74LS194

4-Bit Bidirectional Universal Shift Register

General Description

This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register; they feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:
Parallel (broadside) load
Shift right (in the direction Q_{A} toward Q_{D})
Shift left (in the direction Q_{D} toward Q_{A})
Inhibit clock (do nothing)
Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, HIGH. The data is loaded into the associated flip-flops and appear at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.
Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is HIGH and S1 is LOW. Serial data for this mode is entered at the shift-right data input. When S0 is LOW and S1 is HIGH, data shifts left synchronously and new data is entered at the shift-left serial input.
Clocking of the flip-flop is inhibited when both mode control inputs are LOW.

Features

- Parallel inputs and outputs

■ Four operating modes: Synchronous parallel load
Right shift
Left shift
Do nothing
■ Positive edge-triggered clocking

- Direct overriding clear

Ordering Code:

Order Number	Package Number	Package Description
DM74LS194AM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS194AN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Connection Diagram

www.sycelectronica.com.ar

$\mathrm{H}=$ HIGH Level (steady state)
$\mathrm{X}=$ Don't Care (steady
$\uparrow=$ Transition from LOW-to-HIGH level
$a, b, c, d=$ The level of steady state input at inputs A, B, C or D, respectively.
$Q_{A 0}, Q_{B 0}, Q_{C 0}, Q_{D 0}=$ The level of Q_{A}, Q_{B}, Q_{C}, or Q_{D}, respectively, before the indicated steady state input conditions were established. $Q_{A n}, Q_{B n}, Q_{C n}, Q_{D n}=$ The level of Q_{A}, Q_{B}, Q_{C}, respectively, before the most-recent \uparrow transition of the clock

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage	7 V
Input Voltage	7 V

Operating Free Air Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
$\mathrm{I}_{\text {OL }}$	LOW Level Output Current			8	mA
$\mathrm{f}_{\text {CLK }}$	Clock Frequency (Note 2)	0		25	MHz
	Clock Frequency (Note 3)	0		20	
t_{W}	Pulse Width ${ }^{\text {a }}$ Clock	20			ns
	(Note 4) Clear	20			
$\mathrm{t}_{\text {SU }}$	Setup Time \quad Mode	30			ns
	(Note 4) \quad Data	20			
t_{H}	Hold Time (Note 4)	0			ns
$\mathrm{t}_{\text {REL }}$	Clear Release Time (Note 4)	25			ns
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Note 2: $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 3: $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
Note 4: $T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

Electrical Characteristics

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 5) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {CC }}=$ Max, $\mathrm{V}_{1}=7 \mathrm{~V}$			0.1	mA
I_{IH}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
IL	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.4	mA
Ios	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 6)	-20		-100	mA
${ }_{\text {ICc }}$	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 7)		15	23	mA

Note 5: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 6: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 7: With all outputs open, inputs A through D grounded, and 4.5 V applied to $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{CLEAR}$, and the serial inputs, I_{CC} is tested with momentary ground, then 4.5 V applied to CLOCK.

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
Symbol	Parameter	From (Input) To (Output)	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		Units
			Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		20		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Clock to Any Q		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Clock to Any Q		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Output	Clear to Any Q		38	ns

Note 8: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 10: With all outputs open, inputs A through D grounded, and 4.5 V applied to $\mathrm{S} 0, \mathrm{~S} 1, \mathrm{CLEAR}$, and the serial inputs, I_{CC} is tested with momentary ground, then 4.5 V applied to CLOCK.

Timing Diagram

Typical Clear, Load, Right-Shift, Left-Shift, Inhibit, and Clear Sequences

www.sycelectronica.com.ar

