### ΣΤΕΡΕΑ ΔΙΑΛΥΜΑΤΑ

- Ισόμορφα Στερεά Διαλύματα
- Διαγράμματα Φάσης
- Ευτηκτικά Διαγράμματα Φάσης

#### Ισόμορφα Στερεά Διαλύματα: Ισόμορφα Κράματα

Φάση (phase) υλικού = ομογενές τμήμα ενός συστήματος, έχει παντού την ίδια σύσταση

**ΠΑΡΑΔΕΙΓΜΑ:** Νερό στους 0°C = στερεά φάση (πάγος) + υγρή φάση (νερό) σε επαφή

- Η κάθε φάση ενός υλικού έχει τη δική της διακριτή δομή
- Οι φάσεις μπορούν να βρίσκονται σε επαφή μεταξύ τους.

**Διάλυμα** (solution) = **ομογενές** μίγμα δύο ή περισσότερων ειδών ατόμων ή μορίων - Μία ενιαία υγρή φάση (π.χ., αλκοόλη σε νερό)

**Στερεό διάλυμα** (solid solution) = ομογενές μίγμα δύο τύπων ατόμων

**Ισόμορφο** ή **ισομορφικό** (isomorphous) στερεό διάλυμα = ομογενές μίγμα δύο τύπων ατόμων που έχει παντού την ίδια δομή

**ΠΑΡΑΔΕΙΓΜΑ:** Ισόμορφο διάλυμα ή κράμα *Cu – Ni* 

### Στερεό διάλυμα αντικατάστασης Cu – Ni

- Ξεκινώντας από καθαρό χαλκό (100% Cu, δομή FCC) προσθέτοντας άτομα Ni,
  - Αντικαθίστανται απευθείας τα άτομα Cu
  - Η δομή παραμένει FCC σε όλη την κλίμακα ανάμιξης (100% Cu έως 100% Ni)
- Διαλύτης (solvent) = Το άτομα σε μεγαλύτερο ποσοστό στο διάλυμα
- Διαλυμένη ουσία (solute) = τα άτομα στο μικρότερο ποσοστό
   ΠΑΡΑΔΕΙΓΜΑ: 90% Cu 10% Ni, εικ. (α)
- Στερεό διάλυμα αντικατάστασης χωρίς τάξη: Τυχαίες πλεγματικές θέσεις της διαλυμένης ουσίας (άτακτη αντικατάσταση), εικ. (α)
- Στερεό διάλυμα αντικατάστασης σε <u>δομή με τάξη</u>: Συγκεκριμένες πλεγματικές θέσεις (εύτακτη αντικατάσταση), εικ. (β)



(α) Στερεό διάλυμα αντικατάστασης,
 δομή χωρίς τάξη. Παράδειγμα:
 τα κράματα Cu–Ni (επίπεδα {100}).



(β) Στερεό διάλυμα αντικατάστασης, δομή με τάξη. Παράδειγμα: το κράμα 50%Cu- 50%Zn (επίπεδα {110}).

### Στερεό διάλυμα παρεμβολής

- Στερεό διάλυμα παρεμβολής (interstitial solid state solution)
  - Άτομα διαλυμένης ουσίας σε παραπλεγματικές θέσεις

#### ΠΑΡΑΔΕΙΓΜΑ

Μικρή ποσότητα ατόμων C σε FCC κρύσταλλο γ – Fe (Ωστενίτης)



Διαγράμματα Φάσης: Η περίπτωση του καθαρού Cu

- Α. Καμπύλη ψύξης καθαρού Cu
  - θ > 1083°C, μόνο υγρή φάση (τήγμα Cu)
  - $\theta = 1083^{\circ}$ C, η θερμοκρασία παραμένει σταθερή έως ότου όλο το τήγμα Cu (σημείο  $L_o$ ) στερεοποιηθεί (σημείο  $S_o$ )
    - 1083°C = θερμοκρασία τήξης καθαρού
       Cu
    - Συνύπαρξη τήγματος στερεού Cu
    - Θερμότητα σύντηξης (heat of fusion) = Θερμότητα εκλυόμενη κατά τη στερεοποίηση (τμήμα  $L_o - S_o$ )
  - θ < 1083°C, μόνο στερεή φάση Cu



Διαγράμματα Φάσης: Η περίπτωση του καθαρο Ni

- **Β. Η καμπύλη ψύξης καθαρού Ni** 
  - Παρόμοια συμπεριφορά με καθαρό Cu
  - Μόνη διαφορά: θερμοκρασία τήξης καθαρού Νi οι θ = 1453°C



### Διαγράμματα Φάσης Ισόμορφων Κραμάτων: Περίπτωση Cu - Ni

- C. Καμπύλη ψύξης κράματος 80%Cu 20%Ni
  - θ > 1195°C, μόνο μια υγρή φάση (τήγμα 80%Cu 20%Ni, πλήρως αναμείξιμα)
  - θ = 1195°C, (σημείο  $L_{20}$ ) σχηματίζονται οι πρώτοι κρύσταλλοι κράματος Cu – Ni)
  - Η θερμοκρασία δεν παραμένει σταθερή ως την πλήρη στερεοποίηση στους  $\theta = 1130$ °C (σημείο  $S_{20}$ )
  - 1195°C < θ < 1130°C, συνύπαρξη υγρής και στερεάς φάσης σε ετερογενές μείγμα
    Κρύσταλλοι Cu – Ni αυξανόμενου μεγέθους – μεταβαλλόμενης σύστασης



 θ < 1130°C, μόνο στερεή φάση (κρύσταλλοι 80%Cu - 20%Ni)
 </li>

# Θερμοκρασίες τήξης κραμάτων Cu – Ni με διαφορετικές συστάσεις Γραμμές Liquidus και Solidus

- Γραμμή Liquidus : Γραφική απεικόνιση Θερμοκρασιών έναρξης στερεοποίησης (σημεία L) σαν συνάρτηση της σύστασης του υλικού
- Πάνω από γραμμή Liquidus υπάρχει μόνο υγρή φάση (τήγμα)
- Γραμμή Solidus : Γραφική απεικόνιση Θερμοκρασιών λήξης στερεοποίησης (σημεία S) σαν συνάρτηση της σύστασης του υλικού
- Κάτω από γραμμή Solidus υπάρχει μόνο στερεή φάση (κράμα)
- Η περιοχή μεταξύ γραμμών Liquidus
   και Solidus αντιστοιχεί σε ετερογενές
   μίγμα υγρής και στερεής φάσης



## Ψύξη κράματος 80%Cu – 20%Ni από τήγμα σε στερεό: Μεταβολή σύστασης των φάσεων



- θ = 1300°C (σημείο L<sub>o</sub>)
  - υγρό (τήγμα)
  - σύσταση 20%Νi
- θ = 1195°C (σημείο L<sub>1</sub>)
  - έναρξη στερεοποίησης σχηματισμός πρώτων μικρών
     κρυστάλλων
  - Σύσταση κρυστάλλων 36%Ni αντιστοιχεί στο σημείο S<sub>1</sub> (η στερεά φάση σε αυτή τη θερμοκρασία)
  - Σύσταση υγρού 20%Νi (γιατί;)

## Ψύξη κράματος 80%Cu – 20%Ni από τήγμα σε στερεό: Μεταβολή σύστασης των φάσεων



- θ = 1160°C (σημείο Χ)
  - Αύξηση μεγέθους κρυστάλλων –
     ετερογενές μίγμα
  - Σύσταση κρυστάλλων 28% Ν<br/>i (αντιστοιχεί στο σημείο  $S_2$ )
  - Σύσταση υγρού 13%Νi (αντιστοιχεί στο σημείο L<sub>2</sub>)
  - Συνολική σύσταση κράματος 20%Ni
- θ ≤ 1130°C (σημεία  $S_3, S_4$ )
  - στερεό
  - Σύσταση κρυστάλλων 20%Ni (σημείο S<sub>3</sub>)
  - θ = 1130°C (σημείο  $S_3$ ), τελευταίες σταγόνες υγρού με σύσταση  $L_3$ )

# Υπολογισμός ποσοστών φάσεων σε μίγμα – Κανόνας του μοχλού

**Κανόνας του μοχλού** (lever rule): μας επιτρέπει να υπολογίσουμε τα ποσοστά υγρής και στερεάς φάσης σε κάθε θερμοκρασία κατά την τήξη/στερεοποίηση ενός κράματος σύστασης  $C_0$  (π.χ.,  $C_0 = 20\%$ Ni ή 0.2)

- Έστω
  - $W_L$ ,  $W_S$  τα ποσοστά βάρους ή μάζας (weight/mass fraction) υγρής και στερεάς φάσης, αντίστοιχα
  - C<sub>L</sub>, C<sub>S</sub> οι συστάσεις υγρής και στερεάς φάσης, αντίστοιχα
- Έστω κράμα μοναδιαίας μάζας, δηλαδή,  $W_L + W_S = 1$
- Θα πρέπει  $C_L W_L + C_S W_S = C_O$  (;)
- Λύνοντας το σύστημα

$$W_L = \frac{C_S - C_O}{C_S - C_L}$$
,  $W_S = \frac{C_O - C_L}{C_S - C_L}$ 

**ΠΑΡΑΔΕΙΓΜΑ εφαρμογής του κανόνα του μοχλού:** Υπολογισμός ποσοστού φάσεων κράματος 80%Cu – 20%Ni στη θερμοκρασία  $\theta = 1160$ °C (σημείο X)

Έχουμε  $C_O = 20\% = 0.2$ 

Σχεδιάζουμε μια συνδετική οριζόντια γραμμή μεταξύ των γραμμών Liquidus και Solidus,

Έστω  $L_2$  σημείο τομής με γραμμή Liquidus,  $L_2$  αντιστοιχεί σε  $C_L$ .

Από το διάγραμμα φάσεων (εικ.) βλέπουμε  $C_L = 13\% = 0.13$ 

Έστω  $S_2$  σημείο τομής με γραμμή Solidus,  $S_2$  αντιστοιχεί σε  $C_S$ . Βλέπουμε  $C_S = 28\% = 0.28$ 

επομένως, 
$$W_L = \frac{C_S - C_O}{C_S - C_L} = \frac{0.28 - 0.20}{0.28 - 0.13} = 0.533$$
 ή 53%

και  $W_S = 1 - W_L = 1 - 0.533 = 0.467$ ή~47%



12

### Όριο διαλυτότητας – Γραμμή Solvus

**Όριο διαλυτότητας,** *X<sub>S</sub>* = η μέγιστη ποσότητα ενός στοιχείου που μπορεί να διαλυθεί σε ένα άλλο μέσο ώστε να σχηματιστεί ομογενές διάλυμα

#### ΠΑΡΑΔΕΙΓΜΑ

Για συγκέντρωση αλατιού σε νερό  $X_1 \leq X_S$  σχηματίζεται αλατόνερο (ομογενές διάλυμα)

Για μεγαλύτερες συγκεντρώσεις,  $X_3 > X_S$ σχηματίζεται ίζημα (ετερογενές διάλυμα, αλατόνερο + αλάτι)

Η καμπύλη **Solvus** είναι η γραφική παράσταση του ορίου διαλυτότητας *X<sub>S</sub>* σαν συνάρτηση της θερμοκρασίας,

 $X_S = X_S(\theta)$ 



# Όριο διαλυτότητας στερεών διαλυμάτων – Η περίπτωση του κράματος Pb – Sn\*

- Στη στερεά φάση, ο καθαρός Pb έχει κρυσταλλική δομή FCC, ενώ ο καθαρός Sn δομή BCT (, Body-Centered Tetragonal, εδροκεντρωμένη τετραγωνική)
- Στην υγρή φάση (τήγμα), Pb και Sn είναι πλήρως αναμείξιμα σε οποιαδήποτε αναλογία
- Στη στερεά φάση
  - υπάρχει μικρό όριο διαλυτότητας Sn σε Pb,  $X_{\rm Sn,max} = 19.2\%$
  - και ακόμη μικρότερο όριο διαλυτότητας Pb σε Sn,  $X_{\rm Pb,max} = 2.5\%$
  - Για ενδιάμεσα ποσοστά, προκύπτει στερεό μίγμα δύο διακριτών φάσεων,
    - 1) φάση α, FCC πλούσια σε Pb με λίγα άτομα Sn
    - 2) φάση β, δομή BCT πλούσια Sn με λίγα άτομα Pb

\*Κασσιτεροκόλληση (soldering): για συγκόλληση χάλκινων αντικειμένων, συνδέσεις καλωδίων και ολοκληρωμένων κυκλωμάτων στις ηλεκτρονικές πλακέτες



14

#### Διάγραμμα ισορροπίας φάσεων κράματος Pb – Sn: Ευτηκτικό

- Ευτηκτικό διάγραμμα φάσεων (eutectic phase diagram) = Διάγραμμα φάσεων Pb Sn
- Μεταξύ των γραμμών Liquidus και Solidus
   έχουμε ετερογενές μίγμα τήγματος-στερεού
  - $\alpha + L$  για  $X_{Sn} < 61.9\%$
  - β + L για  $X_{\rm Sn} > 61.9\%$
- Γραμμές Liquidus συναντώνται στο σημείο
   *E* (61.9%, 183°C) = ευτηκτικό σημείο (eutectic point)
- Για  $θ < 183^{\circ}$ C, μόνο στερεή φάση κράματος Pb Sn



#### Διάγραμμα ισορροπίας φάσεων κράματος Pb – Sn: Ευτηκτικό

 Στο αριστερό άκρο του διαγράμματος (100% Pb): Η καμπύλη solvus συναντά τη γραμμή solidus στο σημείο C (19.2% Sn)

19.2% Sn = Όριο διαλυτότητας Sn σε Pb

Στο δεξί άκρο του διαγράμματος (100% Sn): Η καμπύλη solvus συναντά τη γραμμή solidus στο σημείο D (97.5% Sn)

2.5% Pb = Όριο διαλυτότητας Pb σε Sn

- Η ευθεία CD διερχόμενη από E στους 183°C είναι χαρακτηριστικό γνώρισμα ευτηκτικών διαγραμμάτων
- Για  $θ < 183^{\circ}$ C, μεταξύ των δύο καμπυλών solvus, κράμα δύο φάσεων α + β





- θ = 350°C (σημείο L)
  - Μόνο υγρή φάση (τήγμα)
  - σύσταση 10%Sn



- θ = 315°C (σημείο M)
  - έναρξη στερεοποίησης
  - σχηματισμός πρώτων
     μικρών πυρήνων α –
     φάσης στο υγρό
  - Σύσταση α φάσης
     ~ 5%Sn: αντιστοιχεί στο σημείο Μ' της γραμμής solidus
  - Σύσταση υγρού (L) 10%Sn



- θ = 290°C (σημείο N)
  - Αύξηση μεγέθους
     κρυστάλλων α φάσης
  - Η σύσταση κρυστάλλων  $\alpha$  - φάσης ~ 7%Sn(;)
  - Συνολική σύσταση10%Sn
  - Ποια είναι η σύσταση
     του υγρού;



- Πλήρης στερεοποίηση
   στην α -φάση
- Σύσταση α φάσης
   10%Sn
- θ = 175°C (σημείο P):
   μόνο α -φάση

20



- θ = 140°C (καμπύλη solvus,
   σημείο Q)
  - Όριο διαλυτότητας Sn στην
     α -φάση: Ορισμένα άτομα
     Sn διαχέονται και
     σχηματίζουν πυρήνες
     β -φάσης
  - Πυρήνες β –φάσης μέσα
     στην α –φάση (στα όρια
     κόκκων)
  - Σύσταση πυρήνων
     β φάσης, ~98%Sn
     (αντιστοιχεί στο Q'
     καμπύλης solvus



Για θ < 140°C</p>

- Συνύπαρξη  $\alpha$  και  $\beta$ φάσεων ( $\alpha + \beta$ )
- Σχετική αναλογία τους
   μεταβάλλεται με τη
   μείωση θερμοκρασίας

22



#### ΠΑΡΑΔΕΙΓΜΑ

- Για  $θ = 50^{\circ}$ C (σημείο **R**), το κράμα είναι μίγμα
- α φάσης με περιεκτικότητα
   ~ 4%Sn (αντιστοιχεί στο σημείο R')
- β -φάσης με περιεκτικότητα ~ 99%Sn (αντιστοιχεί στο σημείο R'')

Ψύξη ευτηκτικού κράματος 38.1%Pb – 61,9%Sn



- θ = 350°C (σημείο L): Ομογενές υγρό
- θ = 183°C (ευτηκτικό σημείο E)
  - Σχηματισμός πρώτων πυρήνων
     κρυστάλλωσης και βαθμιαία αύξηση
     στερεάς φάσης ως την πλήρη
     στερεοποίηση
  - Θερμοκρασία σταθερή, εικ. T(t).
  - Η ευτηκτική σύσταση ψύχεται σαν va ήταν καθαρό στοιχείο,  $L o lpha + oldsymbol{eta}$
  - Ευτηκτικός μετασχηματισμός (183°C):  $L_{61.9\%Sn} → α_{19.2\%Sn} + β_{97.5\%Sn}$
  - Ευτηκτική δομή: εναλλασόμενα
     επίπεδα φάσεων α και β (lamellae)

Ψύξη ευτηκτικού κράματος 38.1%Pb – 61.9%Sn



- θ = 350°C (σημείο L): Ομογενές υγρό
- θ = 183°C (ευτηκτικό σημείο E)
  - Σχηματισμός πρώτων πυρήνων
     κρυστάλλωσης και βαθμιαία αύξηση
     στερεάς φάσης ως την πλήρη
     στερεοποίηση
  - Θερμοκρασία σταθερή, εικ. T(t).
  - Η ευτηκτική σύσταση ψύχεται σαν va ήταν καθαρό στοιχείο,  $L o lpha + oldsymbol{eta}$
  - − Ευτηκτικός μετασχηματισμός (183°C):  $L_{61.9\%Sn} \rightarrow \alpha_{19.2\%Sn} + \beta_{97.5\%Sn}$
  - Ευτηκτική δομή: εναλλασσόμενα
     επίπεδα φάσεων α και β (lamellae)



θ = 350°C (σημείο L)

– υγρό (τήγμα)

- θ = 235°C (σημείο M)
  - Έναρξη διαδικασίας
     σχηματισμού πυρήνων
     α –φάσης
  - Σύσταση α -φάσης:
     ~15% Sn (σημείο Μ')
  - Σύσταση L φάσης:
     40% Sn



- θ = 210°C (σημείο N)
  - Μίγμα  $\alpha + L$
  - Σύσταση α -φάσης:
     ~18% Sn (σημείο N')
  - Σύσταση L φάσης:
     ~50% Sn (σημείο N'')





- θ = 183°C (σημείο Ο)
  - Αρχικά μίγμα  $\alpha + L$
  - Σύσταση α --φάσης:
     19.2% Sn
  - Σύσταση *L* φάσης:
     Ευτηκτική 61.9% Sn
  - H L φάση υφίσταταιευτηκτικόμετασχηματισμό $<math>(L_{61.9\%Sn} → α_{19.2\%Sn} + β_{97.5\%Sn})$



- θ = 183°C παραμένει σταθερή
- Τελική σύσταση μετά
   την πλήρη στερεοποίηση
   (σημείο **P**)

 Κύρια (primary) ή προευτηκτική α –φάση:

Σύγκριση ευτηκτικού (61.9%Sn) και κράματος 60%Pb – 40%Sn



### Ιδιότητες και εφαρμογές κραμάτων Pb – Sn

A. Κράμα 60%Pb – 40%Sn

- Κατά την ψύξη, μίγμα  $\alpha + L$
- Μεγάλο εύρος θερμοκρασιών στερεοποίησης: 50°C (από 235°C ως 183°C)
- Πλαστική συμπεριφορά κατά τη στερεοποίηση
- Προτιμάται στη συγκόλληση αρμών για ένωση σωλήνων



### Ιδιότητες και εφαρμογές κραμάτων Pb - Sn

- Β. Συγκολλητικό κράμα ευτηκτικής σύστασης
  - Στο εμπόριο διατίθεται σύσταση 40%Pb – 60%Sn (πολύ κοντά στην ευτηκτική)
  - Ελάχιστη θερμοκρασία τήξης, στερεοποιείται πολύ γρήγορα
  - Χρησιμοποιείται στη συγκόλληση ημιαγώγιμων διατάξεων όπου απαιτούνται
    - a. υδρόφιλες επιφάνειες
    - ελάχιστη έκθεση σε υψηλές
       θερμοκρασίες



#### παράδειγμα 1.20

Στερεοποίηση κράματος 60% Pb – 40% Sn (εικ. Διάγραμμα φάσεων)

Ποιες είναι οι φάσεις, οι συστάσεις και οι αναλογίες βάρους των φάσεων στο κράμα στις θερμοκρασίες

(α) 250°C,

(β) 210°C,

(γ) 183.5°C (ελάχιστα πάνω από τους 183°C)

(δ) 182.5°C (ελάχιστα κάτω από τους 183°C);



#### απαντήση

- (α) **250**°C (σημείο **K**): υπάρχει μόνο υγρή φάση (τήγμα) ομογενής με σύσταση 40% Sn
- (β) **210**°C (σημείο **N**): ισορροπία υγρής και  $\alpha$  -φάσης ( $\alpha$  + L)
  - Η σύσταση της  $\alpha$  —φάσης βρίσκεται από την καμπύλη solidus: (σημείο N'):  $C_{\alpha}$  = 18% Sn Η σύσταση της L φάσης βρίσκεται από την καμπύλη liquidus: (σημείο N''):  $C_L$  = 50% Sn

#### παράδειγμα 1.20

Από τον κανόνα του μοχλού, υπολογίζουμε της αναλογία βάρους της α-φάσης

 $W_{\alpha} = \frac{C_L - C_O}{C_L - C_{\alpha}} = \frac{50 - 40}{50 - 18} = 0.313 \quad (31.3\%)$ 

οπότε, της υγρής φάσης είναι $W_L = 1 - W_{\alpha} = 1 - 0.313 = 0.687 (68.7\%)$ 

(γ) **183.5**°C (σημείο **0**): μίγμα  $\alpha + L$  (;)

Σύσταση  $\alpha$  –φάσης,  $C_{\alpha} = 19.2\%$  Sn (σημείο C)

Σύσταση υγρής φάσης ευτηκτική,  $C_L = 61.9\%$  Sn (σημείο E)

Οι αναλογίες βαρών είναι

$$W_{\alpha} = \frac{C_L - C_O}{C_L - C_{\alpha}} = \frac{61.9 - 40}{61.9 - 19.2} = 0.513 \ (51.3\%),$$



 $W_L = 1 - W_{\alpha} = 0.487 (48.7\%)$ 

#### παράδειγμα 1.20

(δ) Ακριβώς κάτω από 183°C (σημείο P):
 κράμα α -φάσης και ευτηκτικού
 στερεού

Σύσταση συνολικού στερεού: α -φάση και β -φάση (β -φάση εντός ευτηκτικής δομής)

Οι αναλογίες βαρών α, β φάσεων υπολογίζονται με κανόνα μοχλού στο σημείο **P** 

$$400$$
  
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $400$   
 $800$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   
 $500$   

$$W_{\alpha} = \frac{C_{\beta} - C_{0}}{C_{\beta} - C_{\alpha}} = \frac{97.5 - 40}{97.5 - 19.2} = 0.734 \quad (73.4\%)$$
$$W_{\beta} = 1 - W_{\alpha} = 0.266 \quad (26.6\%)$$

(ε) Σε θερμοκρασία δωματίου (π.χ., σημείο **Q**): μικροδομή ίδια με **183**°C (μηχανισμός διάχυσης αργός, δεν επιτρέπει αλλαγή σύστασης φάσεων)