
Κεφάλαιο 7 – Μέρος Α

Περιστροφή στερεού σώματος γύρω από σταθερό άξονα



Στερεό (ή άκαμπτο) σώμα

Ένα άκαμπτο σώμα δεν είναι παραμορφώσιμο.

▪ Οι σχετικές θέσεις όλων των σωματιδίων που αποτελούν το σώμα 

παραμένουν σταθερές.

▪ Όλα τα πραγματικά σώματα παραμορφώνονται σε κάποιο βαθμό, αλλά το 

μοντέλο του άκαμπτου σώματος είναι χρήσιμο σε πολλές περιπτώσεις όπου 

η παραμόρφωση είναι αμελητέα.

Σε αυτό το κεφάλαιο, θα παρουσιάσουμε μία νέα κατηγορία προβλημάτων, τα 

οποία βασίζονται στο μοντέλο του άκαμπτου σώματος και τα οποία αναλύονται 

με βάση τους νόμους του Νεύτωνα και τις έννοιες του έργου και της ενέργειας.

Εισαγωγή



Γωνιακή θέση

Θεωρήστε περιστρεφόμενο δίσκο με άξονα 

περιστροφής το κέντρο του 𝑂.

Επιλέγουμε μια σταθερή ευθεία αναφοράς.

Μας διευκολύνει να προσδιορίσουμε τη 

θέση ενός σημείου 𝛴 σε πολικές 

συντεταγμένες (polar coordinates)

Το 𝛴 έχει πολικές συντεταγμένες (r,  ), 

όπου 

• r είναι η απόσταση του Σ από την αρχή 

των αξόνων και 

• η γωνία   μετριέται αριστερόστροφα

από την ευθεία αναφοράς.
Ενότητα  Μ10.1



Γωνιακή θέση (συνέχεια)

Καθώς το σώμα κινείται, μεταβάλλεται 

μόνο η συντεταγμένη  του σημείου Σ.

Καθώς το σημείο Σ κινείται κυκλικά 

σαρώνοντας γωνία , διαγράφει τόξο 

μήκους s.

Το μήκος του τόξου s και η ακτίνα r

συνδέονται μέσω της σχέσης

s = 𝜃r

Η γωνία θ παίζει τον ίδιο ρόλο στην 

περιστροφική κίνηση όπως η θέση x 

στη μεταφορική κίνηση.

Ενότητα  Μ10.1



Ακτίνιο

Η σχέση αυτή μπορεί να γραφτεί ως: 

𝜃 =
𝑠

𝑟

Η γωνία  είναι αδιάστατος αριθμός, αλλά 

συνηθίζουμε να τη μετράμε σε ακτίνια (radians, 

rad).

Ένα ακτίνιο είναι η επίκεντρος γωνία που 

αντιστοιχεί σε ένα τόξο κύκλου το οποίο έχει 

μήκος ίσο με την ακτίνα του κύκλου.

Στις εξισώσεις της περιστροφικής κίνησης, πρέπει 

να χρησιμοποιείτε γωνίες μετρημένες σε ακτίνια 

(όχι σε μοίρες ).

Ενότητα  Μ10.1



Μετατροπές

Σύγκριση μοιρών με ακτίνια  

1 rad =
360°

2𝜋
= 57.3∘

Μετατροπή μοιρών σε ακτίνια

𝜃 (rad) =
𝜋

180∘
𝜃(∘)

 

Ενότητα  Μ10.1



Γωνιακή μετατόπιση

Η γωνιακή μετατόπιση ορίζεται ως η γωνία 

που σαρώνει το διάνυσμα θέσης 𝒓 του 

σώματος κατά τη διάρκεια ενός χρονικού 

διαστήματος 𝛥𝑡 = 𝑡𝑓 − 𝑡𝑖

Ισούται με τη διαφορά

𝛥𝜃 = 𝜃𝑓 − 𝜃𝑖

της τελικής 𝜃𝑓 μείον την αρχική 𝜃𝑖 γωνία 

ως προς τον άξονα αναφοράς (x)

Ενότητα  Μ10.1



Μέτρο γωνιακής ταχύτητας

H (στιγμιαία) γωνιακή ταχύτητα, ή μέτρο της γωνιακής ταχύτητας, είναι ο ρυθμός 

μεταβολής της γωνιακής θέσης του σώματος, δηλαδή, ο ρυθμός με τον οποίο το 

σώμα περιστρέφεται

𝜔 =
𝑑𝜃

𝑑𝑡

Οι μονάδες του μέτρου της γωνιακής ταχύτητας είναι τα ακτίνια/δευτερόλεπτο 

(rad/s) ή s-1 (επειδή τα ακτίνια δεν έχουν διαστάσεις)

Ενότητα  Μ10.1

Το μέτρο της γωνιακής ταχύτητας είναι θετικό όταν 

η γωνία θ αυξάνεται (αριστερόστροφη 

περιστροφή).

Το μέτρο της γωνιακής ταχύτητας είναι αρνητικό 

όταν η γωνία θ μειώνεται (δεξιόστροφη 

περιστροφή).



Μέτρο γωνιακής επιτάχυνσης

Η (στιγμιαία) γωνιακή επιτάχυνση, ή μέτρο γωνιακής επιτάχυνσης, είναι ο ρυθμός 

μεταβολής της γωνιακής ταχύτητας του σώματος

𝛼𝜔 =
𝑑𝜔

𝑑𝑡

Σημείωση: Για τη γωνιακή επιτάχυνση χρησιμοποιούμε το σύμβολο 𝛼𝜔 για να τη 

διακρίνουμε από τη γραμμική επιτάχυνση 𝛼.

Ενότητα  Μ10.1



Μέτρο γωνιακής επιτάχυνσης (συνέχεια)

Το μέτρο της γωνιακής επιτάχυνσης 𝛼𝜔 είναι ανάλογο με το μέτρο της 

γραμμικής επιτάχυνσης .

Οι μονάδες της γωνιακής επιτάχυνσης 𝛼𝜔 είναι τα rad/s² ή s-2 επειδή τα ακτίνια 

δεν έχουν διαστάσεις.

Η γωνιακή επιτάχυνση 𝛼𝜔 είναι θετική όταν ένα σώμα, που περιστρέφεται 

αριστερόστροφα, επιταχύνει.

Η 𝛼𝜔 είναι επίσης θετική όταν ένα σώμα, που περιστρέφεται δεξιόστροφα, 

επιβραδύνει.

Ενότητα  Μ10.1



Οι κατευθύνσεις, λεπτομέρειες

Όπως προαναφέραμε, τα βαθμωτά 

μεγέθη 𝜔 και 𝛼𝜔 είναι τα μέτρα των 

διανυσμάτων της γωνιακής ταχύτητας 

και της γωνιακής επιτάχυνσης 

αντίστοιχα.

Οι κατευθύνσεις αυτών των 

διανυσμάτων δίνονται από τον κανόνα 

του δεξιού χεριού.

Ενότητα  Μ10.1



Σύγκριση εξισώσεων περιστροφικής και μεταφορικής κίνησης με 

σταθερή επιτάχυσνη

Ενότητα  Μ10.2

Γραμμική κίνηση Περιστροφική κίνηση

Θέση  x Γωνιακή θέση 𝜃

Γραμμική ταχύτητα v Γωνιακή ταχύτητα 

Γραμμική επιτάχυνση   Γωνιακή επιτάχυνση  

v𝑓 = v𝑖 + 𝛼∆𝑡 𝜔𝑓 = 𝜔𝑖 + 𝛼𝜔∆t

𝑥𝑓 = 𝑥𝑖 + v𝑖𝑡 +
1

2
𝛼 ∆𝑡 2 𝜃𝑓 = 𝜃𝑖 + 𝜔𝑖∆𝑡 +

1

2
𝛼𝜔 ∆𝑡 2

v𝑓
2 = v𝑖

2 + 2𝛼∆𝑥 𝜔𝑓
2 = 𝜔𝑖

2 + 2𝛼𝜔∆𝜃



Γραμμική ταχύτητας σε περιστρεφόμενο σώμα

Το μέτρο της γραμμικής ταχύτητας ενός σημείου 

Σ του σώματος που βρίσκεται σε ακτίνα r από 

τον άξονα περιστροφής Ο είναι

v =
𝑑𝑠

𝑑𝑡

δηλαδή, μέτρο v της γραμμικής ταχύτητας 

αυξάνεται όσο αυξάνεται η απόσταση 𝑟 από το 

κέντρο περιστροφής του σώματος

=
𝑑 𝑟𝜃

𝑑𝑡
= 𝑟

𝑑𝜃

𝑑𝑡
= 𝑟𝜔

Να θυμόμαστε, η γραμμική 

ταχύτητα 𝐯
→

 είναι πάντα 

εφαπτομενική στην κυκλική τροχιά.



Παράδειγμα περιστροφικής κίνησης

Για να «διαβάσει» μια συσκευή αναπαραγωγής 

έναν ψηφιακό δίσκο (CD), η γωνιακή ταχύτητα 

περιστροφής 𝜔 του δίσκου πρέπει να 

μεταβάλλεται έτσι ώστε η γραμμική ταχύτητα 

v να παραμένει σταθερό (v = 𝑟𝜔)

Επομένως, στα εσωτερικά τμήματα του δίσκου, 

το μέτρο της γωνιακής ταχύτητας είναι 

μεγαλύτερο από ό,τι στα εξωτερικά.

Τυπικά, το μέτρο ταχύτητας της επιφάνειας του 

δίσκου στο σημείο του συστήματος λέιζερ-φακού 

που διαβάζει είναι 1.3 m/s. Έτσι 

⇒ 𝜔εσωτ =
1.3 m/s

23 × 10−3 m
= 56.5 rad/s

𝜔εξωτ =
1.33 m/s

58 × 10−3 m
= 22.4 rad/s

𝜔 =
v

𝑟



Επιτάχυνση – Λεπτομέρειες

Η εφαπτομενική επιτάχυνση 𝑎𝑡 ενός σημείου του 

περιστρεφόμενου σώματος προκαλείται από τη 

μεταβολή του μέτρου της ταχύτητας.

Ισούται με το ρυθμός μεταβολής της ταχύτητας v.

𝛼𝑡 =
𝑑v

𝑑𝑡

Η κεντρομόλος επιτάχυνση 𝑎𝑟 προκαλείται από τη 

μεταβολή της κατεύθυνσης της ταχύτητας.

Ισούται με 

𝛼𝑟 =
v2

𝑟

Ενότητα  Μ10.3

=
𝑑 𝑟𝜔

𝑑𝑡
= 𝑟

𝑑𝜔

𝑑𝑡
=  𝑟𝛼𝜔

=
𝑟𝜔 2

𝑟
= 𝑟𝜔2



Επιτάχυνση – Λεπτομέρειες

Μπορούμε να υπολογίσουμε τη συνολική 

επιτάχυνση ενός περιστρεφόμενου σώματος  

από αυτές τις συνιστώσες:

𝑎 = 𝑎𝑡
2 + 𝑎𝑟

2

Ενότητα  Μ10.3

⇒ 𝑎 = 𝑟2𝑎𝜔
2 + 𝑟2𝜔4

⇒ 𝑎 = 𝑟 𝑎𝜔
2 + 𝜔4



ΠΑΡΑΔΕΙΓΜΑ 13.2 Ένας περιστρεφόμενος στροφαλογόρος άξονας

Το ταχύμετρο ενός αυτοκινήτου καταγράφει τη συχνότητα περιστροφής του 

στροφαλοφόρου άξονα του κινητήρα. Στο ρελαντί, η μηχανή του αυτοκινήτου  

γυριζει με 700 rpm. Όταν το φανάρι γίνεται πράσινο, η περιστροφή του 

άξονα αυξάνεται στις 2500 rpm μέσα σε 3.0 s με σταθερό ρυθμό. Πόσες 

περιστροφές κάνει ο στροφαλοφόρος άξονας σε αυτά τα 3 s;

ΛΥΣΗ

Φανταστείτε ότι σχεδιάζετε μια κουκίδα πάνω 

στο στροφαλοφόρο.

Και ας θεωρήσουμε την αρχικη χρονική 

στιγμή ti = 0 τη γωνιακή θέση της κουκίδας i 

= 0.

Μετά από χρονικό διάστημα Δt = 3.0 s, η 

κουκίδα θα έχει γυρίσει σε γωνία f  που 

δίνεται από την εξίσωση:

𝜃𝑓 = 𝜃𝑖 + 𝜔𝑖𝛥 t +
1

2
𝛼𝜔(𝛥 t)2

Η αρχική γωνιακή ταχύτητα 𝜔𝑖 βρίσκεται αν μετατρέψουμε τα rpm σε rad/s.

𝜔𝑖 = 700
rev

min
= 700

2𝜋 rad

60 s
= 73.3 rad/s



ΛΥΣΗ (συνέχεια)

Ομοίως, η τελική γωνιακή ταχύτητα σε rad/s είναι

Η γωνιακή επιτάχυνση μπορεί να υπολογιστεί από την αρχική και την ταλική γωνιακή 

ταχύτητα.

Επομένως, στη διάρκεια των 3 s η κουκίδα (δηλαδή, ο στροφαλοφόρος άξονας) θα 

περιστραφεί κατά γωνία

Επειδή, 503 / 2 = 80, βρίσκουμε ότι ο στροφαλοφόρος άξονας, μέχρι να φτάσει τις 

2500 rpm, κάνει 80 περιστρορές 

22 s)(3.0)rad/s(62.9
2

1
s)(3.0rad/s)(73.30 ++=f

rad/s262
s60

rad2
2500

min

rev
2500 ===


 f

tt 

 if 


−
==

s3.0

rad/s)(73.3rad/s)(262 −
= 2rad/s62.9=

rad503=



Κινητική ενέργεια περιστροφής

Ένα σώμα που περιστρέφεται γύρω από έναν σταθερό άξονα με γωνιακή 

ταχύτητα μέτρου  έχει κινητική ενέργεια λόγω περιστροφής, παρά το γεγονός 

ότι μπορεί να μην έχει καθόλου γραμμική κινητική ενέργεια.

Η κινητική ενέργεια περιστροφής ενός στερεού σώματος δίνεται από τον τύπο

Krot =
1

2
𝐼𝜔2

Το μέγεθος I  ονομάζεται ροπή αδράνειας του σώματος και είναι για την περι-

στροφή ότι είναι η μάζα m για τη γραμμική κίνηση του σώματος.

Ενότητα  Μ10.4



Ροπή αδράνειας

Η ροπή αδράνειας ενός συστήματος μεμονωμένων σωματιδίων ως προς έναν 

άξονα ορίζεται ως

𝐼 = ෍

𝑖

𝑚𝑖𝑟𝑖
2

όπου, mi η μάζα κάθε σωματιδίου και 

ri η απόστασή του από τον άξονα περιστροφής.

Η μονάδα της της ροπής αδράνειας στο SI είναι το kg.m2.

▪ Η ροπή αδράνειας ενός συστήματος σωματιδίων εξαρτάται από τις μάζες 

𝑚𝑖  που αποτελούν το σύστημα, αλλά και από τις αποστάσεις ri των μαζών 

από τον άξονα περιστροφής, δηλαδή, από την κατανομή των μαζών ως 

προς τον άξονα περιστροφής.



ΠΑΡΑΔΕΙΓΜΑ 13.3 Το κέντρο βάρους (και ροπή αδράνειας)

Μια μπάλα που έχει μάζα m1 = 2.0 kg και μια μπάλα που έχει μάζα m2 = 

0.50 kg συνδέονται με μια βέργα χωρίς μάζα που έχει μήκος L = 0.50 m.

Α. Που βρίσκεται το κέντρο μάζας (κέντρο βάρους);

Β. Υπολογίστε τη ροπή αδράνειας ως προς το κέντρο μάζας.

ΛΥΣΗ

Α. Ας πούμε x1 = 0 και x2 = L = 0.50 m τις 

θέσεις των δύο μπαλών στον άξονα x 

και xCM τη ζητούμενη θέση του κέντρου 

μάζας του συστήματος.

Έχουμε 
21

2211
CM

mm

xmxm
x

+

+
=

m1 m2

CM

x

x1=0 xCM x2=L

m0.10
kg)0.50kg(2.0

m)(0.50kg)(0.50m)(0kg)(2.0
xCM =

+

+
=

Β. Για να υπολογίσουμε τη ροπή αδράνειας ως προς έναν άξονα (όπως ο y) που 

περνάει από το CM, έχουμε

y

2
22

2
11

2 rmrmrmI
i

ii +==  2
1

2
1 m) (0.40kg) (0.50m) (0.10kg) (2.0 +=

2mkg 0.10 =

𝑟1 𝑟2



Ροπή αδράνειας (συνέχεια)

Για ένα συνεχές στερεό σώμα, θεωρούμε ότι το σώμα απαρτίζεται από πολλά 

μικρά στοιχεία (απειροστά), καθένα με μάζα dm.

Η σχέση για τη ροπή αδράνειας I γράφεται σαν το ολοκλήρωμα

𝐼 = න𝑟2𝑑𝑚

Χρησιμοποιώντας τον ορισμό της πυκνότητας του σώματος (πυκνότητα = μάζα / 

όγκος), 𝜌 =
𝑑𝑚

𝑑𝑉
, η ροπή αδράνειας του στερεού σώματος γράφεται

 𝐼 = ׬ 𝜌𝑟2𝑑𝑉

Όταν η πυκνότητα είναι σταθερή (ομογενές σώμα), η ροπή αδράνειας γράφεται:  

𝐼 = 𝜌 න𝑟2𝑑𝑉

Ενότητα  Μ10.5



ΠΙΝΑΚΑΣ 13.3 Ροπές αδράνειας αντικειμένων με ομοιόμορφη πυκνότητα



ΠΙΝΑΚΑΣ 13.3 Ροπές αδράνειας αντικειμένων με ομοιόμορφη πυκνότητα (συνέχεια)



ΠΑΡΑΔΕΙΓΜΑ 13.8 Ροπή αδράνειας  μιας ράβδου ως προς τη μια άκρη της

Βρείτε τη ροπή αδράνειας μιας λεπτής, ομοιόμορφης ράβδου μήκους L και 

μάζας M η οποία περιστρέφεται ως προς το ένα άκρο της.

ΛΥΣΗ

Θέλουμε να βρούμε τη ροπή αδράνειας 

της ράβδου ως προς έναν άξονα που 

περνάει από το άκρο της O (άξονας  y)

Χωρίζουμε τη βέργα σε μικρά κοματάκια 

μήκους dx (απειροστά).

Ας φανταστούμε ένα τέτοιo κοματάκι σε 

απόσταση x από τον άξονα περιστροφής. 

Εφ’όσον η ράβδος έχει μάζα M σε μήκος 

L, το κοματάκι dx θα έχει μάζα

𝑑𝑚 =
𝑀

𝐿
𝑑𝑥

(βρείτε το με απλή μέθοδο των τριών)

𝑑𝑥

𝑥

𝑂
𝑥



ΛΥΣΗ   (Συνέχεια)

x

O

=
𝑀

3𝐿
𝑥3

𝑥=0
𝑥=𝐿 =

𝑀

3𝐿
(𝐿3 − 03)

=
𝑀

3𝐿
𝐿3 =

𝑀𝐿2

3

Η ροπή αδράνειας ως προς τον άξονα y

είναι:

𝐼 = න
𝑀

𝑥2𝑑𝑚 = න

𝑥=0

𝑥=𝐿

𝑥2
𝑀

𝐿
𝑑𝑥 =

𝑀

𝐿
න

𝑥=0

𝑥=𝐿

𝑥2𝑑𝑥

𝐼 =
𝑀

𝐿

𝑥3

3
𝑥=0

𝑥=𝐿

න𝑥n𝑑𝑥 =
𝑥n+1

n + 1
Όμως

οπότε

𝑛=2
 න𝑥2𝑑𝑥 =

𝑥3

3



Εφόσον η πλάκα έχει μάζα 𝑀 και εμβαδόν 𝑆 = 𝑎𝑏, το τμήμα στοιχειώδες τμήμα 

απειροστού εμβαδού 𝑑𝑆 θα έχει μάζα

𝑑𝑚 =
𝑀

𝑆
𝑑𝑆

Η ροπή αδράνειας ως προς τον άξονα 𝑧 είναι:

𝐼 = න
𝑀

𝑟2𝑑𝑚

ΠΡΟΒΛΗΜΑ 1 - Ροπή αδράνειας  πλάκας

Βρείτε τη ροπή αδράνειας μιας πολύ λεπτής, ομοιόμορφης πλάκας εμβαδού 𝑎 × 𝑏 

και μάζας 𝑀 η οποία περιστρέφεται ως προς άξονα 𝑧 κάθετο στην επιφάνειά της 

που διέρχεται από την ακμή της 𝛰.

ΛΥΣΗ

Χωρίζουμε την πλάκα σε μικρά στοιχειώδη 

τμήματα απειροστού εμβαδού 𝑑𝑆 = 𝑑𝑥𝑑𝑦.

Έστω ένα τέτοιο στοιχειώδες τμήμα σε 

απόσταση 𝑟 από τον άξονα περιστροφής με 

συντεταγμένες 𝑥, 𝑦. 

𝑥𝑂

𝑦

𝑧

𝑎

𝑏𝑟

𝑑𝑥

𝑑𝑦

=
𝑀

𝑎𝑏
𝑑𝑥𝑑𝑦

= න
𝑥=0

𝑎

න
𝑦=0

𝑏

𝑟2
𝑀

𝑎𝑏
𝑑𝑥𝑑𝑦 =  

𝑀

𝑎𝑏
න

𝑥=0

𝑎

න
𝑦=0

𝑏

𝑥2 + 𝑦2 𝑑𝑥𝑑𝑦



=  
𝑀

𝑎𝑏
න

𝑥=0

𝑎

න
𝑦=0

𝑏

𝑥2 𝑑𝑥𝑑𝑦 + න
𝑥=0

𝑎

න
𝑦=0

𝑏

𝑦2 𝑑𝑥𝑑𝑦

=  
𝑀

𝑎𝑏
න

𝑥=0

𝑎

𝑥2𝑑𝑥 න
𝑦=0

𝑏

𝑑𝑦 + න
𝑦=0

𝑏

𝑦2𝑑𝑦 න
𝑥=0

𝑎

𝑑𝑥

=
𝑀

𝑎𝑏
න

𝑥=0

𝑎

𝑏𝑥2𝑑𝑥 + න
𝑦=0

𝑏

𝑎𝑦2𝑑𝑦

=
𝑀

𝑎𝑏
𝑏 อ

𝑥3

3
𝑥=0

𝑎

+ 𝑎 อ
𝑦3

3
𝑦=0

𝑏

ΛΥΣΗ   (Συνέχεια)

𝐼 =  
𝑀

𝑎𝑏
න

𝑥=0

𝑎

න
𝑦=0

𝑏

𝑥2 + 𝑦2 𝑑𝑥𝑑𝑦

= 𝑏 = 𝑎

=  
𝑀

𝑎𝑏
𝑏 න

𝑥=0

𝑎

𝑥2𝑑𝑥 + 𝑎 න
𝑦=0

𝑏

𝑦2𝑑𝑦

=
𝑀

𝑎𝑏

𝑏𝑎3

3
+

𝑎𝑏3

3
=

𝑀

3
𝑎2 + 𝑏2



Το θεώρημα των παράλληλων αξόνων

Αν γνωρίζουμε τη ροπή αδράνειας ενός στερεού σχήματος ως 

προς άξονα z που διέρχεται από το κέντρο μάζας του ΚΜ, 

είναι εύκολο να την υπολογίσουμε ως προς έναν τυχαίο 

παράλληλο άξονα z’ χρησιμοποιώντας το θεώρημα των 

παράλληλων αξόνων.

Σύμφωνα με το θεώρημα των παράλληλων αξόνων:

𝛪 = 𝛪𝐾𝑀 + 𝑀𝑑2

▪ IKM είναι η ροπή αδράνειας ως προς τον άξονα που 

διέρχεται από το κέντρο μάζας.

▪ I είναι η ροπή αδράνειας ως προς οποιονδήποτε άξονα 

παράλληλο προς τον άξονα που διέρχεται από το κέντρο 

μάζας του σώματος.

▪ d είναι η απόσταση του τυχαίου άξονα από το κέντρο 

μάζας.



ΠΡΟΒΛΗΜΑ 2 - Ροπή αδράνειάς της ράβδου ως προς το κέντρο της 

Βρείτε τη ροπή αδράνειάς της ομογενούς ράβδου μάζας M και μήκους L ως προς το 

κέντρο της K (άξονας y’).

ΛΥΣΗ

Είδαμε (Παράδειγμα 13.8) ότι η ροπή 

αδράνειας ως προς τον άξονα y από την 

άκρη της είναι  

𝐼𝑦 =
𝑀𝐿2

3

Από το θεώρημα των παράλληλων αξόνων, 

έχουμε

𝐼𝑦 = 𝐼𝑦′ + 𝑀𝑑2

⇒ 𝐼𝑦′ =
𝑀𝐿2

3
− 𝑀

𝐿

2

2

⇒ 𝐼𝑦′ = 𝐼𝑦 − 𝑀𝑑2

=
𝑀𝐿2

12



ΠΡΟΒΛΗΜΑ 3 - Ροπή αδράνειας  πλάκας ως προς το κέντρο της

Αποδείξτε ότι η ροπή αδράνειας 𝐼𝐾𝑀 της πολύ λεπτής, ομοιόμορφης πλάκας του 

Προβλήματος 1 ως προς άξονα 𝑧′ κάθετο στην επιφάνειά της που διέρχεται από το 

κέντρο μάζας της ΚM είναι 
1

12
𝑀 𝑎2 + 𝑏2

ΛΥΣΗ

Είδαμε (Παράδειγμα 13.8) ότι η ροπή 

αδράνειας ως προς τον άξονα 𝑧 από την 

άκρη της είναι  

𝐼𝑧 =
𝑀

3
𝑎2 + 𝑏2

Από το θεώρημα των παράλληλων αξόνων, 

έχουμε

𝐼𝑧 = 𝐼𝐾𝑀 + 𝑀𝑑2

𝑂

𝑧

ΚM

𝑧′

𝑑

⇒ 𝐼𝐾𝑀 = 𝐼𝑧 − 𝑀𝑑2

⇒ 𝐼𝐾𝑀 =
𝑀

3
𝑎2 + 𝑏2 − 𝑀

𝑎

2

2

+
𝑏

2

2

=
1

12
𝑀 𝑎2 + 𝑏2⇒ 𝐼𝐾𝑀 =

𝑀

3
𝑎2 + 𝑏2 − 𝑀

𝑎2 + 𝑏2

4



ΠΡΟΒΛΗΜΑ 4 - Ροπή αδράνειας  συμπαγούς κυλίνδρου ή δίσκου

Αποδείξτε ότι η ροπή αδράνειας 𝐼𝐾𝑀 συμπαγούς κυλίνδρου ή 

δίσκου μάζας 𝑀 και ακτίνας 𝑅 ως προς τον άξονα συμμετρίας της 

𝑧 είναι 
1

2
𝑀𝑅2

ΛΥΣΗ

Έστω στοιχειώδες τμήμα του κυλίνδρου μάζας 𝑑𝑚, 

όγκου 𝑑𝑉, με κυλινδρικές συντεταγμένες θέσης 

𝜌, 𝜙, 𝑧 .

Η ροπή αδράνειας του 𝑑𝑚 ως προς περιστροφή 

γύρω από τον άξονα 𝑧 είναι

𝑑𝐼𝑧 = 𝜌2𝑑𝑚

όπου 𝜌 είναι η απόσταση του 𝑑𝑚 από τον άξονα 

περιστροφής 𝑧.

Εφόσον ο κύλινδρος είναι ομογενής (έχει σταθερή 

πυκνότητα σε όλο τον όγκο του), ισχύει

𝑑𝑚 =
𝑀

𝑉
𝑑𝑉



Δεδομένου ότι οι διαστάσεις του 𝑑𝑚 είναι 𝑑𝜌, 𝜌𝑑𝜙 

και 𝑑𝑧, ο στοιχειώδης όγκος του είναι

𝑑𝑉 = 𝑑𝜌 𝜌𝑑𝜙 𝑑𝑧

Επομένως,

𝑑𝑚 =
𝑀

𝑉
𝑑𝑉

𝑉 = 𝜋𝑅2𝐿

Η ροπή αδράνειας του 𝑑𝑚 γράφεται 

𝑑𝐼𝑧 = 𝜌2𝑑𝑚

ΛΥΣΗ  (συνέχεια)

= 𝜌𝑑𝜌𝑑𝜙𝑑𝑧

=
𝑀

𝑉
𝜌𝑑𝜌𝑑𝜙𝑑𝑧

=
𝑀

𝜋𝑅2𝐿
𝜌3𝑑𝜌𝑑𝜙𝑑𝑧

⇒ 𝑑𝑚 =
𝑀

𝜋𝑅2𝐿
𝜌𝑑𝜌𝑑𝜙𝑑𝑧



ΛΥΣΗ  (συνέχεια)

𝑑𝐼𝑧 =
𝑀

𝜋𝑅2𝐿
𝜌3𝑑𝜌𝑑𝜙𝑑𝑧

Η ροπή αδράνειας 𝐼𝑧 όλου του κυλίνδρου είναι

𝐼𝑧 = න 𝑑𝐼𝑧 = න
𝜌=0

𝑅

න
𝜙=0

2𝜋

න
𝑧=0

𝐿 𝑀

𝜋𝑅2𝐿
𝜌3𝑑𝜌𝑑𝜙𝑑𝑧

⇒ 𝐼𝑧 =
𝑀

𝜋𝑅2𝐿
න

𝜌=0

𝑅

න
𝜙=0

2𝜋

න
𝑧=0

𝐿

𝜌3𝑑𝜌𝑑𝜙𝑑𝑧

⇒ 𝐼𝑧 =
𝑀

𝜋𝑅2𝐿
න

𝜌=0

𝑅

𝜌3𝑑𝜌 න
𝜙=0

2𝜋

𝑑𝜙 න
𝑧=0

𝐿

𝑑𝑧

⇒ 𝐼𝑧 =
𝑀

𝜋𝑅2𝐿
න

𝜌=0

𝑅

𝜌3𝑑𝜌 න
𝜙=0

2𝜋

𝑑𝜙𝐿

⇒ 𝐼𝑧 =
𝑀𝐿

𝜋𝑅2𝐿
න

𝜌=0

𝑅

𝜌3𝑑𝜌 න
𝜙=0

2𝜋

𝑑𝜙



ΛΥΣΗ  (συνέχεια)

⇒ 𝐼𝑧 =
𝑀

𝜋𝑅2
න

𝜌=0

𝑅

𝜌3𝑑𝜌 2𝜋

⇒ 𝐼𝑧 =
2𝜋𝑀

𝜋𝑅2
න

𝜌=0

𝑅

𝜌3𝑑𝜌 

⇒ 𝐼𝑧 =
2𝑀

𝑅2
න

𝜌=0

𝑅

𝜌3𝑑𝜌 

⇒ 𝐼𝑧 =
2𝑀

𝑅2

𝑅4

4

=
2𝑀

𝑅2

𝜌4

4
𝜌=0

𝑅

=
1

2
𝑀𝑅2
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