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SOCIOMATHEMATICAL NORMS, ARGUMENTA-
TION, AND AUTONOMY IN MATHEMATICS

ERNA YACKEL, Purdue University
PAUL COBB, Vanderbilt University

This paper sets forth a way of interpreting mathematics classrooms that aims to account for how
students develop mathematical beliefs and values and, consequently, how they become intel-
lectually autonomous in mathematics. To do so, we advance the notion of sociomathematical
norms, that is, normative aspects of mathematical discussions that are specific to students” math-
ematical activity. The explication of sociomathematical norms extends our previous work on gen-
eral classroom social norms that sustain inquiry-based discussion and argumentation. Episodes
from a second-grade classroom where mathematics instruction generally followed an inquiry
tradition are used to clarify the processes by which sociomathematical norms are interactively
constituted and to illustrate how these norms regulate mathematical argumentation and influ-
ence learning opportunities for both the students and the teacher. In doing so, we both clarify
how students develop a mathematical disposition and account for students’ development of increas-
ing intellectual autonomy in mathematics. In the process, the teacher’s role as a representative
of the mathematical community is elaborated.

For the past several years, we have been engaged in a research and development
project at the elementary school level that has both pragmatic and theoretical
goals. On one hand, we wish to support teachers as they establish classroom envi-
ronments that facilitate students’ mathematical conceptual development. On the other
hand, we wish to investigate children’s mathematical learning in the classroom. The
latter involves developing perspectives that are useful for interpreting and attempt-
ing to make sense of the complexity of classroom life. The purpose of this paper
is to set forth a way of interpreting classroom life that aims to account for how stu-
dents develop specific mathematical beliefs and values and, consequently, how they
become intellectually autonomous in mathematics, that is, how they come to
develop a mathematical disposition (National Council of Teachers of Mathematics,
1991). To that end, we focus on classroom norms that we call sociomathematical
norms. These norms are distinct from general classroom social norms in that they
are specific to the mathematical aspects of students’ activity. As a means of intro-
ducing and elaborating the theoretical discussion in this paper, we present episodes
from a classroom that we have studied extensively. The episodes have been
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selected for their clarifying and explanatory power and are not meant to be exem-
plary or reflect ideal classroom practice.

There is a reflexive relationship between developing theoretical perspectives and
making sense of particular events and situations. The analysis of the particular con-
stitutes occasions to reconsider what needs to be explained and to revise explanatory
constructs. Conversely, the selection of particulars to consider reflects one’s theoretical
orientation. Thus, particular events empirically ground theoretical constructs, and the-
oretical constructs influence the interpretation of particular events (Erickson, 1986).
This interdependence between theory and practice is reflected throughout this paper.

THEORETICAL PERSPECTIVE

Our theoretical perspective is derived from constructivism (von Glasersfeld, 1984),
symbolic interactionism (Blumer, 1969), and ethnomethodology (Leiter, 1980; Mehan
& Wood, 1975). We began the project intending to focus on learning primarily from
a cognitive perspective, with constructivism as a guiding framework. However, as
we attempted to make sense of our experiences in the classroom, it was apparent
that we needed to broaden our interpretative stance by developing a sociological
perspective on mathematical activity. For this purpose, we drew on constructs derived
from symbolic interactionism (Bauersfeld, Krummheuer, & Voigt, 1988; Blumer,
1969; Voigt, 1985, 1989) and ethnomethodology (Krummheuer, 1983; Mehan &
Wood, 1975). We were then able to account for and explicate the development of
general classroom social norms. These same constructs proved critical to our
development of the notion of sociomathematical norms. As will be seen through-
out, constructs that proved particularly relevant are the interactive constitution of
meaning, from symbolic interactionism, and reflexivity, from ethnomethodology.
A detailed discussion of the coordination of psychological and sociological perspectives
is beyond the scope of this paper and can be found in Cobb and Bauersfeld (1995).

Bauersfeld (1988) and Voigt (1992) have elaborated the relevance of interactionist
perspectives for mathematics education research. A basic assumption of interac-
tionism is that cultural and social processes are integral to mathematical activity (Voigt,
1995). This view, which is increasingly accepted by the mathematics education com-
munity (Cobb, 1990; Eisenhart, 1988; Greeno, 1991; Resnick, 1989; Richards, 1991),
is stated succinctly by Bauersfeld (1993).

[T]he understanding of learning and teaching mathematics ... support[s] a model of par-
ticipating in a culture rather than a model of transmitting knowledge. Participating in the
processes of a mathematics classroom is participating in a culture of using mathematics,
or better: a culture of mathematizing as a practice. The many skills, which an observer
can identify and will take as the main performance of the culture, form the procedural sur-
face only. These are the bricks for the building, but the design for the house of mathematizing
is processed on another level. As it is with cultures, the core of what is learned through
participation is when to do what and how to do it. Knowledge (in a narrow sense) will
be for nothing once the user cannot identify the adequateness of a situation for use. Knowledge,
also, will not be of much help, if the learner is unable to flexibly relate and transform
the necessary elements of knowing into his/her actual situation. This is to say, the core
effects as emerging from the participation in the culture of a mathematics classroom
will appear on the metalevel mainly and are “learned” indirectly. (p. 4)
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In this view, the development of individuals’ reasoning and sense-making
processes cannot be separated from their participation in the interactive constitu-
tion of taken-as-shared mathematical meanings.

Voigt (1992) argues that, of the various theoretical approaches to social interaction,
the symbolic interactionist approach is particularly useful when studying children’s
learning in inquiry mathematics classrooms because it emphasizes the individual’s
sense-making processes as well as the social processes. Thus, rather than attempt-
ing to deduce an individual’s learning from social and cultural processes or vice versa,
it treats “subjective ideas as becoming compatible with culture and with intersub-
Jjective knowledge like mathematics” (Voigt, 1992, p. 11). Individuals are therefore
seen to develop their personal understandings as they participate in negotiating class-
room norms, including those that are specific to mathematics.

As we will demonstrate, the construct of reflexivity from ethnomethodology
(Leiter, 1980; Mehan & Wood, 1975) is especially useful for clarifying how sociomath-
ematical norms and goals and beliefs about mathematical activity and learning evolve
together as a dynamic system. Methodologically, both general social norms and
sociomathematical norms are inferred by identifying regularities in patterns of social
interaction. With regard to sociomathematical norms, what becomes mathematically
normative in a classroom is constrained by the current goals, beliefs, suppositions, and
assumptions of the classroom participants. At the same time these goals and largely
implicit understandings are themselves influenced by what is legitimized as accept-
able mathematical activity. It is in this sense that we say sociomathematical norms and
goals and beliefs about mathematical activity and learning are reflexively related.

SOCIAL AND SOCIOMATHEMATICAL NORMS

In the course of our work, we have collaborated with a group of second- and third-
grade teachers to help them radically revise the way they teach mathematics.
Instruction in project classrooms typically consists of teacher-led discussions of prob-
lems posed in a whole-class setting, collaborative small-group work between pairs
of children, and follow-up whole-class discussions where children explain and
justify the interpretations and solutions they develop during small-group work. The
instructional tasks and the instructional strategies used in project classrooms have
been developed during several yearlong classroom teaching experiments. In general,
the approach we have taken reflects the view that mathematical learning is both a
process of active individual construction (von Glasersfeld, 1984) and a process of
acculturation into the mathematical practices of wider society (Bauersfeld, 1993).

Our prior research has included analyzing the process by which teachers initiate and
guide the development of social norms that sustain classroom microcultures charac-
terized by explanation, justification, and argumentation (Cobb, Yackel, & Wood, 1989;
Yackel, Cobb, & Wood, 1991). Norms of this type are, however, general classroom
social norms that apply to any subject matter area and are not unique to mathematics.
For example, ideally students should challenge others’ thinking and justify their own
interpretations in science or literature classes as well as in mathematics. In this paper
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we extend our previous work on general classroom norms by focusing on norma-
tive aspects of mathematics discussions specific to students’ mathematical activ-
ity. To clarify this distinction, we will speak of sociomathematical norms rather than
social norms. For example, normative understandings of what counts as mathematically
different, mathematically sophisticated, mathematically efficient, and mathemat-
ically elegant in a classroom are sociomathematical norms. Similarly, what counts
as an acceptable mathematical explanation and justification is a sociomathemati-
cal norm. To further clarify the subtle distinction between social norms and
sociomathematical norms we offer the following examples. The understanding that
students are expected to explain their solutions and their ways of thinking is a social
norm, whereas the understanding of what counts as an acceptable mathematical expla-
nation is a sociomathematical norm. Likewise, the understanding that when discussing
a problem students should offer solutions different from those already contributed
is a social norm, whereas the understanding of what constitutes mathematical dif-
ference is a sociomathematical norm.

In this paper we first document the processes by which the sociomathematical norms
of mathematical difference and mathematical sophistication are established. Next, we
illustrate how these sociomathematical norms regulate mathematical argumentation
and influence the learning opportunities for both the students and the teacher. We then
consider how the teacher and students interactively constitute what counts as an
acceptable mathematical explanation and justification. In the process, we clarify how
the teacher can serve as a representative of the mathematical community in classrooms
where students develop their own personally meaningful ways of knowing.

Issues concerning what counts as different, sophisticated, efficient, and elegant
solutions involve a taken-as-shared sense of when it is appropriate to contribute to
a discussion. In contrast, the sociomathematical norm of what counts as an accept-
able explanation and justification deals with the actual process by which students
contribute. Because teachers with whom we collaborated were attempting to
establish inquiry mathematics traditions in their classrooms, acceptable explana-
tions and justifications had to involve described actions on mathematical objects
rather than procedural instructions (Cobb, Wood, Yackel, & McNeal, 1992). For
example, describing manipulation of numerals per se would not be acceptable. On
the other hand, it was not sufficient for a student to merely describe personally real
mathematical actions. Crucially, to be acceptable, other students had to be able to
interpret the explanation in terms of actions on mathematical objects that were expe-
rientially real to them. Thus, the currently taken-as-shared basis for mathematical
communication served as the backdrop against which students explained and jus-
tified their thinking. Conversely, it was by means of mathematical argumentation
that this constraining background reality itself evolved. We will therefore argue that
the process of argumentation and the taken-as-shared basis for communication were
reflexively related.

Further, we will argue that the construct of sociomathematical norms is pragmatically
significant, in that it clarifies how students in classrooms that follow an inquiry tra-
dition develop mathematical beliefs and values that are consistent with the current
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reform movement and how they become intellectually autonomous in mathematics.
Therefore, in keeping with the purpose of this paper, we limit our discussion to class-
rooms that follow an inquiry tradition. Nevertheless, sociomathematical norms, such
as what counts as an acceptable mathematical explanation and justification, are estab-
lished in all classrooms regardless of instructional tradition.

To clarify the theoretical constructs developed in this paper, we have selected exam-
ples from a second-grade classroom in which we conducted a yearlong teaching exper-
iment. Data from the teaching experiment include video recordings for all mathematics
lessons for the entire school year and of individual interviews conducted with each
student in the class at the beginning, middle, and end of the school year. Field notes
and copies of students’ written work are additional data sources.

THE PROCESS OF DEVELOPING SOCIOMATHEMATICAL NORMS

As part of the process of guiding the development of a classroom atmosphere in
which children are obliged to try to develop personally meaningful solutions that
they can explain and justify, the teachers with whom we have worked regularly asked
if anyone had solved a problem in a different way. It was while we were analyzing
teachers’ and students’ interactions in these situations that the importance of
sociomathematical norms, as opposed to general social norms, first became appar-
ent. We will use the notion of mathematical difference to clarify and illustrate how
sociomathematical norms are interactively constituted in the classroom.

In project classrooms, as in most mathematics classrooms, there were no pregiven
criteria for what counted as a different solution. Instead, the meaning of what constituted
mathematical difference was negotiated by each teacher and his or her students through
their interaction. For their part, the teachers were themselves attempting to develop
an inquiry form of practice. They did not have prior experience asking children to gen-
erate their own solution methods or explain their own thinking and, therefore, had lit-
tle basis for anticipating methods the children would suggest. In the absence of pre-
determined criteria, the children had to offer solution methods without knowing in
advance how they would be viewed by the teacher. Consequently, in responding to
the teacher’s requests for different solutions, the students were simultaneously learn-
ing what counts as mathematically different and helping to constitute what counts as
mathematically different in their classroom. It is in this sense that we say the mean-
ing of mathematical difference was interactively constituted by the teacher and the
children. The teacher’s responses and actions constrained the students’ developing
understanding of mathematical difference and the students’ responses contributed to
the teacher’s developing understanding.

The following episode clarifies and illustrates how the teacher initiates the
interactive constitution of mathematical difference.

Example I1: The number sentence 16 + 14 + 8 = has been posed as a men-
tal computation activity.
Lemont:  1added the two 1s out of the 16 and [the 14] ... would be 20 ... plus 6 plus 4 would

equal another 10, and that was 30 plus 8 left would be 38.
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Teacher: Allright. Did anyone add a little different? Yes?

Ella: I said 16 plus 14 would be 30 ... and add 8 more would be 38.
Teacher: Okay! Jose? Different?
Jose: I took two tens from the 14 and the 16 and that would be 20 ... and then I added

the 6 and the 4 that would be 30 ... then I added the 8, that would be 38.
Teacher: Okay! It's almost similar to—(Addressing another student) Yes? Different? All right.

Here, the teacher’s response to Jose suggests that he is working out for himself
the meaning of different. However, because he does not elaborate for the students
how Jose’s solution is similar to those already given, the students are left to
develop their own interpretations. The next two solutions offered by students are
more inventive and are not questioned by the teacher.

Rodney:  1took one off the 6 and put on the 14 and I had ... 15 [and] 15 [would be] 30,
and I had 8 would be 38.

Teacher: Yeah! Thirty-eight. Yes. Different?

Tonya:  1added the 8 and the 4, that was 12.... So I said 12 plus 10, that would equal 22
... plus the other 10, that would be 30—and then I had 38.

Teacher: Okay! Dennis—different, Dennis?

By participating in exchanges such as this, the children learned that the teacher
legitimized solutions that involved decomposing and recomposing numbers in dif-
fering ways but not those that were little more than restatements of previously given
solutions. At the same time, the teacher furthered his pedagogical agenda by guid-
ing the development of a taken-as-shared understanding of what was mathemati-
cally significant in such situations.

The next example further highlights the subtle and often implicit negotiation of
the meaning. In this case, we see a student taking the initiative as he protests that
a solution should not have been offered because, in his view, it was not different
from one already given.

Example 2: The problem 78 — 53 = was written on the chalkboard and posed
as a mental computation activity.

Dennis:  1said, um, 7 and take away 50, that equals 20.

Teacher: Allright.

Dennis:  And then, then I took, I took 3 from that 8 and then that left 5.
Teacher: Okay. And how much did you get?

Dennis:  25....

Teacher: Ella?

Ella: I said the 7, the 70, I said the 70 minus the 50 ... I said the 20 and 8 plus 3,...
Oh, I added, I said 8 minus the 3, that’d be 5.

Teacher: Al right. It’d be what?
Ella: And that’s 75 ... I mean 25.
Dennis:  (Protesting) Mr. K., that’s the same thing I said.

Dennis’s final comment serves two functions. With regard to the class discussion,
it contributes to the negotiation of the meaning of mathematical difference. For the
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observer, it shows he understands that in this class it is not appropriate to offer an
explanation that repeats a previously described decomposition and recombination
of numbers. The notion of when it is appropriate to contribute to the discussion was
taken as shared by at least some members of the class.

The preceding example clarifies that, in addition to regulating their participation
in discussion, the sociomathematical norm of what constitutes mathematical differ-
ence supports higher-level cognitive activity. To respond as he did, Dennis had to com-
pare his and Ella’s solutions and judge the similarities and differences. In doing so,
his solution became an object of his own reflection. In general, the teacher’s requests
for different solutions initiate a change in the setting from solving the problem to com-
paring solutions. In the latter setting the children’s activity extends beyond listening
to, and trying to make sense of, the explanations of others to attempting to identify
similarities and differences among various solutions. Such reflective activity has the
potential to contribute significantly to children’s mathematical learning.

In the classroom studied, developing a taken-as-shared understanding of what counts
as a sophisticated solution or an efficient solution was less explicit than an under-
standing of what counts as a different solution. For example, in this classroom the
teacher rarely asked if anyone had a more sophisticated way or a more efficient way
to solve a problem and never explicitly referred to one solution as better than another.
Nevertheless, in any classroom, children are well aware of the asymmetry between
the teacher’s role and their role. The teacher necessarily represents the discipline
of mathematics in the classroom (Voigt, 1995). Consequently, the teacher’s reac-
tions to a child’s solution can be interpreted as an implicit indicator of how it is val-
ued mathematically. For instance, in Example 1, many children may have interpreted
the teacher’s enthusiastic response (“Yeah!”) following Rodney’s solution as an indi-
cation that this solution was favored. However, because the issue did not become
an explicit topic of conversation, the children were left to decide in what sense the
solution was special. Events of this type are occasions for the children to infer what
aspects of their mathematical activity the teacher values. In the process, the teacher
both elaborates his own interpretative stance toward mathematics and inducts
students into that stance.

The following episode, which occurred within the first few weeks of the school
year, clarifies how mathematical discourse can advance as the teacher and students
interactively constitute a taken-as-shared understanding of what is valued mathematically.

Example 3: The task is to figure out how many chips there are in a double-tens
frame that has four red chips on the left frame and six green chips on the right frame
(see Figure 1). The image was flashed on the overhead screen several times and then
left off while the children figured out their solutions. The episode begins after sev-
eral children have already given solutions that involve counting by ones.
Travonda: You could say, um, um, it’s 6 on this side (pointing to the right frame) and take

one from that side (pointing to the right frame) [and] put it on the red side and...
Teacher: Listen to her!
Travonda: And [you] would have 5 plus 5.
Teacher: All right! Do you understand what she [said]. I like that! She said (pointing to
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the screen) if we were to take one of these green and put it over here with, with
the four [red chips] we’d have what?
Class: Five.

Teacher: Five. And this would leave five here (pointing to the right tens frame) and you
could say 5 plus 5. That’s good.

® | O

D O

Figure 1. Double tens-frame task.

Even though the teacher did not indicate in what sense the solution Travonda gave
was desirable, his expression of delight left no doubt that, in his view, this solution
was special. As Voigt (1995) notes, such judgments serve an important function in
supporting students’ mathematical learning by making it possible for them to
become aware of more conceptually advanced forms of mathematical activity
while, at the same time, leaving it to them to decide whether to take up the intel-
lectual challenge. Students can develop a sense of the teacher’s expectations for their
mathematical learning without feeling obliged to imitate solutions that might be beyond
their current conceptual possibilities. In this case, several children took up the chal-
lenge of attempting to give solutions that they infer might also qualify as special.
The episode continued as follows:

Chad: You, you can put the four [red chips] on that [right] side and you would make 10.
Teacher: Yeah! I like that.

Teacher: (To class) Chad says put these four (pointing to the red chips) over here (point-
ing to the blank spaces on the right frame) and that would make how many?

Class: Ten.
Teacher: Ten. Okay, that’s good. Yeah?

Greg: Two plus 2 is four (pointing to the red chips) and 2 plus 2 is 4 (pointing to four
green chips) and that’s 8, and 2 more is 10.

Teacher: Right. Do you understand what he said? (The teacher repeats the solution for the
class.)

John: You could do 7 plus 3 and then that would be 10.
Teacher: 1 like that.
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Our observations indicated that all of the solutions that followed the teacher’s enthu-
siastic response to Travonda’s solution were novel for this class. For his part, the
teacher continued to call attention to the solutions, indicating both that he wanted
the other children to understand them and that he valued them. In the process, the
sophistication both of individual children’s thinking and of the mathematical dis-
course advanced. In Example 3, for instance, the solutions children offered became
more sophisticated after the teacher indicated that he valued Travonda’s solution.
In this case, by sophisticated, we mean that the solutions went beyond counting by
ones and involved constructing numerical relationships and developing alternative
ways of combining elements of the two collections. John’s comment, “You could
do 7 plus 3 and then that would be 10,” illustrates that children engaged in this type
of extended activity. His language of “could do” and “that would be” suggests that,
rather than reporting the way he initially solved the problem, he may be describ-
ing a relationship that he now realizes he could have used to solve the problem.

INFLUENCE OF SOCIOMATHEMATICAL NORMS ON MATHE-
MATICAL ARGUMENTATION AND LEARNING OPPORTUNITIES

We noted earlier that additional learning opportunities arise when children
attempt to make sense of explanations given by others, to compare others’ solutions
to their own, and to make judgments about similarities and differences. Analysis
of the children’s activity shows that they constructed increasingly sophisticated con-
cepts of ten, partitioned and recomposed two-digit numbers flexibly, and developed
ways of talking about their mental activity using the standard language of tens and
ones (Yackel, Cobb, & Wood, in press). Further, by explaining and justifying dif-
ferent solutions, the teacher and students established taken-as-shared meanings for
tens and ones. In the process, these became experientially real mathematical
objects (Davis & Hersh, 1981) for almost all of the children in the class.

The negotiation of sociomathematical norms gives rise to learning opportunities
for teachers as well as for students. One of the teacher’s roles in an inquiry classroom
is to facilitate mathematical discussions. At the same time, the teacher acts as a par-
ticipant who can legitimize certain aspects of the children’s mathematical activity
and implicitly sanction others (Lampert, 1990; Voigt, 1985). Whole-class discus-
sions are demanding situations for teachers because they have to try to make sense
of the wide array of (different) solutions offered by the children (cf. Carpenter, Ansell,
Franke, Fennema, & Weisbeck, 1993). Our observations consistently indicate that
teachers capitalize on the learning opportunities that arise for them as they begin to
listen to their students’ explanations. The increasingly sophisticated way they select
tasks and respond to children’s solutions, shows their own developing understand-
ing of the students’ mathematical activity and conceptual development.

These learning opportunities for the teachers are directly influenced by the
sociomathematical norms negotiated in the classrooms. In particular, children con-
tinue to give a variety of explanations when different solutions are emphasized and
developmentally sophisticated solutions are legitimized. These inform the teachers



Erna Yackel and Paul Cobb 467

about the students’ conceptual possibilities and their current understandings. The lat-
ter, in turn, contribute to the teachers’ evolving notions of what is sophisticated and
efficient for the children. This further illustrates the reflexive relationship between
the establishment of sociomathematical norms and the teacher’s increasing under-
standing of mathematical difference, sophistication, and efficiency. For a more detailed
discussion of teachers’ learning in inquiry mathematics classrooms see Wood, Cobb,
and Yackel (1991) and Yackel, Cobb, and Wood (in press).

THE INTERACTIVE CONSTITUTION OF WHAT COUNTS AS AN
ACCEPTABLE EXPLANATION AND JUSTIFICATION

‘We turn now to consider how the teacher and students in an inquiry mathematics
classroom interactively constitute what counts as an acceptable explanation and jus-
tification and thus elaborate their taken-as-shared basis for communication. Viewed
as a communicative act, explaining has as its purpose clarifying aspects of one’s
(mathematical) thinking that might not be apparent to others. Consequently, what
is offered as an explanation is relative to the perceived expectations of others.

Our analysis of classroom data shows an evolution of students’ understanding of
what counts as an acceptable mathematical explanation and justification (Yackel, 1992).
Initially, students’ explanations may have a social rather than a mathematical basis.
As their participation in inquiry mathematics instruction increases, they differenti-
ate between various types of mathematical reasons. For example, they distinguish between
explanations that describe procedures and those that describe actions on experientially
real mathematical objects. Finally, some students progress to being able to take expla-
nations as objects of reflection. In the following discussion we illustrate these three
aspects of students’ understanding of explanation. In each case the focus of the dis-
cussion is on the interactive constitution of what constitutes acceptability.

A Mathematical Basis for Explanations

A preliminary step in children’s developing understanding of what constitutes an
acceptable mathematical explanation is that they understand that the basis for their
actions should be mathematical rather than status-based. Developing this prelimi-
nary understanding is not a trivial matter, especially since children are often social-
ized in school to rely on social cues for evaluation and on authority-based rationales.
For example, in many classrooms it is appropriate for a child to infer that his
answer is incorrect if the teacher questions it. In the classrooms that we have stud-
ied, one of the expectations is that children explain their solution methods to each
other in small-group work and in whole-class discussions. However, most of the chil-
dren were experiencing inquiry-based instruction for the first time and had little basis
for knowing what types of rationales might be acceptable. In their prior experience
of doing mathematics in school their teachers were typically the only members of
the classroom community who gave explanations. They were therefore accus-
tomed to relying on authority and status to develop rationales. For example, early
in the school year one child attempted to resolve a dispute about an answer during
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small-group work by initiating a discussion about who had the best pencil and then
about which of them was the smartest. This attempt to use status rather than a math-
ematical rationale to resolve the disagreement is consistent with the way many chil-
dren interpret traditional mathematics instruction, as arbitrary procedures pre-
scribed by their classroom authorities—the textbook and the teacher (Kamii,
1994; Voigt, 1992).

The following episode, which occurred early in the school year, demonstrates how
a teacher can capitalize on situations that arise naturally in the classroom to make
children’s reasons an explicit topic of discussion.

Example 4: The teacher has posed a double tens-frame task using two red chips
in the left tens-frame and 8 green chips in the right tens-frame.

Teacher: How many more green are there than red? How many more?
Donna:  Six.

Teacher: There are six? All right. Six. Is that right class?

Students: Yes. No.

Donna:  Oh, seven.

Student:  Oh, I know.

Teacher: Seven.

Donna:  Eight. Eight.

Student:  1know. I know.

Teacher: (To Donna.) There are eight more green than there are red?
Student:  No.

Student:  Oh, Mr. K., I know.

Teacher: Think about it Donna. How many more green circles are there than red? Daria?
Daria: Six.

Teacher: How many?

Daria: Six.

Teacher: Is that right class? Do we agree with that?

Students: No. Yes.

Teacher: 1heard some nos.

Many students begin talking at once.

Teacher: Listen. Listen.

Donna:  (Protesting to the teacher) I said the six, but you said, “No.”

In response to Donna’s explicit acknowledgment that she changed her answers
on the basis of her interpretation of the social situation rather than on mathemati-
cal reasoning, the teacher invents a scenario to clarify his expectations for this class.
Teacher: Wait, listen, listen. What did Mr. K.—what have I always taught you? (To Donna)

What’s your name?
Donna: My name is Donna Walters.
Teacher: What’s your name?
Donna: My name is Donna Walters.

Teacher: If I were to ask you, “What’s your name?” again, would you tell me your name
is Mary?
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Donna:  No.
Teacher: 'Why wouldn’t you?
Donna:  Because my name is not Mary.

Teacher: And you know your name is—.. .. If you’re not for sure you might have said your
name is Mary. But you said Donna every time I asked you because what? You
what? You know your name is what?

Donna: Donna.

Teacher: Donna. I can’t make you say your name is Mary. So you should have said, “Mr.
K. Six. And I can prove it to you.” I’ve tried to teach you that.

Interventions of this type are powerful because they become paradigm cases that
students can refer to. In general, such interventions are successful in establishing
the expectation that rationales should be mathematical.

Explanations as Descriptions of Actions on Experientially Real
Mathematical Objects

A more complex issue than establishing that mathematical reasons should form
the basis for explanations, is which types of mathematical reasons might be accept-
able. Here again, reflexivity is a key notion that guides our attempt to make sense
of the classroom. We argue that what constitutes an acceptable mathematical rea-
son is interactively constituted by the students and the teacher in the course of class-
room activity. In the classroom studied, the children contributed to establishing an
inquiry mathematics tradition by generating their own personally meaningful
ways of solving problems instead of following procedural instructions. Further, their
explanations increasingly involved describing actions on what to them were math-
ematical objects. In this sense, their explanations were conceptual rather than cal-
culational (Thompson, Philipp, Thompson, & Boyd, 1994). In addition, children
took seriously their obligation to try to make sense of the explanations of others.
As a consequence, explanations were frequently challenged if they could be inter-
preted as relying on procedural instructions or if they used language that did not carry
the significance of actions on taken-as-shared mathematical objects, which were
experientially real for the students. These challenges in turn gave rise to situations
for the teacher and students to negotiate what was acceptable as a mathematical expla-
nation. The following illustrative episode, which occurred 2 months after the
beginning of the school year, clarifies how the sociomathematical norm of what is
acceptable as a mathematical explanation, is interactively constituted.

Example 5: The episode begins as Travonda is explaining her solution to the fol-
lowing problem.

Roberto had 12 pennies. After his grandmother gave him some more, he had 25 pen-
nies. How many pennies did Roberto’s grandmother give him?
At Travonda’s direction, the teacher writes

12
+13

on the overhead projector. Thus far, her explanation involves specifying the details
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of how to write the problem using conventional vertical format. She continues.

Travonda: I said, one plus one is two, and 3 plus 2 is 5.
Teacher: All right, she said ...

Rick: I know what she was talking about.
Teacher: Three plus 2 is 5, and one plus one is two.

Travonda’s explanation can be interpreted as only procedural in nature. She has not
made explicit reference to the value of the quantities the numerals signify nor clarified
that the results should be interpreted as 25. Furthermore, in repeating her solution, the
teacher modifies it to make it conform even more closely to the standard algorithm by
proceeding from right to left. Several children simultaneously challenge the explanation.

Jameel: (Jumping from his seat and pointing to the screen.) Mr. K. That’s 20.
That’s 20.

Rick: (Simultaneously) Un-uh. That’s 25.

Several students:  That’s 25. That’s 25. He’s talking about that.

Jameel: Ten. Ten. That’s taking a 10 right here ... (walking up to the overhead

screen and pointing to the numbers as he talks). This 10 and 10 (point-
ing to the ones in the tens column). That’s 20 (pointing to the 2 in the
10s column).

Teacher: Right.
Jameel: And this is 5 more and it’s 25.
Teacher: That’s right. It’s 25.

Both Rick’s challenge that the answer should be expressed as 25, rather than as
two single digits and Jameel’s challenge that the ones signify 10s and the two sig-
nifies 20 contribute to establishing the sociomathematical norm that explanations
must describe actions on mathematical objects. Further, by acknowledging the chal-
lenges and accepting Jameel’s clarification the teacher legitimized the ongoing nego-
tiation of what is acceptable as an explanation in this classroom.

As a communicative act, explanation assumes a taken-as-shared stance
(Rommetveit, 1985). Consequently, what constitutes an acceptable explanation is
constrained by what the speaker and the listeners take as shared. But, as the above
example shows, what is taken as shared is itself established during class discussions.
Further, our analyses of discussions across the school year document that what is
taken-as-shared mathematically evolves as the year progresses. Here, Jameel’s clar-
ification assumes that the conceptual acts of decomposing 12 into 10 and 2 and of
decomposing 13 into 10 and 3 are shared by other students. Individual interviews
conducted with all of the children in the class shortly before this episode occurred
indicate that for a number of students this was not the case. Thus, although
Jameel’s explanation made it possible for him to orient his own understanding to
Travonda’s reported activity, it may have been inadequate for others.

Explanations as Objects of Reflection

When students begin to consider the adequacy of an explanation for others
rather than simply for themselves, the explanation itself becomes the explicit



Erna Yackel and Paul Cobb 471

object of discourse (Feldman, 1987). During classroom discussions, it is typically the
teacher’s responsibility to make implicit judgments about the extent to which students
take something as shared and to facilitate communication by explicating the need for
further explanation. As students’ understanding of an acceptable explanation evolves,
they too may assume this role. To do so, they must go beyond making sense of an expla-
nation for themselves to making judgments about how other children might make sense
of it. This involves a shift from participating in explanation to making the explanation
itself an object of reflection. This shift in students’ thinking is analogous to the shift between
process and object that Sfard (1991) describes for mathematical conceptions. In the same
way that being able to see a mathematical entity as an object as well as a process indi-
cates a deeper understanding of the mathematical entity, taking an explanation as an object
of reflection indicates a deeper understanding of what constitutes explanation.

The following example clarifies the shift in thinking that accompanies focusing
on the explanation itself as an object. The episode occurred close to the end of the
school year.

Before After

36

oo
oo

[ 1]

Figure 2. Problem task as shown on student activity page.

Example 6: Daria and Donna use centicubes on the overhead projector to explain
their solution to the problem shown in Figure 2.
The task is to figure out how much to add to or subtract from what is shown “before”
to get what is shown “after.” The girls had arrived at 38 as an answer during small-
group work. To describe their solution to the class, they first place 74 centicubes on
the overhead projector, using seven strips of ten (strips) and four individual cubes (squares).
Daria: We took this 40 off (points to four strips which the teacher then removes). That

left 34. Oh, (to the teacher) put a 10 back. (The teacher replaces one of the strips.)
35, 36 (pointing to two of the cubes in the additional strip).

In our experience, purely conceptual solutions to tasks of this type require part-
whole reasoning with tens and ones. This appears to be beyond the current conceptual
capabilities of many second graders, and they needed to use manipulative or
visual materials both to solve the tasks and to understand others’ explanations. However,
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the strip (of 10 ones) the girls pointed to when they said, “35, 36” appeared as a sin-
gle object on the overhead screen. Only those children who were looking directly
at the materials laid on the overhead projector could see the 10 ones that composed
the strip. The visual material available to the girls giving the explanation and to the
children listening to the explanation, except for those children sitting immediately
next to the overhead projector, was not the same. This subtle, but significant, point
is indicated by Jameel’s question.

Jameel: ~ How—Wait, I got a question.
Teacher: Wait a minute, count that—

Jameel:  Hey, Mr. K. If—How could she know, if you show two—How could the other
person see if she does like when she said 44, 45, 46? How could she know it was
two strips, I mean how could they know it was two squares like that? (Jameel
appears to misspeak when he says 44, 45, 46 instead of 34, 35, 36.)

Toni: ’Cause they can see it.
Rick: No, we can’t. We can’t see it.

Jameel’s question initiates a shift in the discussion from the solution of the prob-
lem to the adequacy and clarity of the explanation. At first glance, it may seem that
his challenge is simply about the use of the manipulative materials. However, Toni’s
and Rick’s responses and the subsequent discussion clarify that the issue is the coor-
dination of tens and ones. Toni’s reaction is interesting, given what we know about
her conceptual possibilities. She is one of the children who would need to have manip-
ulative or visual materials to solve the problem. However, she, like Jameel, was sit-
ting immediately next to the overhead projector, and she looked at what Daria was
actually pointing to rather than at what was visible on the overhead screen. Rick,
however, is one of the children who would be able to solve the problem without using
manipulatives. His “No, we can’t. We can’t see it,” indicates that he shares
Jameel’s understanding that Daria’s explanation has not clarified that the strip can
be thought of as 10 ones.

The episode continues when the girls ask if there are any other questions. Jameel
insists that the explanation requires elaboration, and the girls explain their solution
again. Now, Daria actually removes 38 cubes in an attempt to demonstrate their solu-
tion. She removes three strips and the four individual cubes and breaks four addi-
tional cubes off of one of the remaining strips, leaving six connected cubes.

Students: Take those (strip of six) apart.
Teacher: Take those apart.

The girls break the six connected cubes apart, making it possible for all of the chil-
dren to see them individually and therefore to count them. Finally, Daria counts to
verify that there are 36, pointing as she counts, “10, 20, 30, 31, 32, 33, 34, 35, 36.”
This final explanation provides the explication that Jameel called for.

The preceding episode is significant because it shows that at least some of the chil-
dren went beyond trying to make sense of an explanation for themselves and con-
sidered the extent to which it might be comprehensible to other members of the class.
Jameel’s criticism of the explanation was not that it didn’t make sense to him. Rather,
it was that those who could not see the 10 ones in the 10-strip might not be able to
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make sense of it. Jameel’s question shifted the focus of the discussion from the solu-
tion of the problem to the adequacy of the explanation. In doing so, he made the expla-
nation itself an object of reflection for others in the class as well as for himself.

INTELLECTUAL AUTONOMY

The development of intellectual and social autonomy is a major goal in the cur-
rent educational reform movement, more generally, and in the reform movement
in mathematics education, in particular (National Council of Teachers of Mathematics,
1989). In this regard, the reform is in agreement with Piaget (1948/1973) that the
main purpose of education is autonomy. Prior analysis shows that one of the ben-
efits of establishing the social norms implicit in the inquiry approach to mathematics
instruction is that they foster children’s development of social autonomy (Cobb, et
al., 1991; Cobb, Yackel, & Wood, 1989; Kamii, 1985; Nicholls, Cobb, Wood, Yackel,
& Patashnick, 1990). However, it is the analysis of sociomathematical norms
implicit in the inquiry mathematics tradition that clarifies the process by which teach-
ers foster the development of intellectual autonomy.

In this account, the conception of autonomy as a context-free characteristic of the
individual is rejected. Instead, autonomy is defined with respect to students’ par-
ticipation in the practices of the classroom community. In particular, students
who are intellectually autonomous in mathematics are aware of, and draw on, their
own intellectual capabilities when making mathematical decisions and judgments
as they participate in these practices (Kamii, 1985). These students can be contrasted
with those who are intellectually heteronomous and who rely on the pronouncements
of an authority to know how to act appropriately. The link between the growth of
intellectual autonomy and the development of an inquiry mathematics tradition becomes
apparent when we note that, in such a classroom, the teacher guides the develop-
ment of a community of validators and thus encourages the devolution of respon-
sibility. However, students can take over some of the traditional teacher’s respon-
sibilities only to the extent that they have constructed personal ways of judging that
enable them to know in action both when it is appropriate to make a mathematical
contribution and what constitutes an acceptable mathematical contribution. This requires,
among other things, that students can judge what counts as a different solution, an
insightful solution, an efficient solution, and an acceptable explanation. But, as we
have attempted to illustrate throughout this paper, these are the types of judgments
that the teacher and students negotiate when establishing sociomathematical norms
that characterize an inquiry mathematics tradition. In the process, students construct
specifically mathematical beliefs and values that help form their judgments. For instance,
Jameel’s challenge that “one and one is two” signifies “ten and ten is twenty” illus-
trates that children are capable of making judgments about what is appropriate math-
ematically. Further, Jameel’s challenge indicates that he had developed the belief
that mathematical explanations should describe actions on experientially real
mathematical objects. Examples such as this show that it is precisely because chil-
dren can make personal judgments of this kind on the basis of their mathematical
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beliefs and values that they can participate as increasingly autonomous members
of an inquiry mathematics community.

SIGNIFICANCE

The notion of sociomathematical norms that we have advanced in this paper is
important because it sets forth a way of analyzing and talking about the mathematical
aspects of teachers’ and students’ activity in the mathematics classroom. This is a
significant extension of prior work on general classroom social norms in that it clar-
ifies aspects of teachers’ and students’ activity that sustain a classroom atmosphere
conducive to problem solving and inquiry. These sociomathematical norms are intrin-
sic aspects of the classroom’s mathematical microculture. Nevertheless, although
they are specific to mathematics, they cut across areas of mathematical content by
dealing with mathematical qualities of solutions, such as their similarities and dif-
ferences, sophistication, and efficiency. Additionally, they encompass ways of judg-
ing what counts as an acceptable mathematical explanation.

We have also attempted to demonstrate that these norms are not predetermined cri-
teria introduced into the classroom from the outside. Instead, these normative understandings
are continually regenerated and modified by the students and the teacher through their
ongoing interactions. As teachers gain experience with an inquiry approach to mathematics
instruction they may have some clear ideas in advance of norms that they might wish
to foster. Even in such cases these norms are, of necessity, interactively constituted by
each classroom community. Consequently, the sociomathematical norms that are
constituted might differ substantially from one classroom to another. For purposes
of this paper, we have discussed the development of sociomathematical norms in
classrooms that generally follow an inquiry form of instruction. As we have
shown, in the process of negotiating sociomathematical norms, students in these class-
rooms actively constructed personal beliefs and values that enabled them to be increas-
ingly autonomous in mathematics.

The notion of sociomathematical norms is also important for clarifying the
teacher’s role as a representative of the mathematical community. The question of
the teacher’s role in classrooms that attempt to develop a practice consistent with
the current reform emphasis on problem solving and inquiry is one of current debate
(Clement, 1991). Many teachers assume that they are expected to assume a passive
role (P. Human, personal communication, August 1994). However, we question this
position. As we have stated previously,

The conclusion that teachers should not attempt to influence students’ constructive efforts

seems indefensible, given our contention that mathematics can be viewed as a social

practice or a community project. From our perspective, the suggestion that students can
be left to their own devices to construct the mathematical ways of knowing compati-

ble with those of wider society is a contradiction in terms. (Cobb, Yackel, & Wood, 1992,
pp. 27-28)

In this paper we have attempted to clarify one critical aspect of the teacher’s role
in influencing the mathematical aspects of the knowledge children construct. In this
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regard, the ideas set forth in this paper are potentially useful in preservice and in-
service teacher education. For example, in a recent project classroom teaching
experiment, the notion of sociomathematical norms influenced discussions between
the researcher and the classroom teacher. In particular, the issue of what constitutes
a mathematically efficient solution became an explicit focus in discussions with the
teacher and in the classroom itself. In the process, the level of discourse and the indi-
vidual children’s learning advanced (Cobb, Boufi, McClain, & Whitenack, in press).

The analysis of sociomathematical norms indicates that the teacher plays a cen-
tral role in establishing the mathematical quality of the classroom environment and
in establishing norms for mathematical aspects of students’ activity. It further high-
lights the significance of the teacher’s own personal mathematical beliefs and val-
ues and their own mathematical knowledge and understanding. In this way, the crit-
ical and central role of the teacher as a representative of the mathematical
community is underscored.

REFERENCES

Bauersfeld, H. (1988). Interaction, construction, and knowledge: Alternative perspectives for mathematics
education. In T. Cooney & D. Grouws (Eds.), Effective mathematics teaching (pp. 27-46). Reston,
VA: National Council of Teachers of Mathematics/Erlbaum.

Bauersfeld, H. (1993, March). Teachers pre and in-service education for mathematics teaching.
Seminaire sur la Representation, No. 78, CIRADE, Université du Québec a Montréal, Canada.

Bauersfeld, H., Krummbheuer, G., & Voigt, J. (1988). Interactional theory of learning and teaching mathematics
and related microethnographical studies. In H. G. Steiner & A. Vermandel (Eds.), Foundations and method-
ology of the discipline of mathematics education (pp. 174-188). Antwerp: Proceedings of the Theory of
Mathematics Education Conference.

Blumer, H. (1969). Symbolic interactionism. Engelwood Cliffs, NJ: Prentice-Hall.

Carpenter, T. P., Ansell, E., Franke, M. L., Fennema, E., & Weisbeck, L. (1993). Models of problem
solving: A study of kindergarten children’s problem-solving processes. Journal for Research in Mathematics
Education, 24, 427-440.

=+ Clement, J. (1991). Constructivism in the classroom [Review of the book Transforming children’s mathematics
education: International perspectives). Journal for Research in Mathematics Education, 22, 422-428.

Cobb, P. (1990). Multiple Perspectives. In L. P. Steffe & T. Wood (Eds.), Transforming children’s mathematics
education: International perspectives (pp. 200-215). Hillsdale, NJ: Erlbaum.

Cobb, P., & Bauersfeld, H. (Eds.). (1995). Emergence of mathematical meaning: Interaction in class-
room cultures. Hillsdale, NJ: Erlbaum.

Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (in press). Reflective discourse and collective reflec-
tion. Journal for Research in Mathematics Education.

=+ Cobb, P., Wood, T., Yackel, E., & McNeal, B. (1992). Characteristics of classroom mathematics tra-
ditions: An interactional analysis. American Educational Research Journal, 29, 573-604.

=+ Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., & Perlwitz, M. (1991).
Assessment of a problem-centered second-grade mathematics project. Journal for Research in
Mathematics Education, 22, 3-9.

Cobb, P., Yackel, E., & Wood, T. (1989). Young children’s emotional acts while doing mathematical
problem solving. In D. B. McLeod & V. M. Adams (Eds.), Affect and mathematical problem solv-
ing: A new perspective (pp.117-148). New York: Springer-Verlag.

=+ Cobb, P., Yackel, E., & Wood, T. (1992). A constructivist alternative to the representational view of
mind in mathematics education. Journal for Research in Mathematics Education, 23, 2-33.
Davis, P. J., & Hersh, R. (1981). The mathematical experience. Boston: Houghton Mifflin.
=+ Eisenhart, M. A. (1988). The ethnographic research tradition and mathematics education research. Journal
for Research in Mathematics Education, 19, 99-114.



476 Sociomathematical Norms

Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), Handbook
of research on teaching (3rd ed.) (pp. 119-161). New York: Macmillan.

Feldman, C. F. (1987). Thought from language: The linguistic construction of cognitive representations.
In J. Bruner & H. Haste (Eds.), Making sense: The child’s construction of the world (pp. 131-162).
London: Methuen.

=+ Greeno, J. (1991). Number sense as situated knowing in a conceptual domain. Journal for Research in
Mathematics Education, 22, 170-218.

Kamii, C. (1985). Young children reinvent arithmetic: Implications of Piaget’s theory. New York: Teachers
College Press.

Kamii, C. (1994). Young children continue to reinvent arithmetic—3rd grade: Implications of Piaget’s
theory. New York: Teachers College Press.

Krummheuer, G. (1983). Das arbeitsinterim im mathematikunterricht [The working interim in mathematics
classrooms). In H. Bauersfeld (Ed.) Lernen und lehren von mathematik. Analysen zum unterrichishandein
(pp. 57-106). K&ln, Germany: Aulis.

=+ Lampert, M. (1990). When the problem is not the question and the solution is not the answer:
Mathematical knowing and teaching. American Educational Research Journal, 27,29-63.

Leiter, K. (1980). A primer on ethnomethodology. New York: Oxford University Press.

Mehan, H., & Wood, H. (1975). The reality of ethnomethodology. New York: John Wiley.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathematics.
Reston, VA: Author.

=+ Nicholls, J., Cobb, P., Wood, T., Yackel, E., & Patashnick, M. (1990). Dimensions of success in mathematics:
Individual and classroom differences. Journal for Research in Mathematics Education, 21, 109-122.

Piaget, J. (1973). To understand is to invent. New York: Grossman. (Original work published 1948)

Resnick, L. B. (1989). Knowing, learning, and instruction. Hillsdale, NJ: Erlbaum.

Richards, J. (1991). Mathematical discussions. In E. von Glasersfeld (Ed.), Constructivism in mathematics
education (pp.13-52). Dordrecht, The Netherlands: Kluwer.

Rommetveit, R. (1985). Language acquisition as increasing linguistic structuring of experience and sym-
bolic behavior control. In J. V. Wertsch (Ed.), Culture, communication, and cognition (pp. 183-205).
Cambridge: Cambridge University Press.

=+ Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and
objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.

Thompson, A. G., Philipp, R. A., Thompson, P. W., & Boyd, B. (1994). Calculational and conceptual ori-
entations in teaching mathematics. In D. Aichele & A. F. Coxford (Eds.), Professional development of
teachers of mathematics (pp. 79-92). Reston, VA: National Council of Teachers of Mathematics.

Voigt, J. (1985). Patterns and routines in classroom interaction. Recherches en Didactique des
Mathématiques, 6, 69-118.

Voigt, J. (1989). The social constitution of the mathematics province—A microethnographical study
in classroom interaction. Quarterly Newsletter of the Laboratory of Comparative Human Cognition,
11(1 & 2), 27-34.

Voigt, J. (1992, August). Negotiation of mathematical meaning in classroom practices: Social inter-
action and learning mathematics. Paper presented at the Seventh International Congress on
Mathematical Education, Quebec City.

Voigt, J. (1995). Thematic patterns of interaction and sociomathematical norms.. In P. Cobb & H. Bauersfeld
(Eds.), Emergence of mathematical meaning: Interaction in classroom cultures (pp. 163-201). Hillsdale,
NIJ: Erlbaum.

von Glasersfeld, E. (1984). An introduction to radical constructivism. In P. Watzlawick (Ed.), The invented
reality (pp. 17-40). New York: Norton.

=+ Wood, T., Cobb, P., & Yackel, E. (1991). Change in teaching mathematics: A case study. American Educational
Research Journal, 28, 587-616.

Yackel, E. (1992, August). The evolution of second grade children’s understanding of what constitutes
an explanation in a mathematics class. Paper presented at the Seventh International Congress of Mathematics
Education, Quebec City.



Erna Yackel and Paul Cobb 477

=+ Yackel, E., Cobb, P., & Wood, T. (1991). Small-group interactions as a source of learning opportuni-
ties in second-grade mathematics. Journal for Research in Mathematics Education, 22, 390—408.

Yackel, E., Cobb, P., & Wood, T. (in press). The interactive constitution of mathematical meaning in
one second grade classroom: An illustrative example. Journal of Mathematical Behavior.

AUTHORS

ERNA YACKEL, Associate Professor of Mathematics Education, Purdue University Calumet,
Hammond, IN 46323

PAUL COBB, Professor of Mathematics Education, Vanderbilt University, Peabody College, Box 330,
Nashville, TN 37203



	Article Contents
	p. [458]
	p. 459
	p. 460
	p. 461
	p. 462
	p. 463
	p. 464
	p. 465
	p. 466
	p. 467
	p. 468
	p. 469
	p. 470
	p. 471
	p. 472
	p. 473
	p. 474
	p. 475
	p. 476
	p. 477

	Issue Table of Contents
	Journal for Research in Mathematics Education, Vol. 27, No. 4 (Jul., 1996), pp. 385-510
	Front Matter [pp.  385 - 386]
	Efficacy and Teaching Mathematics by Telling: A Challenge for Reform [pp.  387 - 402]
	A Longitudinal Study of Learning to Use Children's Thinking in Mathematics Instruction [pp.  403 - 434]
	Coordinating Visual and Analytic Strategies: A Study of Students' Understanding of the Group D<sub>4</sub> [pp.  435 - 457]
	Sociomathematical Norms, Argumentation, and Autonomy in Mathematics [pp.  458 - 477]
	Exploring the Origins, Uses, and Interactions of Student Intuitions: Comparing the Lengths of Paths [pp.  478 - 504]
	Telegraphic Reviews [pp.  505 - 506]
	Letter to the Editor [pp.  507 - 508]
	Back Matter [pp.  509 - 510]



