
Κεφάλαιο 9

Ταλαντώσεις



Ταλαντώσεις και μηχανικά κύματα

Περιοδική κίνηση (periodic motion) είναι η κίνηση ενός σώματος, το οποίο 

κανονικά επιστρέφει σε μια δεδομένη θέση μετά από ένα σταθερό χρονικό 

διάστημα.

• Αν χτυπήσουμε έναν πολυέλαιο, αυτός ταλαντεύεται μπρος-πίσω επιστρέφοντας στην 

ίδια θέση με κανονικό ρυθμό. 

• Η Γη επιστρέφει στην ίδια θέση στην τροχιά της γύρω από τον Ήλιο κάθε χρόνο.

Οι επαναλαμβανόμενες κινήσεις ενός τέτοιου σώματος ονομάζονται 

ταλαντώσεις (oscillations).

Μια ειδική περίπτωση περιοδικής κίνησης εμφανίζεται στα μηχανικά συστήματα 

όταν η δύναμη που ασκείται σε ένα αντικείμενο είναι ανάλογη της απόστασής του 

από κάποιο σημείο ισορροπίας. 

Εάν αυτή η δύναμη κατευθύνεται πάντα προς τη θέση ισορροπίας, η κίνηση 

ονομάζεται απλή αρμονική κίνηση (simple harmonic motion) και είναι το 

αντικείμενο αυτού του κεφαλαίου.

Εισαγωγή



Κίνηση ενός αντικειμένου προσαρτημένου σε ένα ελατήριο

Ένας κύβος μάζας 𝑚 είναι 

συνδεδεμένος στο άκρο ενός 

ελατηρίου και μπορεί και κινείται 

ελεύθερα επάνω σε μια οριζόντια 

επιφάνεια χωρίς τριβές.

Όταν το ελατήριο δεν είναι ούτε 

εκτεταμένο ούτε συμπιεσμένο, ο 

κύβος βρίσκεται στη θέση 

ισορροπίας (equilibrium position) 

στην οποία αντιστοιχούμε την τιμή  

𝑥 = 0

Αν ένα τέτοιο σύστημα απομακρυνθεί 

από τη θέση ισορροπίας του, θα 

αρχίσει να ταλαντώνεται.

Ενότητα Τ1.1



Ο νόμος του Hooke

Όταν ο κύβος μετατοπίζεται σε μια θέση 𝑥, το 

ελατήριο ασκεί στο μπλοκ μια δύναμη Ԧ𝐅𝑠 που 

είναι ανάλογη της θέσης του 𝑥 και δίνεται από το 

νόμο του Hooke

𝐹𝑠 = −𝑘𝑥

▪ Fs είναι η δύναμη επαναφοράς (restoring 

force).

▪ Έχει κατεύθυνση πάντα προς τη θέση 

ισορροπίας

▪ Άρα, είναι πάντα αντίθετη με τη μετατόπιση 

του σώματος από τη θέση ισορροπίας.

▪ 𝑘 είναι η σταθερά ελατηρίου.

▪ 𝑥 είναι η μετατόπιση.
Ενότητα Τ1.1



Επιτάχυνση

Μόλις ο κύβος μετατοπιστεί κατά 𝑥 από τη θέση 

ισορροπίας του (𝑥 = 0) στη θέση 𝐴 και αφεθεί 

ελεύθερος, θα κινηθεί με επιτάχυνση 𝜶𝒙

Από το 2ο νόμο του Νεύτωνα 𝐹𝑠 = 𝑚α𝑥

Από νόμο Hook 𝐹𝑠 = −𝑘𝑥

𝜶𝑥

⇒  −𝑘𝑥 = 𝑚α𝑥 ⇒ α𝑥 = −
𝑘

𝑚
𝑥

▪ Αν ο κύβος μετατοπιστεί στη θέση 𝑥 = 𝐴, η αρχική του επιτάχυνση είναι

▪ Τη στιγμή που ο κύβος διέρχεται από τη θέση ισορροπίας, α𝑥 = 0.

▪ Ο κύβος θα συνεχίσει να κινείται μέχρι τη θέση 𝑥 = −𝐴 όπου η επιτάχυνσή 

του είναι

Α−Α

α𝑥 = −
𝑘

𝑚
𝐴

α𝑥 = +
𝑘

𝑚
𝐴



Κίνηση του σώματος

Ο κύβος συνεχίζει να ταλαντώνεται μεταξύ των 

σημείων – 𝐴 και +𝐴.

▪ Στα σημεία αυτά αλλάζει η κατεύθυνση της 

κίνησης.

Η δύναμη είναι συντηρητική.

Αν δεν υπάρχουν τριβές, η κίνηση δεν θα 

σταματήσει ποτέ.

▪ Στα πραγματικά συστήματα υπάρχουν 

τριβές, οπότε αυτά δεν ταλαντώνονται επ’ 

άπειρον.

Ενότητα Τ1.1

Α−Α



Θέτοντας 

παίρνουμε τη (διαφορική) εξίσωση για τη συνάρτηση 𝑥 𝑡  θέσης με το χρόνο

𝑑2𝑥

𝑑𝑡2
= −𝜔2𝑥

Για τη μαθηματική λύση της εξίσωσης, πρέπει να βρούμε μια συνάρτηση 𝑥(𝑡)
που ικανοποιεί αυτή τη διαφορική εξίσωση δεύτερης τάξης

Μοντέλο ανάλυσης: Σωματίδιο που εκτελεί απλή αρμονική κίνηση

Θεωρούμε ότι η ταλάντωση γίνεται στον άξονα x.

H επιτάχυνση είναι

όμως 

𝑘

𝑚
= 𝜔2

𝜶𝑥

𝑎𝑥 = −
𝑘

𝑚
𝑥

𝑎𝑥 =
𝑑2𝑥

𝑑𝑡2

⇒
𝑑2𝑥

𝑑𝑡2
= −

𝑘

𝑚
𝑥



Τέτοια συνάρτηση είναι η 𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜙  (2)

όπου, 𝛢, 𝜔 και 𝜙 είναι σταθερές

Είναι

Μοντέλο ανάλυσης: Σωματίδιο που εκτελεί απλή αρμονική κίνηση

𝑑2𝑥

𝑑𝑡2
= −𝜔2𝑥

Αναζητούμε μια συνάρτηση 𝑥 𝑡 της οποίας η 

δεύτερη παράγωγος Τ𝑑2𝑥 𝑑𝑡2 είναι ίδια με την 

αρχική συνάρτηση 𝑥 με αρνητικό πρόσημο και 

πολλαπλασιασμένη επί 𝜔2

𝜶𝑥

= 𝐴
𝑑

𝑑𝑡
cos 𝜔𝑡 + 𝜙 = −𝜔𝐴 sin 𝜔𝑡 + 𝜙

𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
𝐴 cos 𝜔𝑡 + 𝜙

= −𝜔𝐴
𝑑

𝑑𝑡
sin 𝜔𝑡 + 𝜙

𝑑2𝑥

𝑑𝑡2 =
𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
−𝜔𝐴 sin 𝜔𝑡 + 𝜙 = −𝜔2𝐴 cos 𝜔𝑡 + 𝜙 (3)

⇒
𝑑2𝑥

𝑑𝑡2 = −𝜔2𝑥Συγκρίνοντας (2) και (3) βλέπουμε ότι



Απλή αρμονική κίνηση – Γραφική αναπαράσταση της 𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜙

Η φυσική σημασία των παραμέτρων 𝐴, 𝜔, 𝜙 
φαίνεται χρησιμοποιώντας την καμπύλη του 

συνημιτόνου

𝑨 είναι το πλάτος της κίνησης.

▪ Είναι η μέγιστη τιμή της θέσης του 

σωματιδίου είτε προς τη θετική είτε προς την 

αρνητική κατεύθυνση του άξονα 𝑥.

Ενότητα Τ1.2

Η σταθερά 𝝎 ονομάζεται κυκλική συχνότητα ή γωνιακή συχνότητα.

▪ Μετριέται σε ακτίνια ανά δευτερόλεπτο (rad/s)

▪

Η σταθερή γωνία 𝝓 ονομάζεται σταθερά φάσης ή αρχική φάση και είναι η τιμή 

της φάσης, δηλαδή, της γωνίας 𝜔𝑡 + 𝜙 για 𝑡 = 0

𝜔 = Τ𝑘 𝑚



Περίοδος

Η περίοδος 𝑇 της κίνησης είναι το χρονικό 

διάστημα που χρειάζεται το σωματίδιο για 

να πραγματοποιήσει έναν πλήρη κύκλο 

κίνησης.

𝑇 =
2𝜋

𝜔

▪ Οι τιμές των 𝑥 και 𝑣 για το σωματίδιο τη 

χρονική στιγμή 𝑡 είναι ίσες με τις τιμές 

των 𝑥 και 𝑣 τη χρονική στιγμή 𝑡 + 𝑇.

𝑥 𝑡 = 𝑥 𝑡 + 𝑇

𝑣 𝑡 = 𝑣 𝑡 + 𝑇

Ενότητα Τ1.2



Συχνότητα

Το αντίστροφο της περιόδου 𝑇 είναι η συχνότητα (frequency), 𝑓.

Η συχνότητα είναι ο αριθμός των ταλαντώσεων που εκτελεί το σωματίδιο ανά 

μονάδα χρόνου.

𝑓 =
1

𝑇
=

𝜔

2𝜋

Μετριέται σε κύκλους ανά δευτερόλεπτο ή hertz (Hz).

𝜔 = 2𝜋𝑓 =
2𝜋

𝑇

Χρησιμοποιώντας τον ορισμό της κυκλικής συχνότητας 𝜔 = Τ𝑘 𝑚 παίρνουμε

                              

και

Ενότητα Τ1.2

𝑇 =
2𝜋

𝜔
= 2𝜋

𝑚

𝑘
𝑓 =

1

𝑇
=

1

2𝜋

𝑘

𝑚



Οι εξισώσεις της απλής αρμονικής κίνησης

𝑥(𝑡)  =  𝐴 cos (𝜔𝑡 + 𝜙)

𝑣 =
𝑑𝑥

𝑑𝑡
= −𝜔𝐴 sin( 𝜔t + 𝜙)

• Μέγιστη τιμή (ή πλάτος) της ταχύτητας

α =
𝑑2𝑥

𝑑𝑡2
= −𝜔2𝐴 cos( 𝜔t + 𝜙)

• Μέγιστη τιμή (ή πλάτος) της επιτάχυνσης 

Ενότητα Τ1.2

𝑣𝑚𝑎𝑥 = 𝜔𝐴 =
𝑘

𝑚
𝐴

𝑎𝑚𝑎𝑥 = 𝜔2𝐴 =
𝑘

𝑚
𝐴



Γραφήματα

Δεξιά φαίνονται τα γραφήματα:

▪ (α) θέσης-χρόνου

▪ (β) ταχύτητας-χρόνου

▪ (γ ) επιτάχυνσης-χρόνου

Η ταχύτητα και η επιτάχυνση είναι 

εκτός φάσης από τη θέση κατά 90o 

και 180o, αντίστοιχα.

Ενότητα Τ1.2



Απλή αρμονική κίνηση – Παράδειγμα 1

𝑥(𝑡)  =  𝐴 cos (𝜔𝑡 + 𝜙)

Οι αρχικές συνθήκες τη χρονική στιγμή   

t = 0 είναι

▪ x (0)= A

▪ v (0) = 0

Αυτό σημαίνει ότι  = 0.

Οι ακραίες τιμές της επιτάχυνσης είναι 

±2A και προκύπτουν στις θέσεις ±A.

Οι ακραίες τιμές της ταχύτητας είναι     

±A και προκύπτουν στη θέση x = 0.

Ενότητα Τ1.2

pothole



Απλή αρμονική κίνηση – Παράδειγμα 2

𝑥(𝑡)  =  𝐴 cos (𝜔𝑡 + 𝜙)

Οι αρχικές συνθήκες τη χρονική στιγμή 

t = 0 είναι 

▪ x (0) = 0

▪ v (0) = vi

Αυτό σημαίνει ότι  = −/2.

Το γράφημα έχει μετατεθεί προς τα 

δεξιά κατά ένα τέταρτο του κύκλου 

ταλάντωσης ως προς το γράφημα 

x (0) = A.

Ενότητα Τ1.2



ΠΑΡΑΔΕΙΓΜΑ M15.1 Ένα σύστημα κύβου-ελατηρίου

Ένας κύβος μάζας 200 g συνδεδεμένος με ένα 

ελαφρύ ελατήριο σταθεράς δύναμης 5.00 N/m
είναι ελεύθερο να ταλαντώνεται σε μια οριζόντια 

επιφάνεια χωρίς τριβές. Το μπλοκ μετατοπίζεται 

5.00 cm από την ισορροπία και απελευθερώνεται 

από την ηρεμία όπως.

(Α) Βρείτε την περίοδο της κίνησής του.

ΛΥΣΗ

Η γωνιακή συχνότητα 𝜔 του συστήματος μάζας-ελατηρίου, είναι 

𝜔 =
𝑘

𝑚

Οπότε η περίοδος είναι

=
5.00 N/m

0.2 kg
= 5.00 rad/s

=
2𝜋

5.00 rad/s
= 1.26 s𝑇 =

2𝜋

𝜔



ΠΑΡΑΔΕΙΓΜΑ M15.1 (Συνέχεια)

(B) Βρείτε τη μέγιστη ταχύτητα του κύβου.

ΛΥΣΗ

𝑣𝑚𝑎𝑥 = 𝜔𝐴

(Γ) Πόση είναι η μέγιστη επιτάχυνση του κύβου;

ΛΥΣΗ

𝛼𝑚𝑎𝑥 = 𝜔2𝐴

(Δ) Εκφράστε τη θέση, την ταχύτητα και την επιτάχυνση ως συναρτήσεις 

του χρόνου σε μονάδες SI;

ΛΥΣΗ

𝑥 = 𝐴 cos (𝜔𝑡 + 𝜙)

𝑣 = −𝑣𝑚𝑎𝑥 sin( 𝜔t + 𝜙)

α = −𝛼𝑚𝑎𝑥 cos( 𝜔t + 𝜙)

= 5.00 rad/s 5.00 × 10−2 m

= 0.250 m/s

= 5.00 rad/s 2 5.00 × 10−2 m = 1.25 m/s2

= 0.05 cos 5.00𝑡  m

= −0.250 sin 5.00𝑡  m/s

= −1.25 cos 5.00𝑡 m/s2



ΠΑΡΑΔΕΙΓΜΑ M15.1 (Συνέχεια)

Τι θα γινόταν αν ο κύβος απελευθερωνόταν από την ίδια αρχική θέση, 𝑥𝑖 = 5.00 cm, 

αλλά με αρχική ταχύτητα 𝑣𝑖 = 0.100 m/s; Ποια μέρη της λύσης αλλάζουν και ποιες 

είναι οι νέες απαντήσεις για αυτά που αλλάζουν;

ΛΥΣΗ

Το μέρος (Α) δεν αλλάζει.

Η περίοδος  𝑇 =
2𝜋

𝜔
= 2𝜋

𝑚

𝑘
δεν εξαρτάται από τις αρχικές συνθήκες της κίνησης.

Τα μέρη (Β) – (Δ) αλλάζουν

𝑥 𝑡 = 𝐴 cos (𝜔𝑡 + 𝜙)

𝑣 = −𝜔𝐴 sin( 𝜔t + 𝜙)

Διαιρώντας (2)/(1) υπολογίζουμε την αρχική φάση 𝜙

−𝜔𝐴 sin 𝜙

𝐴 cos 𝜙
=

𝑣𝑖

𝑥𝑖

⇒  𝑥 0 = 𝐴 cos 𝜙 = 𝑥𝑖  (1)

⇒ 𝑣 0 = −𝜔𝐴 sin 𝜙 = 𝑣𝑖 (2)

⇒  tan 𝜙 = −
𝑣𝑖

𝜔𝑥𝑖
= −

0.100 m/s

5.00 rad/s 0.050 m
= 0.400

⇒ 𝜙 = tan−1 0.400 = 0.121𝜋



ΛΥΣΗ (συνέχεια)

Για αρχική φάση 𝜙 = 0.121𝜋 rad

το νέο πλάτος της ταλάντωσης γίνεται (από την (1))   𝐴 cos 𝜙 = 𝑥𝑖

⇒ 𝐴 =
0.0500 m

cos 0.121𝜋

Επομένως, 𝑣𝑚𝑎𝑥 = 𝜔𝐴

και 𝛼𝑚𝑎𝑥 = 𝜔2𝐴

Οι νέες εκφράσεις των 𝑥, 𝑣, 𝑎 με το χρόνο γίνονται

𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜙

𝑣 𝑡 = −𝑣𝑚𝑎𝑥 sin( 𝜔t + 𝜙)

α = −𝛼𝑚𝑎𝑥 cos( 𝜔t + 𝜙)

⇒ 𝐴 =
𝑥𝑖

cos 𝜙

= 0.0539 m

= 5.00 rad/s 5.39 × 10−2 m = 0.269 m/s

= 5.00 rad/s 2 5.39 × 10−2 m = 1.35 m/s2

= 0.0539 cos 5.00𝑡 + 0.121𝜋 m

= −0.269 sin 5.00𝑡 + 0.121𝜋 m/s

= −1.35 cos 5.00𝑡 + 0.121𝜋 m/s2



Ενέργεια του απλού αρμονικού ταλαντωτή

Ένα σύστημα στο οποίο ένα σωματίδιο εκτελεί απλή αρμονική κίνηση έχει 

μηχανική ενέργεια.

Εφόσον η επιφάνεια δεν έχει τριβές, το σύστημα είναι απομονωμένο. Άρα, η 

συνολική ενέργειά του είναι σταθερή.

Μπορούμε να βρούμε την κινητική ενέργειά του από τη σχέση

𝐾 =
1

2
𝑚𝑣 2 =

1

2
𝑚𝜔2𝐴2 sin2 𝜔𝑡 + 𝜙

▪ Υποθέτουμε ότι το ελατήριο δεν έχει μάζα, οπότε η μάζα του συστήματος 

είναι η μάζα του σώματος.

Μπορούμε να βρούμε την ελαστική δυναμική ενέργεια από τη σχέση

𝑈 =
1

2
𝑚𝑥 2 =

1

2
𝑘𝐴2 cos2 𝜔𝑡 + 𝜙

Ενότητα Τ1.3



Ενέργεια του απλού αρμονικού ταλαντωτή (συνέχεια)

Η συνολική ενέργεια είναι

Η συνολική μηχανική ενέργεια 

είναι σταθερή, ανάλογη του 

τετραγώνου του πλάτους.

Η αποθηκευμένη δυναμική 

ενέργεια του ελατηρίου 

μετατρέπεται συνεχώς σε κινητική 

ενέργεια του σώματος και 

αντιστρόφως.

Ενότητα Τ1.3

𝐸 = 𝐾 + 𝑈 =
1

2
𝑘𝐴2

Στο διάγραμμα, φ = 0.



Ταχύτητα σε μια συγκεκριμένη θέση

Μπορούμε να χρησιμοποιήσουμε την ενέργεια για να βρούμε την ταχύτητα:

𝐸 = 𝐾 + 𝑈 =
1

2
𝑚𝑣2 +

1

2
𝑘𝑥2 =

1

2
𝑘𝐴2

⇒ 𝑚𝑣2 + 𝑘𝑥2 = 𝑘𝐴2

⇒ 𝑚𝑣2 = 𝑘 𝐴2 − 𝑥2

⇒ 𝑣2 =
𝑘

𝑚
𝐴2 − 𝑥2

⇒ 𝑣 = ±
𝑘

𝑚
𝐴2 − 𝑥2

Ενότητα Τ1.3

= ±𝜔 𝐴2 − 𝑥2



Σπουδαιότητα των απλών αρμονικών ταλαντωτών

Οι απλοί αρμονικοί ταλαντωτές 

αποτελούν καλά μοντέλα για διάφορα 

φυσικά φαινόμενα.

Το παράδειγμα των μορίων

▪ Αν τα άτομα μέσα στα μόρια δεν 

απομακρύνονται πολύ μεταξύ τους, 

μπορούμε να μοντελοποιήσουμε τις 

δυνάμεις μεταξύ τους ως δυνάμεις 

που προκαλούνται από 

μικροσκοπικά ελατήρια.

▪ Η δυναμική ενέργεια 

συμπεριφέρεται όπως στην 

περίπτωση του απλού αρμονικού 

ταλαντωτή.

Ενότητα Τ1.3



ΠΑΡΑΔΕΙΓΜΑ M15.3 Ταλαντώσεις σε οριζόντια επιφάνεια

Ένα σώμα 0.500 kg συνδεδεμένο με ένα ελαφρύ ελατήριο, για το οποίο η σταθερά 

δύναμης είναι 20.0 N/m, ταλαντώνεται σε μια οριζόντια τροχιά χωρίς τριβές.

(Α) Υπολογίστε τη μέγιστη ταχύτητα του σώματος εάν το πλάτος της κίνησης είναι 

3.00 cm.

ΛΥΣΗ

Εξισώνουμε τη συνολική ενέργεια του συστήματος ταλαντωτή με την κινητική ενέργεια 

του συστήματος όταν το σώμα είναι στο 𝑥 = 0 (όπου έχει τη μέγιστη ταχύτητα)

𝐸 =
1

2
𝑘𝐴2 =

1

2
𝑚𝑣max

2

και λύνουμε ως προς την ταχύτητα

1

2
𝑚𝑣max

2 =
1

2
𝑘𝐴2

= 0.190 m/s

⇒ 𝑚𝑣max
2 = 𝑘𝐴2 ⇒ 𝑣max =

𝑘

𝑚
𝐴

⇒ 𝑣max =
20.0 N/m

0.500 kg
0.0300 m



ΠΑΡΑΔΕΙΓΜΑ M15.1 (συνέχεια)

(Β) Πόση είναι η ταχύτητα του σώματος όταν περνάει από τα 2.00 cm;

ΛΥΣΗ

Είναι

𝑣 = ±
𝑘

𝑚
𝐴2 − 𝑥2

= ±
20.0 N/m

0.500 kg
0.0300 m 2 − 0.0200 m 2

= ±0.141 m/s



ΠΑΡΑΔΕΙΓΜΑ M15.1 (συνέχεια)

(Γ) Υπολογίστε κινητική και δυναμική ενέργεια του συστήματος όταν το σώμα 

περνάει από τα 2.00 cm;

ΛΥΣΗ

Στη θέση 2.00 cm η ταχύτητα είναι 0.141 m/s
οπότε

𝐾 =
1

2
𝑚𝑣2 =

1

2
0.500 kg 0.141 m/s 2

και

𝑈 =
1

2
𝑘𝑥2 =

1

2
20.0 N/m 0.0200 m 2

= 5.00 × 10−3 J

= 4.00 × 10−3 J



Απλό εκκρεμές

Το απλό εκκρεμές αποτελείται από ένα σφαιρίδιο 

μάζας 𝑚, το οποίο είναι αναρτημένο από ένα 

αβαρές νήμα μήκους 𝐿.

Εάν απομακρύνουμε το σφαιρίδιο κατά γωνία 𝜃
από την κατακόρυφο και το αφήσουμε αυτό 

εκτελεί περιοδική κίνηση. 

Οι δυνάμεις που ασκούνται στο σφαιρίδιο είναι 

η τάση 𝐓 από το νήμα και

το βάρος του 𝑚𝐠.

Ενότητα Τ1.5

Η εφαπτομενική συνιστώσα της βαρυτικής δύναμης 𝑚𝑔 sin 𝜃 είναι μια δύναμη 
επαναφοράς.



Επειδή 𝑠 = 𝐿𝜃 παίρνουμε

Για μικρές γωνίες 𝜃 < 10°, sin 𝜃 ≅ 𝜃, οπότε η εξίσωση κίνησης του εκκρεμούς είναι

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝐿
𝜃

Απλό εκκρεμές (συνέχεια)

Αν 𝑎𝑡 είναι η επιτάχυνση του σφαιριδίου στην 

εφαπτομενική διεύθυνση (επιτρόχια επιτάχυνση), 

ο 2ος νομος του Νεύτωνα γράφεται

−𝑚𝑔 sin 𝜃 = 𝑚𝑎𝑡

−𝑚𝑔 sin 𝜃 = 𝑚
𝑑2𝑠

𝑑𝑡2

−𝑔 sin 𝜃 =
𝑑2𝑠

𝑑𝑡2

Ενότητα Τ1.5

Το αρνητικό πρόσημο δείχνει ότι η 

εφαπτομενική δύναμη δρα προς 

τη θέση ισορροπίας, αντίθετα στο 

τόξο μετατόπισης 𝑠

= 𝐿
𝑑2𝜃

𝑑𝑡2
−𝑔 sin 𝜃 =

𝑑2 𝐿𝜃

𝑑𝑡2

𝑎𝑡



Απλό εκκρεμές (συνέχεια)

𝑑2𝜃

𝑑𝑡2
= −

𝑔

𝐿
𝜃

Επιτάχυνση 
𝑑2𝜃

𝑑𝑡2 (άρα και δύναμη) είναι αντίθετη 

της μετατόπισης 𝜃

Αυτό επιβεβαιώνει ότι η κίνηση του εκκρεμούς 

έχει την ίδια μαθηματική μορφή με την απλή 

αρμονική κίνηση.

με γωνιακή συχνότητα 

και περίοδο

Ενότητα Τ1.5

𝜔 =
𝑔

𝐿

𝑎𝑡

𝑇 =
2𝜋

𝜔
= 2𝜋

𝐿

𝑔



Απλό εκκρεμές – Σύνοψη

▪ Η περίοδος του απλού εκκρεμούς εξαρτάται μόνο από το μήκος 𝐿

του νήματος και την επιτάχυνση της βαρύτητας 𝑔.

▪ Η περίοδος είναι ανεξάρτητη της μάζας 𝑚.

▪ Επομένως, όλα τα απλά εκκρεμή που έχουν ίσο μήκος νήματος 𝐿 και 

βρίσκονται στην ίδια γεωγραφική τοποθεσία (ίδιο 𝑔) έχουν την ίδια περίοδο 

ταλάντωσης.

Ενότητα Τ1.5

𝑇 = 2𝜋
𝐿

𝑔



Φυσικό εκκρεμές

Φυσικό εκκρεμές ονομάζεται ένα σύστημα το 

οποίο αποτελείται από ένα αναρτημένο σώμα, 

που δεν μπορεί να μοντελοποιηθεί ως 

σημειακή μάζα, και το οποίο ταλαντώνεται 

γύρω από έναν σταθερό άξονα Ο που δεν 

διέρχεται από το κέντρο μάζας του KM.

Η βαρυτική δύναμη 𝑚𝐠 προκαλεί ροπή 𝜏 ως 

προς έναν άξονα που διέρχεται από το σημείο 

Ο.

Η ροπή είναι 

𝜏 = −𝑚𝑔𝑑 sin 𝜃

Ενότητα Τ1.5

Ροπή αρνητική ως δεξιόστροφη



Φυσικό εκκρεμές (συνέχεια)

𝜏 = −𝑚𝑔𝑑 sin 𝜃

από 2ο νόμο Νεύτωνα

Αν υποθέσουμε ότι η γωνία  είναι μικρή (sin 𝜃 ≅ 𝜃), η εξίσωση γίνεται

− 𝑚𝑔𝑑 𝜃 = 𝐼
𝑑2𝜃

𝑑𝑡2  ⇒
𝑑2𝜃

𝑑𝑡2 = −
𝑚𝑔𝑑

𝐼
𝜃

𝑑2𝜃

𝑑𝑡2 = −𝜔2𝜃

𝜔 =
𝑚𝑔𝑑

𝐼

𝑇 =
2𝜋

𝜔
= 2𝜋

𝐼

𝑚𝑔𝑑

𝜏 = 𝐼𝑎𝜔 = 𝐼
𝑑2𝜃

𝑑𝑡2

⇒ −𝑚𝑔𝑑 sin 𝜃 = 𝐼
𝑑2𝜃

𝑑𝑡2

𝐼 είναι η ροπή αδράνειας ως προς Ο

𝑑2𝜃

𝑑𝑡2 ∝ −𝜃  εξίσωση απλού 

αρμονικού ταλαντωτή

⇒ 

η κυκλική συχνότητα

η περίοδος



ΠΑΡΑΔΕΙΓΜΑ M15.6 Μια αιωρούμενη ράβδος

Μια ομοιόμορφη ράβδος μάζας Μ και μήκους 𝐿 περιστρέφεται 

γύρω από το ένα άκρο και ταλαντώνεται σε κατακόρυφο 

επίπεδο. Βρείτε την περίοδο ταλάντωσης εάν το πλάτος της 

κίνησης είναι μικρό.

ΛΥΣΗ

𝑇 = 2𝜋
𝐼

𝑚𝑔𝑑

Η ροπή αδράνειας ομοιόμορφης ράβδου γύρω από έναν 

άξονα που διέρχεται από το ένα άκρο είναι 

𝐼 =
1

3
𝑀𝐿2

Αντικαθιστώντας

𝑇 = 2𝜋

1
3

𝑀𝐿2

𝑀𝑔
𝐿
2

= 2𝜋
2𝐿

𝑔3



Φθίνουσες ταλαντώσεις 

Με τον όρο «φθίνουσα ταλάντωση» 

εννοούμε μια ταλάντωση της οποίας το 

πλάτος (άρα και η ενέργεια) μειώνεται 

με το χρόνο (φθίνει).

Το γράφημα μιας φθίνουσας 

ταλάντωσης είναι μια ημιτονοειδής 

καμπύλη μειούμενου πλάτους.

Θα δούμε ότι το πλάτος μειώνεται 

εκθετικά με το χρόνο .

Οι διακεκομμένες γραμμές ορίζουν την 

περιβάλλουσα της καμπύλης της 

κίνησης.

Ενότητα Τ1.6



Φθίνουσες ταλαντώσεις – Παράδειγμα

Ένα παράδειγμα φθίνουσας κίνησης 

είναι η κίνηση ενός σώματος το οποίο 

είναι προσαρτημένο σε ένα ελατήριο 

και βυθισμένο σε ένα παχύρρευστο 

υγρό.

Το παχύρευστο υγρό ασκεί μια δύναμη 

τριβής (επιβράδυνσης) στο σώμα που 

συνήθως είναι αντίθετη στην ταχύτητα 

της κίνησής του

𝐑 = −𝑏𝐯

Η σταθερά b ονομάζεται συντελεστής 

απόσβεσης.

𝐯

𝐑



Φθίνουσες ταλαντώσεις – Η εξίσωση κίνησης

Από τον δεύτερο νόμο του Νεύτωνα παίρνουμε

ή

Αυτή είναι η (διαφορική) εξίσωση για τη συνάρτηση 𝑥 𝑡  με το χρόνο

Συγκρίνετέ τη με την εξίσωση 

του ταλαντωτή χωρίς απόσβεση

Όταν η δύναμη τριβής είναι μικρή συγκριτικά με τη μέγιστη δύναμη επαναφοράς 

(δηλαδή, ο συντελεστής b είναι μικρός), μπορούμε να βρούμε τη συνάρτηση που 

δίνει το x.

και η κυκλική συχνότητα είναι

𝑚
𝑑2𝑥

𝑑𝑡 2
= −𝑏

𝑑𝑥

𝑑𝑡
− 𝑘𝑥

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥

෍ 𝐹𝑥 = −𝑘𝑥 − 𝑏𝑣𝑥 = 𝑚𝑎𝑥

𝜔 =
𝑘

𝑚
−

𝑏

2𝑚

2

𝑥 = 𝐴𝑒
−

𝑏
2𝑚 𝑡

cos( 𝜔𝑡 + 𝜑)

λείπει ο όρος −𝑏
𝑑𝑥

𝑑𝑡

της απόσβεσης 



Φθίνουσες ταλαντώσεις – Ιδιοσυχνότητα

Όταν η δύναμη τριβής είναι μικρή, η κίνηση 

εξακολουθεί να είναι ταλάντωση, αλλά το πλάτος 

μειώνεται εκθετικά με τον χρόνο.

και τελικά η κίνηση σταματά.

Η κυκλική συχνότητα μπορεί να εκφραστεί και στη 

μορφή:

𝜔 = 𝜔0
2 −

𝑏

2𝑚

2

όπου 𝜔0 είναι η κυκλική συχνότητα όταν δεν υπάρχει 

δύναμη τριβής, η οποία ονομάζεται ιδιοσυχνότητα (ή 

φυσική συχνότητα) του συστήματος.

𝜔0 =
𝑘

𝑚
Ενότητα Τ1.6



Είδη απόσβεσης

Ενότητα Τ1.6

𝜔 = 𝜔0
2 −

𝑏

2𝑚

2

𝑏

2𝑚
< 𝜔0

𝑏

2𝑚
> 𝜔0

• Όταν η δύναμη τριβής είναι μικρή ώστε

τότε λέμε ότι το σύστημα 

παρουσιάζει υποαπόσβεση (μπλε 

καμπύλη)

• Αν, αντιθέτως, η δύναμη τριβής είναι 

μεγάλη ώστε                  τότε λέμε ότι το 

σύστημα παρουσιάζει υπεραπόσβεση

(μαύρη καμπύλη)

• Όταν ο συντελεστής b πάρει μια οριακή τιμή bc τέτοια ώστε 

το σύστημα δεν ταλαντώνεται. Τότε λέμε ότι έχουμε κρίσιμη απόσβεση (κόκκινη 

καμπύλη).

𝑏𝑐

2𝑚
= 𝜔0



Εξαναγκασμένες ταλαντώσεις

Μπορούμε να αντισταθμίσουμε την απώλεια ενέργειας 

σε μια φθίνουσα ταλάντωση ασκώντας μια περιοδική 

εξωτερική δύναμη 𝐹 𝑡 = 𝐹0 sin 𝜔𝑡

Ο 2ος νόμος του Νεύτωνα σε αυτήν την 

περίπτωση δίνει

𝐹 + 𝐹𝑆 + 𝑅 = 𝑚𝑎𝑥

⇒ 𝐹0 sin 𝜔𝑡 − 𝑘𝑥 − 𝑏𝑣𝑥 = 𝑚𝑎𝑥

⇒ 𝑚
𝑑2𝑥

𝑑𝑡 2
= −𝑏

𝑑𝑥

𝑑𝑡
− 𝑘𝑥 + 𝐹0 sin 𝜔𝑡

𝐑

Ԧ𝐅

Ԧ𝐅𝑺 Ԧ𝐅

෍ 𝐹𝑥 = 𝑚𝑎𝑥



Εξαναγκασμένες ταλαντώσεις (συνέχεια)

Όταν στο αρχικά ακίνητο σώμα αρχίσει να ασκείται η εξωτερική περιοδική δύναμη 

διέγερσης 𝐹, το σώμα αρχίζει να ταλαντώνεται με ολοένα μεγαλύτερο πλάτος 

ταλάντωσης 𝐴.

Μετά από ένα αρκετά μεγάλο χρονικό διάστημα, όταν η εισροή ενέργειας ανά κύκλο 

(περίοδο ταλάντωσης 𝑇) από την εξωτερική δύναμη 𝐹 γίνει ίση 

• με την ποσότητα της ενέργειας που καταναλώνεται από τη δύναμη τριβής 𝑅 σε 

κάθε κύκλο, 

+
• την εσωτερική ενέργεια (κινητική συν δυναμική ελατηρίου) του ταλαντωτή, 

επιτυγχάνονται συνθήκες ισορροπίας, δηλαδή, μια μόνιμη κατάσταση (steady-state)

Στη μόνιμη κατάσταση, το σώμα εκτελεί αρμονική ταλάντωση 𝑥 = 𝐴 cos 𝜔𝑡

• με συχνότητα τη συχνότητα 𝜔 της εξωτερικής περιοδικής κίνησης 

• και σταθερό πλάτος 𝐴 =
Τ𝐹0 𝑚

𝜔2 − 𝜔0
2 2 + Τ𝑏𝜔 𝑚 2

𝜔0 η ιδιοσυχνότητα 

του ταλαντωτή Τ𝑘 𝑚



Συντονισμός

Όταν η συχνότητα της δύναμης διέγερσης 

πλησιάζει την ιδιοσυχνότητα της ταλάντωσης 

(𝜔 ≈ 𝜔0), παρατηρείται αύξηση του πλάτους.

𝐴 =
Τ𝐹0 𝑚

𝜔2 − 𝜔0
2 2 + Τ𝑏𝜔 𝑚 2

𝜔≈𝜔0
𝐴 =

𝐹0

𝑏𝜔

Αυτή η θεαματική αύξηση του πλάτους ονομάζεται 

συντονισμός (resonance)

Η ιδιοσυχνότητα 𝜔0 είναι γνωστή και ως 

συχνότητα συντονισμού του συστήματος 

(resonance frequency).

Ενότητα Τ1.7



Συντονισμός (συνέχεια)

Η εξωτερική δύναμη διέγερσης είναι 𝐹 𝑡 = 𝐹0 sin 𝜔𝑡

και, κατά τον συντονισμό, η θέση είναι  𝑥 = 𝐴 cos 𝜔𝑡 οπότε η ταχύτητα είναι

𝑣 =
𝑑𝑥

𝑑𝑡
=

𝑑 𝐴 cos 𝜔𝑡

𝑑𝑡
= −𝜔𝐴𝐹0 sin 𝜔𝑡

Δηλαδή, κατά το συντονισμό (𝜔 ≈ 𝜔0) η εξωτερική δύναμη 𝐹 και η ταχύτητα 𝑣 του 

σώματος έχουν την ίδια φάση (𝜔𝑡) 

Τότε, η ισχύς 𝑝 = Ԧ𝐅 ∙ 𝐯  που μεταφέρει η εξωτερική δύναμη στον ταλαντωτή 

παίρνει τη μέγιστη τιμή της γι’αυτό και η το πλάτος ταλάντωσης μεγιστοποιείται

Ενότητα Τ1.7

ΤΕΛΟΣ
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