
processes within system 2. However, it should be
emphasized that all the above concept develop-
ments do not occur simultaneously. They also do
not occur in all students who study mathematics.
One should take many mathematics courses and
solve a lot of mathematical problems in order to
achieve that level. Those who do it should have
special interest in mathematics or what can be
called mathematical curiosity. It requires, what
some people call, a mathematical mind. Is it
genetic (Devlin 2000) or acquired? At this point
we have reached a huge domain of psychological
research which is far beyond the scope of this
particular encyclopedic issue.
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Background

Constructivism is an epistemological stance
regarding the nature of human knowledge, having
roots in the writings of Epicurus, Lucretius, Vico,
Berkeley, Hume, and Kant. Modern constructiv-
ism also contains traces of pragmatism (Peirce,
Baldwin, and Dewey). In mathematics education
the greatest influences are due to Piaget,
Vygotsky, and von Glasersfeld. See Confrey and
Kazak (2006) and Steffe and Kieren (1994) for
related historical accounts of constructivism in
mathematics education.

There are two principle schools of thought
within constructivism: radical constructivism
(some people say individual or psychological)
and social constructivism. Within each there is
also a range of positions. While radical and
social constructivism will be discussed in a
later section, it should be noted that both schools
are grounded in a strong skeptical stance regard-
ing reality and truth: Knowledge cannot be
thought of as a copy of an external reality, and
claims of truth cannot be grounded in claims
about reality.
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The justification of this stance toward knowl-
edge, truth, and reality, first voiced by the skeptics
of ancient Greece, is that to verify that one’s
knowledge is correct, or that what one knows is
true, one would need access to reality by means
other than one’s knowledge of it. The importance
of this skeptical stance for mathematics educators
is to remind them that students have their own
mathematical realities that teachers and
researchers can understand only via models of
them (Steffe et al. 1983, 1988).

Constructivism did not begin within mathe-
matics education. Its allure to mathematics educa-
tors is rooted in their long evolving rejection of
Thorndike’s associationism (Thorndike 1922;
Thorndike et al. 1923) and Skinner’s behaviorism
(Skinner 1972). Thorndike’s stance was that
learning happens by forming associations
between stimuli and appropriate responses. To
design instruction from Thorndike’s perspective
meant to arrange proper stimuli in a proper order
and have students respond appropriately to those
stimuli repeatedly. The behaviorist stance that
mathematics educators found most objectionable
evolved from Skinner’s claim that all human
behavior is due to environmental forces. From a
behaviorist perspective, to say that children par-
ticipate in their own learning, aside from being the
recipient of instructional actions, is nonsense.
Skinner stated his position clearly:

Science . . . has simply discovered and used subtle
forces which, acting upon a mechanism, give it the
direction and apparent spontaneity which make it
seem alive. (Skinner 1972, p. 3)

Behaviorism’s influence on psychology, and
thereby its indirect influence on mathematics edu-
cation, was also reflected in two stances that were
counter to mathematics educators’ growing
awareness of learning in classrooms. The first
stance was that children’s learning could be stud-
ied in laboratory settings that have no resem-
blance to environments in which learning
actually happens. The second stance was that
researchers could adopt the perspective of a uni-
versal knower. This second stance was evident in
Simon and Newell’s highly influential informa-
tion processing psychology, in which they

separated a problem’s “task environment” from
the problem solver’s “problem space.”

We must distinguish, therefore, between the
task environment – the omniscient observer’s
way of describing the actual problem “out
there” – and the problem space – the way a par-
ticular subject represents the task in order to work
on it. (Simon and Newell 1971, p. 151)

Objections to this distinction were twofold:
Psychologists considered themselves to be
Simon and Newell’s omniscient observers
(having access to problems “out there”), and stu-
dents’ understandings of the problem were
reduced to a subset of an observer’s understand-
ing. This stance among psychologists had the
effect, in the eyes of mathematics educators, of
blinding them to students’ ways of thinking that
did not conform to psychologists’ preconceptions
(Thompson 1982; Cobb 1987). Erlwanger (1973)
revealed vividly the negative consequences of
behaviorist approaches to mathematics education
in his case study of a successful student in a
behaviorist individualized program who
succeeded by inventing mathematically invalid
rules to overcome inconsistencies between his
answers and an answer key.

The gradual release of mathematics education
from the clutches of behaviorism, and infusions of
insights from Polya’s writings on problem solving
(Polya 1945, 1954, 1962), opened mathematics
education to new ways of thinking about student
learning and the importance of student thinking.
Confrey and Kazak (2006) described the influence
of research on problem solving, misconceptions,
and conceptual development of mathematical
ideas as precursors to the emergence of construc-
tivism in mathematics education.

Piaget’s writings had a growing influence in
mathematics education once English translations
became available. In England, Skemp (1961,
1962) championed Piaget’s notions of schema,
assimilation, accommodation, equilibration, and
reflection as ways to conceptualize students’
mathematical thinking as having an internal
coherence. Piaget’s method of clinical interviews
also was attractive to researchers of students’
learning. However, until 1974 mathematics edu-
cators were interested in Piaget’s writings largely
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because they thought of his work as “develop-
mental psychology” or “child psychology,” with
implications for children’s learning. It was in
1974, at a conference at the University of Georgia,
that Piaget’s work was recognized in mathematics
education as a new field, one that leveraged chil-
dren’s cognitive development to study the growth
of knowledge. Smock (1974) wrote of construc-
tivism’s implications for instruction, not
psychology’s implications for instruction.
Glasersfeld (1974) wrote of Piaget’s genetic epis-
temology as a theory of knowledge, not as a
theory of cognitive development. The 1974 Geor-
gia conference is the first occasion this writer
could find where “constructivism” was used to
describe the epistemological stance toward math-
ematical knowing that characterizes constructiv-
ism in mathematics education today.

Acceptance of constructivism in mathematics
education was not without controversy. Disputes
sometimes emerged from competing visions of
desired student learning, such as students’ perfor-
mance on accepted measures of competency
(Gagné 1977, 1983) versus attendance to the qual-
ity of students’ mathematics (Steffe and Blake
1983), and others emerged from different concep-
tions of teaching effectiveness (Brophy 1986;
Confrey 1986). Additional objections to construc-
tivismwere in reaction to its fundamental aversion
to the idea of truth as a correspondence between
knowledge and reality (Kilpatrick 1987).

Radical and Social Constructivism in
Mathematics Education

Radical constructivism is based on two tenets:
“(1) Knowledge is not passively received but
actively built up by the cognizing subject;
(2) the function of cognition is adaptive and
serves the organization of the experiential
world, not the discovery of ontological reality”
(Glasersfeld 1989, p. 114). Glasersfeld’s use of
“radical” is in the sense of fundamental – that
cognition is “a constitutive activity which, alone,
is responsible for every type or kind of structure
an organism comes to know” (Glasersfeld 1974,
p. 10).

Social constructivism is the stance that history
and culture precede and preform individual
knowledge. As Vygotsky famously stated,
“Every function in the child’s cultural develop-
ment appears twice: first, on the social level, and
later, on the individual level; first between people
. . ., then inside the child” (Vygotsky 1978, p. 57).

The difference between radical and social con-
structivism can be seen through contrasting inter-
pretations of the following event. Vygotsky
(1978) illustrated his meaning of internalization
– “the internal reconstruction of an external
operation” – by describing the development of
pointing:

The child attempts to grasp an object placed
beyond his reach; his hands, stretched toward that
object, remain poised in the air. His fingers make
grasping movements. At this initial state pointing
is represented by the child’s movement, which
seems to be pointing to an object – that and noth-
ing more. When the mother comes to the child’s
aid and realizes his movement indicates some-
thing, the situation changes fundamentally.
Pointing becomes a gesture for others. The child’s
unsuccessful attempt engenders a reaction not
from the object he seeks but from another person
[sic]. Consequently, the primary meaning of that
unsuccessful grasping movement is established by
others [italics added]. (Vygotsky 1978, p. 56)

Vygotsky clearly meant that meanings origi-
nate in society and are transmitted via social inter-
action to children. Glasersfeld and Piaget would
have listened agreeably to Vygotsky’s tale – until
the last sentence. They instead would have
described the child as making a connection
between his attempted grasping action and some-
one fetching what he wanted. Had it been the pet
dog bringing the desired item, it would have made
little difference to the child in regard to the prac-
tical consequences of his action. Rather, the child
realized, in a sense, “Look at what I can make
others do with this action.” This interpretation
would fit nicely with the finding that adults
mimic infants’ speech abundantly (Fernald 1992;
Schachner and Hannon 2011). Glasersfeld and
Piaget might have thought that adults’ imitative
speech acts, once children recognize them as imi-
tations, provide occasions for children to have a
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sense that they can influence actions of others
through verbal behavior. This interpretation also
would fit well with Bauersfeld’s (1980, 1988,
1995) understanding of communication as a
reflexive interchange among mutually oriented
individuals: “The [conversation] is constituted at
every moment through the interaction of reflective
subjects” (Bauersfeld 1980, p. 30 italics in
original).

Paul Ernest (1991, 1994, 1998) introduced the
term social constructivism to mathematics educa-
tion, distinguishing between two forms of it. One
form begins with a radical constructivist perspec-
tive and then accounts for human interaction in
terms of mutual interpretation and adaptation
(Bauersfeld 1980, 1988, 1992). Glasersfeld
(1995) considered this as just radical constructiv-
ism. The other, building from Vygotsky’s notion
of cultural regeneration, introduced the idea of
mathematical objectivity as a social construct.

Social constructivism links subjective and
objective knowledge in a cycle in which each
contributes to the renewal of the other. In this
cycle, the path followed by new mathematical
knowledge is from subjective knowledge (the per-
sonal creation of an individual), via publication to
objective knowledge (by intersubjective scrutiny,
reformulation, and acceptance). Objective knowl-
edge is internalized and reconstructed by individ-
uals, during the learning of mathematics, to
become the individuals’ subjective knowledge.
Using this knowledge, individuals create and pub-
lish new mathematical knowledge, thereby com-
pleting the cycle. (Ernest 1991, p. 43).

Ernest focused on objectivity of adult mathe-
matics. He did not address the matter of how
children’s mathematics comes into being or how
it might grow into something like an adult’s
mathematics.

Radical and social constructivists differ some-
what in the theoretical work they ask of construc-
tivism. Radical constructivists concentrate on
understanding learners’ mathematical realities
and the internal mechanisms by which they
change. They conceive, to varying degrees, of
learners in social settings, concentrating on the
sense that learners make of them. They try to put
themselves in the learner’s place when analyzing

an interaction. Social constructivists focus on
social and cultural mathematical and pedagogical
practices and attend to individuals’ internalization
of them. They conceive of learners in social set-
tings, concentrating, to various degrees, on
learners’ participation in them. They take the
stances, however, of an observer of social interac-
tions and that social practices predate individuals’
participation.

Conflicts between radical and social construc-
tivism tend to come from two sources: (1) differ-
ences in meanings of truth and objectivity and
their sources and (2) misunderstandings and mis-
communications between people holding
contrasting positions. The matter of (1) will be
addressed below. Regarding (2), Lerman (1996)
claimed that radical constructivism was internally
incoherent: How could radical constructivism
explain agreement when persons evidently agree-
ing create their own realities? Steffe and Thomp-
son (2000a) replied that interaction was at the core
of Piaget’s genetic epistemology and thus the idea
of intersubjectivity was entirely coherent with
radical constructivism. The core of the misunder-
standing was that Lerman on the one hand and
Steffe and Thompson on the other had different
meanings for “intersubjectivity.” Lerman meant
“agreement of meanings” – same or similar mean-
ings. Steffe and Thompson meant “nonconflicting
mutual interpretations,” which might actually
entail nonagreement of meanings of which the
interacting individuals are unaware. Thus,
Lerman’s objection was valid relative to the mean-
ing of intersubjectivity he presumed. Lerman on
one side and Steffe and Thompson on the other
were in a state of intersubjectivity (in the radical
constructivist sense) even though they publicly
disagreed. They each presumed they understood
what the other meant when in fact each under-
standing of the other’s position was faulty.

Other tensions arose because of interlocutors’
different objectives. Some mathematics educators
focused on understanding individual’s mathemat-
ical realities. Others focused on the social context
of learning. Cobb et al. (1992) diffused these
tensions by refocusing discussions on the work
that theories in mathematics education must do –
they must contribute to our ability to improve the
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learning and teaching of mathematics. Cobb et al.
first reminded the field that, from any perspective,
what happens in mathematics classrooms is
important for students’ mathematical learning.
Thus, a theoretical perspective that can capture
more, and more salient, aspects for mathematics
learning (including participating in practices) is
the more powerful theory. With a focus on the
need to understand, explain, and design events
within classrooms, they recognized that there are
indeed social dimensions to mathematics learning
and there are psychological aspects to participat-
ing in practices and that researchers must be able
to view classrooms from either perspective while
holding the other as an active background: “[W]e
have proposed the metaphor of mathematics as an
evolving social practice that is constituted by, and
does not exist apart from, the constructive activi-
ties of individuals” (Cobb et al. 1992, p. 28, italics
added).

Cobb et al.’s perspective is entirely consistent
with theories of emergence in complex systems
(Schelling 1978; Eppstein and Axtell 1996;
Resnick 1997; Davis and Simmt 2003) when
taken with Maturana’s statement that “anything
said is said by an observer” (Maturana 1987).
Practices, as stable patterns of social interaction,
exist in the eyes of an observer who sees them.
The theoretician who understands the behavior of
a complex system as entailing simultaneously
both microprocesses and macrobehavior is better
positioned to affect macrobehavior (by influenc-
ing microprocesses) than one who sees just one or
the other. It is important to note that this notion of
emergence is not the same as Ernest’s notion of
objectivity as described above.

Truth and Objectivity

Radical constructivists take the strong position
that children have mathematical realities that do
not overlap an adult’s mathematics (Steffe et al.
1983; Steffe and Thompson 2000b). Social con-
structivists (of Ernest’s second type) take this as
pedagogical solipsism.

The implications of [radical constructivism]
are that individual knowers can construct truth

that needs no corroboration from outside of the
knower, making possible any number of “truths.”
Consider the pedagogical puzzles this creates.
What is the teacher trying to teach students if
they are all busy constructing their own private
worlds? What are the grounds for getting the
world right? Why even care whether these worlds
agree? (Howe and Berv 2000, pp. 32–33).

Howe and Berv made explicit the social con-
structivist stance that there is a “right” world to be
got – the world of socially constructed meanings.
They also revealed their unawareness that, from
its very beginning, radical constructivism
addressed what “negotiation” could mean in its
framework and how stable patterns of meaning
could emerge socially (Glasersfeld 1972, 1975,
1977). Howe and Berv were also unaware of the
notion of epistemic subject in radical
constructivism – the mental construction of a non-
specific person who has particular ways of think-
ing (Beth and Piaget 1966; Glasersfeld 1995).
A teacher need not attend to 30 mathematical
realities with regard to teaching the meaning of
fractions in a class of 30 children. Rather, she need
only attend to perhaps 5 or 6 epistemic children
and listen for which fits the ways particular chil-
dren express themselves (Thompson 2000).

A Short List: Impact of Constructivism in
Mathematics Education

• Mathematics education has a new stance
toward learners at all ages. One must attend
to learner’s mathematical realities, not just
their performance.

• Current research on students’ and teachers’
thinking and learning is largely consistent
with constructivism – to the point that articles
rarely declare their basis in constructivism.
Constructivism is now taken for granted.

• Teaching experiments (Cobb and Steffe 1983;
Cobb 2000; Steffe and Thompson 2000b) and
design experiments (Cobb et al. 2003) are vital
and vibrant methodologies in mathematics
education theory development.

• Conceptual analysis of mathematical thinking
and mathematical ideas is a prominent and
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widely used analytic tool (Smith et al. 1993;
Glasersfeld 1995; Behr et al. 1997; Thompson
2000; Lobato et al. 2012).

• What used to be thought of as practice is now
conceived as repeated experience. Practice
focuses on repeated behavior. Repeated expe-
rience focuses on repeated reasoning, which
can vary in principled ways from setting to
setting (Cooper 1991; Harel 2008a, b).

• Constructivism has clear and operationalized
implications for the design of instruction
(Confrey 1990; Simon 1995; Steffe and
D’Ambrosio 1995; Forman 1996; Thompson
2002) and assessment (Carlson et al. 2010;
Kersting et al. 2012).

Cross-References
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Introduction

The constructivist is fully aware of the fact that an
organism’s conceptual constructions are not
fancy-free. On the contrary, the process of
constructing is constantly curbed and held in
check by the constraints it runs into. (Ernst von
Glasersfeld 1990, p. 33).

The constructivist teaching experiment
emerged in the United States circa 1975 (Steffe
et al. 1976) in an attempt to understand children’s
numerical thinking and how that thinking might
change rather than to rely on models that were
developed outside of mathematics education for
purposes other than educating children (e.g., Pia-
get and Szeminska 1952; McLellan and Dewey
1895; Brownell 1928). The use of the construc-
tivist teaching experiment in the United State was

buttressed by versions of the teaching experiment
methodology that were being used already by
researchers in the Academy of Pedagogical Sci-
ences in the then Union of Soviet Socialist Repub-
lics (Wirszup and Kilpatrick 1975–1978). The
work at the Academy of Pedagogical Sciences
provided academic respectability for what was
then a major departure in the practice of research
in mathematics education in the United States, not
only in terms of research methods but more cru-
cially in terms of the research orientation of the
methodology. In El’konin’s (1967) assessment of
Vygotsky’s (1978) research, the essential function
of a teaching experiment is the production of
models of student thinking and changes in it:

Unfortunately, it is still rare to meet with the
interpretation of Vygotsky’s research as modeling,
rather than empirically studying, developmental
processes. (El’konin 1967, p. 36).

Similarly, the primary purpose of constructivist
teaching experiments is to construct explanations
of students’ mathematical concepts and opera-
tions and changes in them. Without experiences
of students’ mathematics afforded by teaching,
there would be no basis for coming to understand
the mathematical concepts and operations stu-
dents construct or even for suspecting that these
concepts and operations may be distinctly differ-
ent from those of teacher/researchers. The neces-
sity to attribute mathematical concepts and
operations to students that are independent of
those of teacher/researchers has been captured
by Ackermann (1995) in speaking of human
relations:

In human relations, it is vital to attribute auton-
omy to others and to things—to celebrate their
existence independently from our current interac-
tion with them. This is true even if an attribution
(of existence) is a mental construct. We can liter-
ally rob others of their identity if we deny them an
existence beyond our current interests (p. 343).

Students’ mathematical concepts and opera-
tions constitute first-order models, which are
models that students construct to organize, com-
prehend, and control their own experience (Steffe
et al. 1983, p. xvi). Through a process of concep-
tual analysis (von Glasersfeld 1995), teacher/
researchers construct models of students’
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