
Κεφάλαιο 8

Στροφορμή



H ροπή σαν διανυσματικό γινόμενο και

Είδαμε ότι ροπή (𝜏) μιας δύναμης 𝐹 που 

ασκείται σε ένα σώμα 𝛴 ως προς κάποιον 

άξονα 𝑧 είναι η τάση που έχει αυτή η δύναμη 

να περιστρέψει το σώμα γύρω από αυτόν τον 

άξονα.

Το μέτρο της ροπής οριστηκε

𝜏 = 𝑟𝐹𝑠𝑖𝑛𝜑

όπου 𝑟 είναι η απόσταση του σημείου (ή της 

δύναμης από τον άξονα περιστροφής).

Τώρα θα δούμε ότι η ροπή είναι το 

διανυσματικό (ή εξωτερικό) γινόμενο των 

διανυσμάτων της θέσης και της δύναμης.

Ԧ𝜏 = Ԧ𝐫 × Ԧ𝐅

Ενότητα Μ11.1



Για δύο οποιαδήποτε διανύσματα 𝐀 και 𝚩 το 

διανυσματικό ή εξωτερικό γινόμενό τους Ԧ𝐂
συμβολίζεται 

Ԧ𝐂 = 𝐀 × 𝐁

Το μέτρο του διανύσματος Ԧ𝐂 είναι

C = Ԧ𝐂 = 𝐀 × 𝐁 = AB sin 𝜃

▪ 𝜃 είναι η γωνία που σχηματίζεται μεταξύ 

των 𝐀 και 𝐁.

Διανυσματικό γινόμενο – Ορισμός

Θυμηθείτε, το βαθμωτό ή εσωτερικό γινόμενο των 𝐀 και 𝚩 συμβολίζουμε 𝐀 ∙ 𝐁
και είναι ο αριθμός (όχι διάνυσμα) 

𝐀 ∙ 𝐁 = AB cos 𝜃



Περισσότερα για το διανυσματικό γινόμενο

Η ποσότητα AB sin 𝜃 ισούται με το 

εμβαδόν του παραλληλογράμμου που 

σχηματίζουν τα 𝐀 και 𝐁.              .

Η διεύθυνση του Ԧ𝐂 είναι κάθετη στο 

επίπεδο που σχηματίζουν τα 𝐀 και 𝐁.                                                                          

Ο καλύτερος τρόπος για να 

προσδιορίσουμε την κατεύθυνση του 

διανύσματος Ԧ𝐂 είναι να 

χρησιμοποιήσουμε τον κανόνα του 

δεξιού χεριού.
𝐀

𝐁

𝜃

AB sin 𝜃 = Ah = S εμβαδόν 

h



Ιδιότητες του διανυσματικού γινομένου

Στο διανυσματικό γινόμενο δεν ισχύει η αντιμεταθετική

ιδιότητα. Η σειρά με την οποία πολλαπλασιάζουμε τα 

δύο διανύσματα έχει σημασία.

𝐀 × 𝐁 = −𝐁 × 𝐀

Αν το 𝐀 είναι παράλληλο με το 𝐁  ( = 0o ή 180o), τότε

𝐀 × 𝐁 = 𝟎

▪ Άρα, 𝐀 × 𝐀 = 𝟎 .

Αν το 𝐀 είναι κάθετο στο 𝐁, τότε 𝐀 × 𝐁 = AB

Στο διανυσματικό γινόμενο ισχύει η επιμεριστική ιδιότητα.

𝐀 × 𝐁 + Ԧ𝐂 = 𝐀 × 𝐁 + 𝐀 × Ԧ𝐂



Ιδιότητες του διανυσματικού γινομένου (συνέχεια)

Η παράγωγος του διανυσματικού γινομένου ως προς μια μεταβλητή, όπως ο 

χρόνος t, είναι 

𝑑

𝑑𝑡
𝐀 × 𝐁 =

𝑑𝐀

𝑑𝑡
× 𝐁 + 𝐀 ×

𝑑𝐁

𝑑𝑡

ΠΡΟΣΟΧΗ: Είναι σημαντικό να τηρούμε τη σειρά των παραγόντων του 

γινομένου.

Ενότητα Μ11.1



Διανυσματικά γινόμενα μοναδιαίων διανυσμάτων

Ƹ𝐢 × Ƹ𝐢 = Ƹ𝐣 × Ƹ𝐣 = መ𝐤 × መ𝐤 = 0

Ƹ𝐢 × Ƹ𝐣 = − Ƹ𝐣 × Ƹ𝐢 = መ𝐤

Ƹ𝐣 × መ𝐤 = −መ𝐤 × Ƹ𝐣 = Ƹ𝐢

መ𝐤 × Ƹ𝐢 = − Ƹ𝐢 × መ𝐤 = Ƹ𝐣

Ενότητα Μ11.1



Πρόσημα των διανυσματικών γινομένων

Στα διανυσματικά γινόμενα, τα πρόσημα μπορούν να αλλάξουν θέση:

• 𝐀 × −𝐁 = −𝐀 × 𝐁

• Ƹ𝐢 × − Ƹ𝐣 = − Ƹ𝐢 × Ƹ𝐣 

Ενότητα Μ11.1



Χρήση οριζουσών

Αν 𝐴𝑥, 𝐴𝑦 και 𝐴𝑧 είναι οι ορθογώνιες συνιστώσες του διανύσματος 𝐀 και 𝐵𝑥, 𝐵𝑦 

και 𝐵𝑧 του διανύσματος 𝐁, το διανυσματικό γινόμενο μπορεί να εκφραστεί σε 

μορφή ορίζουσας ως

𝐀 × 𝐁 =

Ƹ𝐢 Ƹ𝐣 መ𝐤
𝐴𝑥 𝐴𝑦 𝐴𝑧

𝐵𝑥 𝐵𝑦 𝐵𝑧

Ƹ𝐢, Ƹ𝐣 και መ𝐤 είναι τα μοναδιαία διανύσματα του συστήματος συντεταγμένων.

Αν αναπτύξουμε τις 2x2 ορίζουσες, το γινόμενο γράφεται

𝐀 × 𝐁 = 𝐴𝑦𝐵𝑧 − 𝐴𝑧𝐵𝑦 Ƹ𝐢 + 𝐴𝑥𝐵𝑧 − 𝐴𝑧𝐵𝑥 Ƹ𝐣 + 𝐴𝑥𝐵𝑦 − 𝐴𝑦𝐵𝑥
መ𝐤

Ενότητα Μ11.1

=
𝐴𝑦 𝐴𝑧

𝐵𝑦 𝐵𝑧
Ƹ𝐢 +

𝐴𝑥 𝐴𝑧

𝐵𝑥 𝐵𝑧
Ƹ𝐣 +

𝐴𝑥 𝐴𝑦

𝐵𝑥 𝐵𝑦

መ𝐤



Παράδειγμα διανυσματικού γινομένου

Αν 𝐀 = 2 Ƹ𝐢 + 3 Ƹ𝐣 και 𝐁 = − Ƹ𝐢 + 2 Ƹ𝐣, βρείτε το 

γινόμενο 𝐀 × 𝐁

Απάντηση

𝐀 × 𝐁 = 2 Ƹ𝐢 + 3 Ƹ𝐣 × − Ƹ𝐢 + 2 Ƹ𝐣

= 2 Ƹ𝐢 × − Ƹ𝐢 + 2 Ƹ𝐢 × 2 Ƹ𝐣 + 3 Ƹ𝐣 × − Ƹ𝐢 + 3 Ƹ𝐣 × 2 Ƹ𝐣

= 0 + 4መ𝐤 + 3መ𝐤 + 0

Ενότητα Μ11.1

𝐀

𝚩

𝐀 × 𝐁

= 7መ𝐤
Ƹ𝐢 Ƹ𝐣

መ𝐤



Παράδειγμα διανύσματος ροπής

Δίνονται η δύναμη Ԧ𝐅 = 2.00 Ƹ𝐢 + 3.00 Ƹ𝐣 N και η θέση του σημείου στο οποίο 

εφαρμόζεται, Ԧ𝐫 = (4.00 Ƹ𝐢 + 5.00 Ƹ𝐣) m.  Βρείτε την παραγόμενη ροπή της δύναμης.

Απάντηση

Ԧ𝜏 = Ԧ𝐫  × Ԧ𝐅

= [(4.00)(2.00) Ƹ𝐢 × Ƹ𝐢 + (4.00)(3.00) Ƹ𝐢 × Ƹ𝐣 + (5.00)(2.00) Ƹ𝐣 × Ƹ𝐢 + (5.00)(3.00) Ƹ𝐣 × Ƹ𝐣

= (12.0መ𝐤 − 10.0መ𝐤) Nm

Ενότητα Μ11.1

= [(4.00 Ƹ𝐢 + 5.00 Ƹ𝐣)N] × [(2.00 Ƹ𝐢 + 3.00 Ƹ𝐣)m]

0 ෠k −෠k 0

= 2.0መ𝐤 Nm



Στροφορμή (angular momentum)

Ορίζουμε ως στροφορμή Ԧ𝐋 ενός 

σωματιδίου μάζας 𝑚 ως προς την 

αρχή των αξόνων Ο το διανυσματικό 

γινόμενο

Ԧ𝐋 = Ԧ𝐫 × 𝐩

του διανύσματος Ԧ𝐫 της θέσης του 

σωματιδίου επί την ορμής του 𝐩

Ενότητα Μ11.2



Ροπή και στροφορμή

Εξ’ορισμού Ԧ𝐋 = Ԧ𝐫 × 𝐩

𝑑 Ԧ𝐫

𝑑𝑡
× 𝐩 = 𝐯 × 𝐩 = 𝐯 × 𝑚𝐯 = 𝑚𝐯 × 𝐯 = 0

Ԧ𝐫 ×
𝑑𝐩

𝑑𝑡
= Ԧ𝐫 × ෍ Ԧ𝐅 = ෍ 𝝉

=
𝑑 Ԧ𝐫

𝑑𝑡
× 𝐩 + Ԧ𝐫 ×

𝑑𝐩

𝑑𝑡
(1)⇒

𝑑Ԧ𝐋

𝑑𝑡
=

𝑑

𝑑𝑡
Ԧ𝐫 × 𝐩

෍ 𝝉 =
𝑑Ԧ𝐋

𝑑𝑡

δηλαδή, η συνολική ροπή που δέχεται ένα σωματίδιο ισούται με τον ρυθμό 

μεταβολής της στροφορμής του.

Όμως,

και 

Από την (1) καταλήγουμε



Ροπή και στροφορμή (συνέχεια)

෍ 𝝉 =
𝑑Ԧ𝐋

𝑑𝑡

Στην περιστροφική κίνηση, η παραπάνω εξίσωση είναι ανάλογη με τον δεύτερο 

νόμο του Νεύτωνα 

෍ Ԧ𝐅 =
𝑑𝐩

𝑑𝑡

στη μεταφορική κίνηση.

▪ Τα σ 𝝉 και Ԧ𝐋 πρέπει να θεωρούνται ως προς τον ίδιο άξονα.

▪ Η σχέση ισχύει για κάθε σταθερή αρχή ενός αδρανειακού συστήματος 
αναφοράς 

▪ Σαν αδρανειακό σύστημα αναφοράς μπορούμε να θεωρήσουμε 
οπουδήποτε σώμα στο οποίο δεν ασκούνται δυνάμεις ή η συνιστάμενη 
τους είναι μηδενική (δηλαδή, κάθε σώμα που ισορροπεί ή κινείται 
ευθύγραμμα και ομαλά) .



Στροφορμή σωματιδίου στην ομαλή κυκλική κίνηση

Το διάνυσμα της στροφορμής 

Ԧ𝐋 = Ԧ𝐫 × 𝐩 = Ԧ𝐫 × 𝑚𝐯

έχει φορά από το διάγραμμα προς τα έξω 

(κάθετα στο επίπεδο της κυκλικής τροχιάς).

Το μέτρο της στροφορμής είναι 

𝐿 = 𝑟𝑝 sin 90°

Ένα σωματίδιο που εκτελεί ομαλή κυκλική 

κίνηση έχει σταθερή στροφορμή ως προς 

τον άξονα που διέρχεται από το κέντρο της 

τροχιάς του.

Στο σύστημα SI, η στροφορμή έχει 

μονάδες Τkg ∙ m s kg.

= 𝑟𝑚𝑣



Στροφορμή ενός συστήματος σωματιδίων

Η συνολική στροφορμή ενός συστήματος σωματιδίων ορίζεται ως το 

διανυσματικό άθροισμα της στροφορμής των μεμονωμένων σωματιδίων.

Ԧ𝐋συν. = Ԧ𝐋1 + Ԧ𝐋2 + ⋯ + Ԧ𝐋𝑛 = ෍

𝑖

Ԧ𝐋𝑖

Παραγωγίζοντας ως προς τον χρόνο, παίρνουμε

𝑑Ԧ𝐋συν.
𝑑𝑡

= ෍

𝑖

𝑑Ԧ𝐋𝑖

𝑑𝑡

Ενότητα Μ11.2

= ෍

𝑖

Ԧ𝜏𝑖



Στροφορμή ενός συστήματος σωματιδίων (συνέχεια)

Έχουμε 

𝑑Ԧ𝐋συν

𝑑𝑡
= ෍

𝑖
Ԧ𝜏𝑖

Επειδή όμως, οι ροπές που σχετίζονται με τις εσωτερικές δυνάμεις ενός 

συστήματος σωματιδίων είναι μηδενικές, καταλήγουμε

𝑑Ԧ𝐋συν

𝑑𝑡
= ෍

𝑖
Ԧ𝜏𝑖,εξωτ

δηλαδή, ο ρυθμός μεταβολής της συνολικής στροφορμής ενός 

συστήματος ως προς έναν άξονα, ο οποίος διέρχεται από την αρχή ενός 

αδρανειακού συστήματος αναφοράς ισούται με τη συνισταμένη 

εξωτερική ροπή (ροπή των εξωτερικών δυνάμεων) που ασκείται στο 

σύστημα.

Ενότητα Μ11.2

= ෍
𝑖

Ԧ𝜏𝑖,εσωτ + Ԧ𝜏𝑖,εξωτ

= 0



Στροφορμή ενός συστήματος σωματιδίων (συνέχεια)

𝑑Ԧ𝐋συν

𝑑𝑡
= ෍

𝑖
Ԧ𝜏𝑖,εξωτ

Η παραπάνω εξίσωση αναπαριστά μαθηματικά το μοντέλο του μη απομονωμένου 

συστήματος ως προς τη στροφορμή.

Αν αναδιατάξουμε την εξίσωση, θα πάρουμε     

න ෍
𝑖

Ԧ𝜏𝑖,εξωτ 𝑑𝑡 = ∆Ԧ𝐋συν

Η σχέση αυτή εκφράζει το θεώρημα ώθησης-στροφορμής στην περιστροφή.

Ενότητα Μ11.2



Στροφορμή ενός συστήματος σωματιδίων (τελική διαφάνεια)

Η συνισταμένη ροπή  σ𝑖 Ԧ𝜏𝑖,KM που ασκείται σε ένα σύστημα ως προς έναν 

άξονα, ο οποίος διέρχεται από το κέντρο μάζας του συστήματος, ισούται με τον 

ρυθμό μεταβολής της στροφορμής Τ𝑑Ԧ𝐋 𝑑𝑡 του συστήματος, ανεξάρτητα από την 

κίνηση του κέντρου μάζας.

▪ Αυτό ισχύει ακόμα και στην περίπτωση που το κέντρο μάζας πραγματοποιεί 

επιταχυνόμενη κίνηση, με την προϋπόθεση ότι ροπή 𝝉 και  στροφορμή Ԧ𝐋
υπολογίζονται ως προς το κέντρο μάζας.

Ενότητα Μ11.2



ΠΑΡΑΔΕΙΓΜΑ M11.4 Σύστημα σωμάτων 

Σφαίρα μάζας τις σχέσεις της𝑚1 και κύβος μάζας 𝑚2
συνδέονται με αβαρές σχοινί που διέρχεται από

τροχαλία. Η ακτίνα της τροχαλίας είναι 𝑅 και η μάζα

της λεπτής στεφάνης της είναι 𝑀 . Οι ακτίνες της

τροχα- λίας έχουν αμελητέα μάζα. Ο κύβος ολισθαίνει

σε οριζόντια επιφάνεια χωρίς τριβές.

Χρησιμοποιώντας τις έννοιες της στροφορμής και της

ροπής του συστήματος βρείτε τη γραμμική

επιτάχυνση των δυο σωμάτων.

ΛΥΣΗ

Θα υπολογίσουμε τη στροφορμή και τη ροπή που 

ασκείται στο σύστημα των τριών σωμάτων, σφαίρα, 

κύβος και τροχαλία ως προς τον άξονα 𝑂 της 

τροχαλίας.

Η στροφορμή της σφαίρας ως προς το 𝑂 είναι (δείτε 

ένθετη εικόνα σε μεγέθυνση):

𝐿𝑚1
= 𝑟1𝑝1 sin 𝜃

𝑂

= 𝑟1𝑚1v sin 𝜃 = 𝑚1v 𝑟1sin 𝜃

⇒ 𝐿𝑚1
= 𝑚1v𝑅



ΛΥΣΗ  (συνέχεια)

Στη σφαίρα ασκείται η δύναμη του βάρους της 𝑚1𝑔 που είναι 

εξωτερική δύναμη στο σύστημα (η τάση από το σχοινί είναι 

εσωτερική δύναμη στο σύστημα των τριών σωμάτων.

Η ροπή του βάρους είναι (δείτε ένθετη εικόνα σε μεγέθυνση):

𝜏𝑚1𝑔
= 𝑟1𝑚1𝑔 sin 𝜃 = 𝑚1𝑔 𝑟1sin 𝜃

⇒ 𝜏𝑚1𝑔
= 𝑚1𝑔𝑅

 

 1 

 1

 

 

Ομοίως βρίσκουμε ότι η στροφορμή του κύβου ως προς 

το 𝑂 είναι (δείτε ένθετη εικόνα κάτω σε μεγέθυνση):

𝐿𝑚2
= 𝑟2𝑝2 sin 𝜑

Στον κύβο, η δύναμη του βάρους του και η κάθετη 

αντίδραση από το επίπεδο αλληλοαναιρούνται, ενώ, δεν 

υπάρχουν τριβές στη διεύθυνση κίνησης και η τάση από 

το νήμα είναι εσωτερική δύναμή στο σύστημα.

Συνεπώς, η συνολική ροπή στον κύβο είναι μηδενική.

= 𝑟2𝑚2v sin 𝜑 = 𝑚2v 𝑟2sin 𝜑

⇒ 𝐿𝑚2
= 𝑚2v𝑅



Η συνολική στροφορμή του συστήματος ως προς 𝑂 είναι

𝐿 = 𝐿𝑚1
+ 𝐿𝑚2

+ 𝐿𝑀

και η συνολική ροπή ως προς το ίδιο σημείο είναι σ 𝜏 = 𝑚1𝑔𝑅

Αντικαθιστώντας στη σχέση ροπής-στροφορμής
𝑑𝐿

𝑑𝑡
= σ 𝜏  παίρνουμε

𝑑

𝑑𝑡
𝑚1 + 𝑚2 + 𝑀 v𝑅 = 𝑚1𝑔𝑅

ΛΥΣΗ  (συνέχεια)

Τέλος, όλα τα σημεία της στεφάνης της τροχαλίας 

κινούνται και αυτά με ταχύτητα μέτρου v κάθετη στην 

ακτίνα R, οπότε η στροφορμή της τροχαλίας είναι

𝐿𝑀 = 𝑀𝑅v

Θεωρώντας ότι δεν έχουμε τριβές στην τροχαλία από 

τον άξονά της, η ροπή των εξωτερικών δυνάμεων που 

ασκείται στη τροχαλία είναι μηδέν.

= 𝑚1 + 𝑚2 + 𝑀 v𝑅= 𝑚1v𝑅 + 𝑚2v𝑅 + 𝑀𝑅v

⇒ 𝑚1 + 𝑚2 + 𝑀 𝑅
𝑑v

𝑑𝑡
= 𝑚1𝑔𝑅

⇒ 𝑎 =
𝑚1𝑔

𝑚1 + 𝑚2 + 𝑀

= 𝑎



Στροφορμή περιστρεφόμενου άκαμπτου σώματος

Τα άκαμπτα σώματα είναι στερεά μη 

παραμορφώσιμα συστήματα.

Κάθε σωματίδιο του σώματος περιστρέφεται 

στο επίπεδο 𝑥𝑦 γύρω από τον άξονα 𝑧 με 

γωνιακή ταχύτητα μέτρου 𝜔

Η στροφορμή ενός μεμονωμένου σωματιδίου 

μάζας 𝑚𝑖 σε απόσταση 𝑟𝑖 από τον άξονα είναι 

𝐿𝑖 = 𝑟𝑖𝑝𝑖 sin 0°

Ενότητα Μ11.3

⇒ 𝐿𝑖 = 𝑚𝑖𝑟𝑖
2𝜔

= 𝑟𝑖𝑚𝑖v𝑖

v𝑖 = 𝜔𝑟𝑖

Η συνολική στροφορμή του άκαμπτου σώματος ως προς τον άξονα 𝑧 είναι

𝐿𝑧 = ෍
𝑖
𝐿𝑖 = ෍

𝑖
𝑚𝑖𝑟𝑖

2𝜔 = ෍
𝑖
𝑚𝑖𝑟𝑖

2 𝜔 = 𝐼𝜔



Στροφορμή περιστρεφόμενου άκαμπτου σώματος (συνέχεια)

Η στρορορμή περιστρεφόμενου σώματος με 

γωνιακή ταχύτητα 𝜔 είναι 

𝐿𝑧 = 𝐼𝜔

Με παραγώγιση παίρνουμε

𝑑𝐿𝑧

𝑑𝑡
= 𝐼

𝑑𝜔

𝑑𝑡

όπου 𝑎𝜔 το μέτρο της γωνιακής επιτάχυνσης 

του περιστρεφόμενου σώματος

= 𝐼𝑎𝜔

Όμως, επειδή                           ,  όπου                 η ολική ροπή των εξωτερικών 

δυνάμεων στο σώμα, παίρνουμε

𝑑𝐿𝑧

𝑑𝑡
= ෍ 𝜏εξωτ ෍ 𝜏εξωτ

෍ 𝜏εξωτ = 𝐼𝑎𝜔 2ος νόμος Νεύτωνα για περιστροφή



Στροφορμή περιστρεφόμενου άκαμπτου σώματος (τελική διαφάνεια)

Ο δεύτερος νόμος του Νεύτωνα για την περιστροφή ισχύει και για άκαμπτα 

σώματα που περιστρέφονται γύρω από έναν κινούμενο άξονα υπό την 

προϋπόθεση ότι ο άξονας αυτός:

1. διέρχεται από το κέντρο μάζας

2. είναι άξονας συμμετρίας

Αν ένα συμμετρικό σώμα περιστρέφεται γύρω από έναν σταθερό άξονα που 

διέρχεται από το κέντρο μάζας του, ισχύει η διανυσματική μορφή της εξίσωσης: 

Ԧ𝐋 = 𝐼𝜔

όπου Ԧ𝐋  είναι η συνολική στροφορμή του σώματος ως προς τον άξονα 

περιστροφής.

Ο δεύτερος νόμος του Νεύτωνα για την περιστροφή ισχύει για οποιοδήποτε 

σώμα, ανεξάρτητα από τη συμμετρία του, αν το       συμβολίζει τη συνιστώσα της 

στροφορμής κατά μήκος του άξονα περιστροφής.

Ενότητα Μ11.3



ΠΑΡΑΔΕΙΓΜΑ M11.6 Ζυγός

Δύο μάζες 𝑚1 και 𝑚2 στηρίζονται στα δυο άκρα μιας ράβδου μήκους 𝑙 και μάζας 𝑀
σε ίσες αποστάσεις από τον άξονα περιστροφής 𝑂 . Η ράβδος μπορεί να

περιστρέφεται χωρίς τριβές. Σε μια δεδομένη χρονική στιγμή το σύστημα

περιστρέφεται σε κατακόρυφο επίπεδο με γωνιακή ταχύτητα μέτρου 𝜔.

A. Βρείτε το μέτρο της στροφορμής του συστήματος.

ΛΥΣΗ

Η στροφορμή 𝐿 του συστήματος είναι 

𝐿 = 𝐼𝜔

όπου 𝐼 η ροπή αδράνειας του συστήματος ως 

προς τον άξονα περιστροφής 𝑂.

Η ροπή αδράνειας του συστήματος ισούται με το άθροισμα των ροπών αδράνειας 

των μερών που το αποτελούν

Είναι

όπου,  
1

12
𝑀𝑙2 η ροπή αδράνειας της ράβδου και 𝑚1

𝑙

2

2
, 𝑚2

𝑙

2

2
 των δύο μαζών.

Οπότε

𝐼 =
1

12
𝑀𝑙2 + 𝑚1

𝑙

2

2

+ 𝑚2

𝑙

2

2

=
𝑙2

4

𝑀

3
+ 𝑚1 + 𝑚2

𝐿 = 𝐼𝜔 =
𝑙2

4

𝑀

3
+ 𝑚1 + 𝑚2 𝜔



ΠΑΡΑΔΕΙΓΜΑ  (συνέχεια)

B. Βρείτε τη σχέση που δίνει τη γωνιακή

επιτάχυνση του συστήματος όταν η

ράβδος είναι σε γωνία 𝜃  ως προς τον

ορίζοντα.

ΛΥΣΗ

Η γωνιακή επιτάχυνση 𝑎𝜔 δίνεται από το 2ο

νόμο Νεύτωνα για την περιστροφή

෍ 𝜏εξωτ = 𝐼𝑎𝜔

Η συνισταμένη ροπή των εξωτερικών δυνάμεων είναι

෍ 𝜏εξωτ = 𝜏𝑚1𝑔 + 𝜏𝑚1𝑔 + 𝜏𝑀𝑔

όπου, 

𝜏𝑚1𝑔 η ροπή του βάρους 𝑚1𝑔 ως προς 𝛰:

𝜏𝑚2𝑔 η ροπή του βάρους 𝑚2𝑔 ως προς 𝛰:

𝜏Μ𝑔 η ροπή της ράβδου ως προς 𝛰:

𝜏𝑚1𝑔 = −𝑚1𝑔
𝑙

2
cos 𝜃

𝜏𝑚2𝑔 = 𝑚2𝑔
𝑙

2
cos 𝜃

𝜏𝑀𝑔 = 𝑀𝑔0 = 0

Προσέξτε 
το πρόσημο



ΛΥΣΗ (συνέχεια)

෍ 𝜏εξωτ = 𝜏𝑚1𝑔 + 𝜏𝑚1𝑔 + 𝜏𝑀𝑔

= 𝑚1𝑔
𝑙

2
cos 𝜃 − 𝑚2𝑔

𝑙

2
cos 𝜃 + 0

=
1

2
𝑚1 − 𝑚2 𝑔𝑙 cos 𝜃

Αντικαθιστώντας στη σχέση

෍ 𝜏εξωτ = 𝐼𝑎𝜔

Βρίσκουμε

1

2
𝑚1 − 𝑚2 𝑔𝑙 cos 𝜃 =

𝑙2

4

𝑀

3
+ 𝑚1 + 𝑚2 𝑎𝜔

⇒ 𝑎𝜔 =
2 𝑚1 − 𝑚2 𝑔 cos 𝜃

𝑙
𝑀
3

+ 𝑚1 + 𝑚2



Διατήρηση της στροφορμής

Απο τη σχέση ροπής-στροφορμής

𝑑Ԧ𝐋συν

𝑑𝑡
= ෍

𝑖
Ԧ𝜏𝑖,εξωτ

προκύπτει ότι αν η συνισταμένη εξωτερική ροπή που ασκείται στο σύστημα είναι 

μηδενική,  σ𝑖 Ԧ𝜏𝑖,εξωτ = 0,  τότε  Τ𝑑Ԧ𝐋συν 𝑑𝑡 = 0

δηλαδή, η συνολική στροφορμή του συστήματος παραμένει σταθερή (σε μέτρο 

και κατεύθυνση) με το χρόνο.

Ԧ𝐋συν = σταθερή ή Ԧ𝐋𝑖  = Ԧ𝐋𝑓

▪ Σε αυτή την αρχή βασίζεται το μοντέλο του απομονωμένου συστήματος ως 

προς τη στροφορμή.

Ενότητα Μ11.4



Διατήρηση της στροφορμής σε παραμορφώσιμα συστήματα

Αν ένα απομονωμένο περιστρεφόμενο σύστημα είναι παραμορφώσιμο, δηλαδή η 

μάζα του ανακατανέμεται, τότε η ροπή αδράνειας 𝐼 του συστήματος 

μεταβάλλεται.

Δεδομένου ότι 

𝐿 = 𝐼𝜔

για να διατηρηθεί η στροφορμή, δηλαδή, για να έχουμε  

𝐿𝑖 = 𝐿𝑓

απαιτείται μια αντισταθμιστική μεταβολή της γωνιακής ταχύτητας ώστε

𝐼𝑖𝜔𝑖 = 𝐼𝑓𝜔𝑓

▪ Η σχέση αυτή ισχύει τόσο για την περιστροφή γύρω από έναν σταθερό 

άξονα όσο και για την περιστροφή γύρω από έναν άξονα ο οποίος διέρχεται 

από το κέντρο μάζας ενός κινούμενου συστήματος.

▪ Σε κάθε περίπτωση, η συνισταμένη ροπή πρέπει να είναι μηδενική.



Αρχές διατήρησης – Σύνοψη

Για ένα απομονωμένο σύστημα, έχουμε: 

Α. Διατήρηση της ενέργειας: 

▪ 𝐸𝑖 = 𝐸𝑓

▪ Αν δεν μεταφέρεται ενέργεια μέσω του ορίου του συστήματος.

Β. Διατήρηση της ορμής: 

▪ 𝐩𝑖 = 𝐩𝑓

▪ Αν η συνισταμένη εξωτερική δύναμη που ασκείται στο σύστημα είναι 

μηδενική, σ 𝐹εξωτ = 0.

Γ. Διατήρηση της στροφορμής:

▪ Ԧ𝐋𝑖 = Ԧ𝐋𝑓

▪ Αν η συνισταμένη εξωτερική ροπή που ασκείται στο σύστημα είναι 

μηδενική, σ 𝜏εξωτ = 0.



Αρχές διατήρησης – Σημειώσεις

Ένα σύστημα μπορεί να είναι απομονωμένο ως προς ένα από αυτά τα μεγέθη 

(𝐸, 𝐩 ή Ԧ𝐋), αλλά όχι ως προς κάποιο άλλο.

▪ Για παράδειγμα, ένα σύστημα το οποίο δεν είναι απομονωμένο ως προς την 

ορμή, συχνά δεν είναι απομονωμένο και ως προς την ενέργεια επειδή σε 

αυτό ασκείται μια συνισταμένη δύναμη ή ροπή.

▪ Υπάρχουν συστήματα που δεν είναι απομονωμένα ως προς την ενέργεια, 

αλλά είναι απομονωμένα ως προς την ορμή.

▪ Συχνά, οι κρούσεις είναι απομονωμένες ως προς την ορμή αλλά δεν είναι 

απομονωμένες ως προς την ενέργεια.

Ενότητα Μ11.4



ΠΑΡΑΔΕΙΓΜΑ M11.8 Το καρουσέλ

Μια οριζόντια πλατφόρμα μάζας 𝑀 = 100kg σε σχήμα κυκλικού δίσκου ακτίνας 

𝑅 = 2.0m περιστρέφεται ελεύθερα σε οριζόντιο επίπεδο γύρω από έναν 

κατακόρυφο άξονα χωρίς τριβές. Ένας μαθητής μάζας 𝑚 = 56.0kg περπατά αργά 

από το χείλος του δίσκου προς το κέντρο του. Εάν η γωνιακή ταχύτητα του 

συστήματος είναι 2.0rad/s όταν ο μαθητής βρίσκεται στο χείλος, ποια είναι η 

γωνιακή ταχύτητα όταν φτάνει σε ένα σημείο 𝑟 = 0.5m από το κέντρο;

ΛΥΣΗ

Η ροπή αδράνειας του συστήματος ισούται με τη ροπή 
αδράνειας της πλατφόρμας συν τη ροπή αδράνειας του 
μαθητή.

𝐼 = 𝐼𝑝 + 𝐼𝑠

Καθώς ο μαθητής περπατά προς το κέντρο της 
περιστρεφόμενης πλατφόρμας, η ακτίνα περιστροφής 

του 𝑟 μειώνεται, με συνέπεια τη μείωση της ροπής 
αδράνειας του συστήματος.

⇒ 𝐼 =
1

2
𝑀𝑅2 + 𝑚𝑟2

Επειδή η πλατφόρμα περιστρέφεται σε άξονα χωρίς τριβές, η στροφορμή του 
συστήματος διατηρείται.

𝐿𝑖 = 𝐿𝑓 ή 𝐼𝑖𝜔𝑖 = 𝐼𝑓𝜔𝑓



ΛΥΣΗ  (συνέχεια)

𝐼𝑖𝜔𝑖 = 𝐼𝑓𝜔𝑓 (1)
Η μείωση της ροπής αδράνειας 𝐼 καθώς ο μαθητής 
περπατά προς το κέντρο έχει σαν συνέπεια το μέτρο 
της γωνιακής ταχύτητας 𝜔 του συστήματος να 
αυξάνεται

Η αρχική ροπή αδράνειας του συστήματος (όταν ο 
μαθητής είναι στην άκρη, 𝑟 = 𝑅) είναι

𝐼𝑖 =
1

2
𝑀𝑅2 + 𝑚𝑅2

και η αρχική στροφορμή 𝐿𝑖 = 𝐼𝑖𝜔𝑖

Η τελική ροπή αδράνειας (όταν ο μαθητής είναι στην θέση, 𝑟 = 0.50m) είναι 

𝐼𝑓 =
1

2
𝑀𝑅2 + 𝑚𝑟2

και η τελική στροφορμή 𝐿𝑓 = 𝐼𝑓𝜔𝑓

Αντικαθιστώντας στην (1), παίρνουμε

1

2
𝑀𝑅2 + 𝑚𝑅2 𝜔𝑖 =

1

2
𝑀𝑅2 + 𝑚𝑟2 𝜔𝑓 ⇒ 𝜔𝑓 =

1
2

𝑀𝑅2 + 𝑚𝑅2

1
2

𝑀𝑅2 + 𝑚𝑟2
𝜔𝑖



ΛΥΣΗ  (συνέχεια)

𝜔𝑓 =

1
2

𝑀𝑅2 + 𝑚𝑅2

1
2

𝑀𝑅2 + 𝑚𝑟2
𝜔𝑖

𝜔𝑓 =

1
2

100kg 2.0m 2 + 60kg 2.0m 2

1
2

100kg 2.0m 2 + 60kg 0.5m 2
2.0rad/s

= 4.1rad/s



ΠΑΡΑΔΕΙΓΜΑ M11.9 Σύγκρουση δίσκου με ράβδο

Ένας μικρός δίσκος 2.0 kg που εκτοξεύεται πάνω σε επιφάνεια πάγου με 3.0 m/s
χτυπά ένα ραβδί 1.0 kg μήκους 4.0 m που βρίσκεται πάνω στον πάγο σχεδόν 

χωρίς τριβή (εικ. Α). Ο δίσκος χτυπά στο τελικό σημείο του ραβδιού, σε απόσταση 

𝑟 = 2.0 m από το κέντρο του. Ας υποθέσουμε ότι η σύγκρουση είναι ελαστική και ο 

δίσκος δεν αποκλίνει από την αρχική του γραμμή κίνησης. Βρείτε τη μεταφορική 

ταχύτητα του δίσκου, τη μεταφορική ταχύτητα του ραβδού και τη γωνιακή ταχύτητα 

του ραβδού μετά τη σύγκρουση. Η ροπή αδράνειας του ραβδιού γύρω από το 

κέντρο μάζας του είναι 1.33 kg ∙ m2.

ΛΥΣΗ

Επειδή, λόγω του πάγου, δεν υπάρχουν τριβές, ο 
δίσκος και το ραβδί σχηματίζουν ένα απομονωμένο 
σύστημα όσον αφορά την ορμή και τη στροφορμή (η 
δύναμη κατά την κρούση δίσκου-ράβδου είναι 
εσωτερική). 

Επίσης, αγνοώντας τον ήχο που παράγεται στη 
σύγκρουση, το σύστημα είναι επίσης απομονωμένο 
σύστημα ως προς την ενέργειας. 

Επιπλέον, επειδή η σύγκρουση θεωρείται ελαστική, η 
κινητική ενέργεια του συστήματος είναι σταθερή



ΛΥΣΗ (συνέχεια)

Από την διατήρηση της ορμής του συστήματος, 

έχουμε:

∆𝐩tot = 0 

⇒ 𝑚𝑑v𝑑𝑓 + 𝑚𝑠v𝑠 − 𝑚𝑑v𝑑𝑖 = 0

⇒ 𝑚𝑑 v𝑑𝑖 − v𝑑𝑓 = 𝑚𝑠v𝑠 (1)

Θεωρώντας τη στροφορμή του συστήματος ως 

προς έναν άξονα που διέρχεται από το κέντρο 𝐶
του ραβδιού, έχουμε:

• Πριν την κρούση, η στροφορμή του δίσκου (ως 

προς 𝐶) είναι 

𝐿𝑑𝑖 = −𝑟𝑚𝑑v𝑑𝑖 (αρνητική ως δεξιόστροφη)

Μετά την κρούση, η στροφορμή του δίσκου (ως 

προς 𝐶) είναι 

𝐿𝑑𝑓 = −𝑟𝑚𝑑v𝑑𝑓 

και της ράβδου 𝐿𝑠𝑓 = 𝐼𝜔

⇒ 𝐩tot,after − 𝐩tot,before = 0



ΛΥΣΗ (συνέχεια)

Από τη διατήρηση της στροφορμής ως προς το 𝐶, 

έχουμε:

∆Ԧ𝐋tot = 0

⇒ −𝑟𝑚𝑑v𝑑𝑓 + 𝐼𝜔 − −𝑟𝑚𝑑v𝑑𝑖 = 0

⇒ −𝑟𝑚𝑑 v𝑑𝑖 − v𝑑𝑓 = 𝐼𝜔 (2)

Από τη διατήρηση της κινητικής ενέργειας κατά τη 

κρούση, έχουμε:

∆𝐾 = 0

⇒
1

2
𝑚𝑑v𝑑𝑓

2 +
1

2
𝑚𝑠v𝑠

2 +
1

2
𝐼𝜔2 −

1

2
𝑚𝑑v𝑑𝑖

2 = 0

⇒ 𝑚𝑑 v𝑑𝑓
2 − v𝑑𝑖

2 + 𝑚𝑠v𝑠
2 + 𝐼𝜔2 = 0

⇒ 𝑚𝑑 v𝑑𝑖 − v𝑑𝑓 v𝑑𝑖 + v𝑑𝑓 = 𝑚𝑠v𝑠
2 + 𝐼𝜔2 (3)

⇒ Ԧ𝐋tot,after − Ԧ𝐋tot,before = 0

⇒ 𝐾after − 𝐾before = 0



ΛΥΣΗ (συνέχεια)

Πολλαπλασιάζοντας την (1) επί 𝑟, έχουμε:

𝑟𝑚𝑑 v𝑑𝑖 − v𝑑𝑓 = 𝑟𝑚𝑠v𝑠

και προσθέτοντας την (2)

−𝑟𝑚𝑑 v𝑑𝑖 − v𝑑𝑓 = 𝐼𝜔

παίρνουμε

0 = 𝑟𝑚𝑠v𝑠 + 𝐼𝜔

⇒ 𝜔 = −
𝑟𝑚𝑠v𝑠

𝐼
(4)

Διαιρώντας 
(3)

(1)
έχουμε

𝑚𝑑 v𝑑𝑖 − v𝑑𝑓 v𝑑𝑖 + v𝑑𝑓

𝑚𝑑 v𝑑𝑖 − v𝑑𝑓

=
𝑚𝑠v𝑠

2 + 𝐼𝜔2

𝑚𝑠v𝑠

⇒ v𝑑𝑖 + v𝑑𝑓 = v𝑠 +
𝐼𝜔2

𝑚𝑠v𝑠
(5)



ΛΥΣΗ (συνέχεια)

Έχουμε

και

Αντικαθιστώντας το 𝜔 από την (4) στην (5), έχουμε

v𝑑𝑖 + v𝑑𝑓  = v𝑠 +
𝐼 −

𝑟𝑚𝑠v𝑠
𝐼

2

𝑚𝑠v𝑠

⇒ v𝑑𝑖 + v𝑑𝑓  = v𝑠 1 +
𝑟2𝑚𝑠

𝐼
 (6)

Από την (1) έχουμε

v𝑑𝑖 − v𝑑𝑓 =
𝑚𝑠v𝑠

𝑚𝑑

και προσθέτοντας κατά μέλη στην (6), και 

λύνοντας ως προς v𝑠, βρίσκουμε
v𝑠  =

2v𝑑𝑖

1 +
𝑚𝑠
𝑚𝑑

+
𝑟2𝑚𝑠

𝐼

𝜔 = −
𝑟𝑚𝑠v𝑠

𝐼
(4)

v𝑑𝑖 + v𝑑𝑓  = v𝑠 +
𝐼𝜔2

𝑚𝑠v𝑠
(5)



ΛΥΣΗ (συνέχεια)

v𝑠  =
2v𝑑𝑖

1 +
𝑚𝑠
𝑚𝑑

+
𝑟2𝑚𝑠

𝐼

=
2 3.0m/s

1 +
1.0kg
2.0kg

+
2.0m 2 1.0kg
1.33kg ∙ m2

= 1.3 m/s

𝜔 = −
𝑟𝑚𝑠v𝑠

𝐼
= −

2.0m 1.0kg
1.3m

s

1.33kg ∙ m2
= −2.0 rad/sΑπό την (4), έχουμε 

Τέλος, λύνοντας την (1) ως προς v𝑑𝑓 έχουμε

v𝑑𝑓 = v𝑑𝑖 −
𝑚𝑠

𝑚𝑑
v𝑠 =

3.0m

s
−

1.0kg

2.0kg

1.3m

s
= 2.3 m/s



Γυροσκοπική κίνηση

Ένας ασυνήθιστος και ενδιαφέρων τύπος 

κίνησης είναι μιας σβούρας που περιστρέφεται 

γύρω από τον άξονα συμμετρίας της (εικ. Α). 

Εάν η σβούρα περιστρέφεται γρήγορα, ο άξονας 

συμμετρίας περιστρέφεται γύρω από τον 

κατακόρυφο άξονα 𝑧, σαρώνοντας έναν κώνο 

(εικ. β). 

Η κίνηση του άξονα συμμετρίας γύρω από την 

κατακόρυφο ονομάζεται μεταπτωτική κίνηση 

(precessional motion)

και είναι συνήθως αργή σε σχέση με την 

περιστρεφόμενη κίνηση της κορυφής.

Είναι πολύ φυσικό να αναρωτιόμαστε γιατί η 

σβούρα δεν πέφτει.



Γυροσκοπική κίνηση (συνέχεια)

Η περιστρεφόμενη σβούρα έχει στροφορμή Ԧ𝐋 ως 

προς τον άξονα συμμετρίας της

Οι μόνες εξωτερικές δυνάμεις που δέχεται η 

σβούρα είναι η βαρυτική δύναμη 𝑀𝐠 προς τα 

κάτω και η κάθετη δύναμη 𝐧 που ασκείται προς τα 

πάνω στο σημείο περιστροφής O.

Η ροπή της 𝐧 ως προς τον άξονα περιστροφής 

είναι μηδέν.

Όμως, η βαρυτική δύναμη 𝑀𝐠 παράγει ροπή ως 

προς το 𝑂

Ԧ𝜏 = Ԧ𝐫 × 𝑀𝐠

που, σύμφωνα με τον κανόνα του δεξιού χεριού, το διάνυσμα της ροπής 

βρίσκεται στο οριζόντιο επίπεδο 𝑥𝑦.



Γυροσκοπική κίνηση (συνέχεια)

Η συνισταμένη ροπή και η στροφορμή

συνδέονται μέσω της σχέσης:

෍ Ԧ𝜏εξωτ =
𝑑Ԧ𝐋

𝑑𝑡

Στο απειροελάχιστο χρονικό διάστημα 𝑑𝑡, η 

ροπή του βάρους προκαλεί μια αλλαγή 𝑑Ԧ𝐋 στη 

στροφορμή στη κατεύθυνση της ροπής Ԧ𝜏 (εικ. β).

Επειδή το 𝑑Ԧ𝐋 είναι κάθετο στο Ԧ𝐋, το μέτρο της 

στροφορμής δεν αλλάζει Ԧ𝐋𝑖 = Ԧ𝐋𝑓

αλλάζει μόνο η κατεύθυνση της Ԧ𝐋.

Ενότητα Μ11.5



Γυροσκοπική κίνηση (συνέχεια)

Στο χρονικό διάστημα 𝑑𝑡, το διάνυσμα της 

γωνιακής ορμής Ԧ𝐋 περιστρέφεται κατά μια γωνίας 

𝑑𝜙, η οποία είναι επίσης η γωνία μέσω της οποίας 

περιστρέφεται ο άξονας του γυροσκοπίου.

Από το τρίγωνο των διανυσμάτων Ԧ𝐋𝑖, Ԧ𝐋𝑓 και ∆Ԧ𝐋
βλέπουμε:

𝑑𝜙 =
𝑑𝐿

𝐿

⇒
𝑑𝜙

𝑑𝑡
=

𝑀𝑔𝑟KM

𝐿

Τελικά

όπου, 𝜔𝑝 η συχνότητα μετάπτωσης (precessional 

frequency 𝝉

𝑑𝜙

=
σ 𝜏εξωτ 𝑑𝑡

𝐿
=

𝑀𝑔𝑟KM 𝑑𝑡

𝐿

=
𝑀𝑔𝑟KM

𝐼𝜔

𝜔𝑝 =
𝑀𝑔𝑟KM

𝐼𝜔



Γυροσκόπιο

Ένα περιστρεφόμενο γυροσκόπιο τοποθετείται σε έναν άξονα στο δεξί άκρο

Ενότητα Μ11.5

Η βαρυτική δύναμη 𝑀𝐠 στην 
αρνητική κατεύθυνση 𝑧 παράγει 
μια ροπή 𝝉 στο γυροσκόπιο στη 
θετική κατεύθυνση 𝑦 γύρω από 
τον άξονα περιστροφής.

Αποτέλεσμα της ροπής είναι η 
μεταβολή ∆Ԧ𝐋 στην κατεύθυνση της  
στροφορμής στη διεύθηση της ροπής. 
Ο άξονας του γυροσκοπίου σαρώνει 
μια γωνία 𝑑𝜙 στο χρόνο 𝑑𝑡



Γυροσκόπια σε διαστημόπλοια

Το διαστημόπλοιο, που κινείται στο διάστημα, φέρει ένα 

γυροσκόπιο που δεν περιστρέφεται. Η στροφορμή του 

διαστημοπλοίου ως προ τος κέντρο μάζας του είναι 

μηδενική (εικ. α).

Έστω το γυροσκόπιο τίθεται σε κίνηση (περιστροφή) που 

του δίνει κάποια στροφορμή (εικ. β)

Στο σύστημα διαστημόπλοιο-γυροσκόπιο δεν ασκείται 

εξωτερική ροπή (είναι απομονωμένο), επομένως η 

στροφορμή του συστήματος πρέπει να παραμείνει 

μηδενική. 

Αυτό μπορεί να ικανοποιηθεί μόνα εάν το διαστημόπλοιο 

περιστραφεί προς την αντίθετη κατεύθυνση

ΤΕΛΟΣ ΚΕΦΑΛΑΙΟΥ
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