instructional
guidance offered to students during the learning process. Those
who recommend high levels of instructional guidance propose that
instructional guidance provides students with explicit opportuni-
ties to select pertinent information, organize the information into
coherent structures, and incorporate the new information with prior
knowledge (Mayer, 2003). According to this model, low levels of
instructional guidance do not promote this process due to the lack
of explicit guidance selecting relevant information. Results from
the aggregated, retention, and problem-solving data support this
model, with high levels of guidance being associated with higher
levels of student learning. This finding also aligns with prior
research examining the efficacy of manipulatives in listening and
reading instruction (Glenberg, Brown, & Levin, 2007; Glenberg,
Jaworski, Rischal, & Levin, 2007; Marley et al., 2007). These
researchers have suggested that the scripted manipulation of ob-
jects helps students establish connections between concrete repre-
sentations and their abstract referents (i.e., words), which in turn
enhances comprehension.

Proponents of low instructional guidance contend that students
who reach proficiency with limited or no instructional guidance
develop greater conceptual understandings and are subsequently
more adept at transferring this knowledge to novel circumstances
(Schauble, 1996; Stohr-Hunt, 1996). Martin’s (2009) theory of
physically distributed learning supports this notion with the expla-
nation that students are able to impose their own meanings on
manipulatives. This development of self-relevant meaning allows
for greater flexibility and for learning to be transferred to novel
circumstances. The moderator analysis associated with the transfer
of learning outcome provides partial support for this perspective,
with low instructional guidance studies having larger effect sizes
on transfer of learning relative to high levels of guidance. Future
research is needed to better understand what level of instructional
guidance is optimum for student learning with manipulatives.
More specifically, research is needed to examine how level of
instructional guidance may need to vary depending upon learning
objective.

Perceptual richness. The perceptual richness of manipula-
tives has been identified as a potential deterrent to student learning
and performance (Kaminski et al., 2009; Martin & Schwartz, 2005;
McNeil et al., 2009). Superficial details that are present in percep-
tually rich manipulatives have been shown to distract children
when asked to perform a math word problem, resulting in students
making more errors in solving the math problem but proportionally
fewer conceptual errors than students who used bland manipula-
tives (McNeil et al., 2009).

The moderator analysis within the retention and problem-
solving data provides additional support for the idea that percep-
tually rich manipulatives suppress student learning. Within the
learning outcome of retention, studies utilizing perceptually rich
manipulatives had a smaller effect on student measures of imme-
diate performance. Additionally, specific to the learning outcome
of problem solving, those studies that used perceptually rich ma-
nipulatives revealed a lower and negative mean effect size (d =
—0.27) when compared with studies that used bland manipulatives
during the problem solving process.

Results on transfer of learning, an outcome that requires greater
conceptual understanding of the mathematics concepts, indicated
that perceptually rich manipulatives may enhance student learning.
With findings indicating that studies that used bland manipulatives
had a lower and negative mean effect size (d = —0.02) than
studies using perceptually rich manipulatives. However, it is im-
portant to note that this finding contradicts previous cognitive
research that suggests that the perceptual richness of images in-
hibits the transfer of learning (Goldstone & Sakamoto, 2003;
Kaminski, Sloutsky, & Heckler, 2008). To better understand this
finding, additional research examining the relationship between
the perceptual richness of manipulatives and their effects on a
variety of student learning outcomes is warranted.

Instructional time. The length of instructional time provided
to students has been established as an essential variable to learning
(Rosenshine & Berliner, 1978). Furthermore, experiments con-
trasting direct and discovery learning as means to improving
inquiry skills have implicated length of instructional time as an
explanation for inconsistent empirical results (Dean & Kuhn,
2007) within the instructional strategy literature. According to
Dean and Kuhn (2007), in order for student-controlled strategies to
be effective, students must engage in instruction over an extended
period. In addition, Sowell’s (1989) meta-analysis provides evi-
dence that extended use of manipulatives had a positive effect on
measures of retention. Results from the moderator analysis of the
present study contradict these findings. Studies that were less than
45 days had a higher mean effect on student learning within the
aggregated data. Additionally, within the learning outcomes of
retention, studies that were less than 14 days had a higher mean
effect than studies that were longer (i.e., more than 15 days), and
within problem solving, studies that were coded at being medium
in length (15 to 45 days) had a lower and negative mean effect size
(d = —0.62) than short or long studies. A possible explanation for
these contradictory findings was the inability of the coding to
disentangle instructional time with the length of study. Therefore,
further research that specifically examines varying lengths of in-
structional time with manipulatives is needed to provide a better
understanding of how this instructional variable moderates the
overall effectiveness of manipulatives.

Methodological Characteristics

Methodological aspects of studies presented additional variation
in the overall findings. This variation in effect sizes due to meth-
odological characteristics is related to the validity of the inferences
made from the results of this literature. Methodological character-
istics that significantly moderated effect sizes included peer review
status, research design, implementer, type of test, and accounting
for the statistical assumption of independence. Moderation within
these variables raises specific concerns related to statistical con-
clusion validity and internal validity.

Statistical conclusion validity. Validity concerning the infer-
ences made about the covariation between treatment and outcome
is of specific concern when examining the efficacy of teaching
strategies. Threats to statistical conclusion validity may lead to
results that either overestimate or underestimate the magnitude of
the covariation between the treatment and the outcome (Shadish et
al., 2002). When threats of this nature have a high prevalence in
the literature, conclusions regarding the effectiveness of the teach-
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ing strategy are limited. This concern is supported by the findings
that a greater effect size was produced when statistical indepen-
dence is not accounted for in the analysis. Furthermore, published
studies and within-subjects studies produced larger effect sizes.
The latter suggests that the results of within-subjects studies
should be carefully evaluated. The former could be an indication
that published studies are of higher quality and produce significant
results, or that significant findings tend to be published over
findings that fail to reach statistical significance.

Internal validity. The ability to make an inference about the
causal effect of manipulatives on student learning is grounded in
research design. At a minimum, to build a case for strong internal
validity, studies must be able to account for plausible rival expla-
nations. The most effective way to control for threats to internal
validity is the use of an experimental design. By randomly assign-
ing participants to conditions, plausible threats to internal validity
are minimized. The finding that studies that did not use random
assignment had a significantly higher effect size than those from
experimental designs emphasizes the need for researchers and
practitioners to be cautious when making prescriptive statements
concerning the efficacy of manipulatives.

Limitations

Limitations of meta-analyses are often similar to those for
primary studies (Card, 2012). Three such limitations common to
both meta-analytical and primary studies that are relevant to the
current meta-analysis are the potential problem of generalizing
results, issues related to incomplete or missing data, and the
difficultly of drawing sound inference about causal effects.

Specific to this meta-analysis is the possible limitation of gen-
eralizability due to our definitions of manipulative and control
groups. For example, studies that used a scale were not included in
the sample, nor were studies that made comparisons between
manipulatives and pictures. Inclusion of studies that used tools or
pictures may alter conclusions regarding mathematics manipula-
tives. Therefore, the circumscribed conclusion that can be drawn is
that a positive effect of manipulatives was found on student
learning outcomes when it was compared with conditions in which
no manipulatives or other concrete materials (e.g., pictures) were
used and that the relationship between manipulatives and learning
within this comparison is moderated by different instructional
characteristics. Further research should be conducted to collect
evidence comparing manipulatives to other learning strategies.

Another potential limitation on generalizability is posed by the
previously mentioned file-drawer problem. A careful attempt was
made to exhaustively search for unpublished manuscripts; how-
ever, some studies examining the efficacy of manipulatives may
not have been identified. This means the possibility of publication
bias is still present. Additionally, in many instances, studies in-
cluded in the meta-analysis did not report enough information for
all variables of interest to be coded. The lack of information from
individual studies created numerous occasions of missing values
for the moderator variables. The inability to use all studies in each
moderator analysis could have decreased the statistical power of
the meta-analysis to detect differences that may exist. The lack of
information from studies also created many missed opportunities
to further develop an understanding of the efficacy of manipula-
tives. Detailed information related to the procedure of the study

(i.e., interval of time between outcomes measures, the use of
manipulatives at time of testing, and details related to actual
activities of participants) may have yielded a slightly different
overall outcome on student learning. For example, the lack of
details provided in articles limited the ability to make distinctions
between learning activities that were conducted within each study.
Clarification of the activities conducted within each study may
have provided an opportunity to use established frameworks such
as Chi’s (2009) taxonomy of learning activities.

Finally, as noted by Card (2012), the strength of conclusions
from any meta-analysis is based on the quality of the research
design for both the meta-analysis and each of the constituent
studies. For example, results from a meta-analysis of high-quality
studies will always yield better conclusions than a meta-analysis of
low-quality studies. Therefore, the observed methodological dif-
ferences in study quality may affect the quality of the present
results. In addition, it should be emphasized that the reported
moderator effects are based on the observed covariation between
the coded moderator variables and the values of the study effect
sizes. As such, moderator effects should not be construed as strong
evidence for the causal effect of a moderator variable on the
effectiveness of using manipulative.

Conclusion

Results from this meta-analysis begin to focus the inconsisten-
cies seen within the manipulation-based literature. Findings indi-
cate that using manipulatives in mathematics instruction produces
a small- to medium-sized effect on student learning when com-
pared with instruction that uses abstract symbols alone. Addition-
ally, results revealed that the strength of this effect is dependent
upon other instructional variables. Instructional variables such as
the perceptual richness of an object, level of guidance offered to
students during the learning process, and the development status of
the learner moderate the efficacy of manipulatives. The finding
that specific instructional variables either suppress or increase the
efficacy of manipulatives suggests that simply incorporating ma-
nipulatives into mathematics instruction may not be enough to
increase student achievement in mathematics. These contextual
variables therefore must be considered when planning instruction.
It is our hope that the results of this meta-analysis will further
stimulate math manipulatives research and assist others in gener-
ating new and more specific hypotheses investigating this instruc-
tional strategy.
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