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1 Introduction

FPGAs have changed dramatically since Xilinx first introduced them just 15 years ago. In the
past, FPGA were primarily used for prototyping and lower volume applications; custom ASICs
were used for high volume, cost sensitive designs. FPGAs had also been too expensive and too
slow for many applications, let alone for System Level Integration (SLI). Plus, the development
tools were often difficult to learn and lacked the features found in ASIC development systems.
Now, this has all changed.

Silicon technology has progressed to allow chips with tens of millions of transistors. This not
only promises new levels of integration onto a single chip, but also allows more features and
capabilities in reprogrammable technology. With today’s deep sub-micron technology, it is
possible to deliver over 2 - million usable system gates in a FPGA. In addition, the average
ASIC design operating at 30 – 50MHz can be implemented in a FPGA using the same RTL
synthesis design methodology as ASICs. By the year 2004, the state-of-the-art FPGA will exceed
10 million system gates, allowing for multimillion gates FPGAs operating at speeds surpassing
300 MHz. Many designs, which previously could only achieve speed and cost-of-density goals in
ASICs, are converting to much more flexible and productive reprogrammable solutions.

The availability of FPGAs in the 1-million system gate range has started a shift of SoC designs
towards using Reprogrammable FPGAs, thereby starting a new era of System-on-a-
Reprogrammable-Chip (SoRC).  For a 1-million system gate SoRC design, an engineer designing
100 gates/day would require a hypothetical 42 years to complete, at a cost of $6 million. Clearly,
immense productivity gains are needed to make million gate designs commercially viable, and
SoRC based on today’s million logic gate FPGAs, and tomorrow’s 10-million logic gate FPGAs
is a promising solution.

SoRC is no different from SoC in that it requires leveraging existing intellectual property (IP) to
improve designer productivity.  Reusable IP is essential to constructing bug-free multimillion-
gate designs in a reasonable amount of time. Without reuse, the electronics industry will simply
not be able to keep pace with the challenge of delivering the “better, faster, cheaper” devices that
consumers expect.

With the availability of new FPGA architectures designed for system level integration and FPGA
design tools that are compatible with ASIC design methodologies, it is now possible to employ a
similar if not identical design reuse methodology for ASICs and FPGAs. For design teams that
have longed to eliminate NRE costs and improve time-to-market without climbing the learning
curve to become FPGA experts, this design reuse methodology adds a new level of freedom.
However, this methodology is not without its limitations. This paper examines the designs that
can take advantage of an identical ASIC and FPGA design reuse methodology and the simple
modifications that can be made to the RTL code to enhance performance and reuse.

1.1 System-on-a-Reprogrammable Chip

To define SoRC, let us first start with a general definition of System-on-a-Chip (SoC). Most of
the industry agrees that SoC is the incorporation of an entire system onto one chip. Dataquest’s
1995 definition included a compute engine (microprocessor, microcontroller or digital signal
processor), at least 100K of user gates and significant on-chip memory.
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The definition of SoRC is just beginning to evolve and in this book is defined as system level
integration implemented on a Reprogrammable FPGA device. The SoRC definition is similar to
SoC since it generally includes a compute engine, 50K of user logic gates and on-chip memory.
The definition of SoRC includes partial system integration into multiple chips as well as entire
system level integration on a single chip. The challenges facing SoC and SoRC designers are
similar even if the entire system is not integrated into one single chip. However SoRC is not
defined as the gathering of glue logic, since SoRC designs contain system level integration issues
that separate it from a general glue logic design.

1.2 Why Use an FPGA?

System-Level-Integration (SLI) using reprogrammable FPGA technology is made possible by
advances in IC wafer technology especially in the area of deep submicron lithography. Today,
state-of-the-art waferfabs find FPGAs an excellent mechanism for testing new wafer technology
because of their reprogrammable nature. Incidentally, this trend in the wafer fabs means that
FPGA companies have early access to the newest deep sub-micron technologies, dramatically
increasing the number of gates available to designers as well as reducing the average gate cost
sooner in the technology life-cycle than before. This trend, together with innovative system level
architecture features, is leading FPGAs to become the preferred architecture for SLI.

1.2.1 ASIC vs. FPGA Design Flows

Figure 1 illustrates a typical ASIC design flow as compared to a typical FPGA design flow. The
FPGA design flow has some noticeable advantages:
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Figure 1 – ASIC Design Flow Compared to FPGA Design Flow

Reduced Risk – System-Level-Integration increases the complexity of implementation into the
target device. Reprogrammable logic eliminates the risk and expense of semi-custom and custom
IC development by providing a flexible design methodology. Systems designed in FPGAs can be
prototyped in stages, allowing in-system testing of individual sub-modules. The design engineer
can make design changes or ECOs in minutes avoiding multiple cycles through an ASIC
manufacturing house, at 2 months per cycle.
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The quality of IP for ASICs depends on whether it has been verified using a specific ASIC
technology library. The ultimate proof of the quality of the IP is that it has been implemented in a
desired ASIC technology. Implementing an IP or reuse module in more than one ASIC
technology is costly. However implementing IP or reusable modules in a variety of FPGA
devices is not.

Faster Testing and Manufacturing - ASICs require rigorous verification strategies to avoid
multiple cycles through manufacturing. The manufacturing and test strategies must be well
defined during the specification phase. Often different strategies must be used depending on the
type of block. Memory blocks often use BIST or some form of direct memory access to detect
and troubleshoot data retention problems. Other logic such as microprocessors requires custom
test structures for full or partial scan or logic BIST.

FPGA designs, on the other hand, are implemented on reprogrammable devices that are 100%
tested by the manufacture, before reaching the designer. In fact, FPGAs can be used to create test
programs downloadable into other non-reprogrammable devices on the board. There is no non-
recurring engineering (NRE) cost, no sign-off, and no delay while waiting for prototypes to be
manufactured. The designer controls the entire design cycle, thereby shrinking the design cycle as
well as the time to prototype. This allows essential steps such as firmware designing to occur at a
stage late in the design flow but actually earlier in the actual design time.

Verification – ASIC technology requires strict verification before manufacturing. In large
complex system level designs many more unexpected situations can occur. SoRC designers have
a much more flexible in-system verification strategy. The designers can mix testbench
verification strategies with in-circuit testing, thereby offering faster verification without the cost
of accelerated simulators.  Surveys of design engineers have found that the area of test vector
generation and vector-based verification is the least favorite part of system design process.

Hardware and Software Co-Designing - Early versions of the systems prototype can be used to
facilitate software and hardware co-design.

1.3 A Common Design Reuse Strategy

The dramatic improvement in FPGA architecture, pricing and design tools in the past few years
has made it possible for ASIC and FPGA designers to share a common design methodology.
Designs requiring performance in the 30 – 50 MHz range are usually implemented using a RTL
synthesis design methodology making a common ASIC and FPGA design reuse strategy possible.
However, designs requiring higher performance, will usually require additional techniques unique
to the FPGA environment. A common design and design reuse strategy provides the flexibility to
choose the best method to implement a system design without the overhead of retraining the
design teams. In addition, one can take advantage of the design rules and guidelines found in
reuse methodology manuals such as the Reuse Design Methodology Manual from Synopsys and
Mentor or the web-based Reuse Methodology Field Guide from Qualis.

There are many challenges facing Soc/SoRC designers such as time-to-market pressures, quality
of results, increasing chip complexity, varying levels of expertise, multi-site teams and
management and implementation of a reuse strategy. FPGA designers are faced with the
additional challenges of architectures with varying system features, meeting difficult performance
goals and different implementation strategies. This paper addresses these unique challenges by
showing how the guidelines found in the Reuse Design Methodology Manual can be applied
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effectively on SoRC designs and by focusing on some additional guidelines that can further
enhance performance and reusability for designers implementing a common reuse strategy.

•  Section 2 provides an overview of the system level features commonly found in the FPGA
architectures designed for SLI. Xilinx’s Virtex is a leading example.

•  Section 3 contains general RTL synthesis guidelines that apply to both ASIC and FPGA
implementations, and have the greatest impact on improving system performance

•  Section 4 is a brief discussion of FPGA verification strategies and trends.

1.4 Definitions & Acronyms

This manual uses the following terms interchangeably: Macro, Module, Block, IP and Core. All
of these terms refer to a design unit that can reasonably be viewed as a stand-alone sub-
component of a complete System-on-a-Reconfigurable-Chip design.

Acronyms

•  CLB – Combinatorial Logic Block
•  ESB – Embedded Systems Block
•  FPGA – Field Programmable Gate Array
•  HDL  – Hardware Description Language
•  LE – Logic Element
•  OHE – One Hot Encoded
•  RTL  – Register Transfer Level
•  SLI – System-Level-Integration
•  SoC – System-on-a-Chip
•  SoRC - System-on-a-Reprogrammable-Chip System
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2 System Level Reuse Issues for FPGAs

This section gives an overview of the system-level issues that are unique to FPGAs when
designing for reuse. Generally these elements must be agreed upon or at least discussed to some
level before starting to design the modules of the system.

2.1 System Synthesis and Timing Issues

Designers should follow the guidelines for synchronous design style, clocking and reset found in
the “Reuse Methodology Manual” by Synopsys and Mentor, “Synthesis and Simulation Design
Guide” by Xilinx or the Design Guides supplied by suppliers of EDA tools for the targeted
FPGA.

2.1.1 Synchronous vs. Asynchronous Design Style

Rule – Avoid using latches. The system should be synchronous and register-based. Use D
registers instead of latches. Exceptions to this rule should be made with great care and must be
fully documented.

In the past latches have been popular for designs targeting ASICs. Although latches are a simpler
circuit element then flip-flops, they add a level of complexity to the design such as ambiguous
timing. Experienced designers maybe able to take advantage of the ambiguity to improve timing.
Time borrowing is used to absorb some of the delay by guaranteeing that the data is set up before
the leading clock edge at one stage or allowing the data to arrive as late as one setup time before
the trailing clock edge at the next stage.

Example 1 D Latch Implemented with Gates

VHDL:
architecture BEHAV of d_latch is
begin
LATCH: process (GATE, DATA)

begin
If (GATE= ‘1’) then

Q <= DATA;
end if;

end process; -- end latch

Verilog:
always @ (GATE or DATA)
begin

if (GATE == 1’b1)
Q<= DATA;

end
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XSI page 2-28 – X4975
Figure 2 - D Latch Implemented with Gates

The problem caused by the ambiguity of latch timing, and exacerbated by time borrowing, is that
it is impossible by inspection of the circuit to determine whether the designer intended to borrow
time or the circuit is just slow. In the example of the D Latch implemented using gates, a
combinatorial loop results in a hold-time requirement on DATA with respect to GATE. Since
most synthesis tools for FPGAs do not process hold-time requirements because of the uncertainty
of routing delays, it is not recommended to  implement latches with combinatorial feedback
loops. Whether the latch is implemented using the combinatorial gates or logic blocks, the timing
analysis of each latch of the design is difficult. Over a large design, timing analysis becomes
impossible. Only the original designer knows the full intent of the design. Thus, latch-based
design is inherently not reusable.

In FPGA architectures another danger of inferring a latch from RTL code is that very few FPGA
devices have latches available in the logic blocks internal to the device. In addition, in FPGA
architectures that do have latches available in the internal logic blocks, the function of the latches
can vary from one architecture to the next.  HDL compilers infer latches from incomplete
conditional expressions, such as an If statement without an Else clause. If the FPGA architecture
does not have latch capabilities, the compiler may report an error or may implement the latch
using gates in the logic blocks function generator. If the architecture has latches available in the
device’s input pin/pad and the latches are connected to an input port, the HDL compiler may
implement the latch inside the input pad. Once again, only the original designer knows the full
intent of the desired implementation.

2.1.3 System Clocking and Clock Distribution

In system level designing, the generation, synchronization and distribution of the clocks is
essential. Special care has long been taken by ASIC designers in the layout of the clocking
structure. FPGAs have an advantage in this area since the clocking mechanisms are designed into
the device and pre-tested, balancing the clocking resources to the size and target applications of
the device. This section takes a look at the clocking resources available to reduce and manage the
impact of clock skew and clock delay.

SoC vs. SoRC – SoC clocking distribution methods such as building a balanced clock tree to
distribute a single clock throughout the chip is not recommend for FPGAs designs. FPGAs have
dedicated clocking distribution resources and methods that efficiently utilize resources to provide
high fanout with low skew throughout the chip. These clocking resources are roughly equivalent
to the high-power clock buffers found in SoC designs.
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System Clocking

Rule – The design team must decide on the basic clock distribution architecture for the chip early
in the design process.  The most efficient clocking strategy and clock distribution will most likely
be determined by the targeted architecture. This strategy must be well documented and conveyed
to the entire design team.

FPGA architectures provide high-speed, low-skew clock distributions through dedicated global
routing resources. FPGAs designed for SoRC on average provide 4 dedicated global clock
resources and additional clocking resources through flexible low-skew routing resources. The
dedicated resources for clocking distributions consist of dedicated clock pads located adjacent to
global nets that in turn can drive any internal clocked resources. The input to the global buffer is
selected either from the dedicated pads or from signals generated internal to the FPGA.

Rule – Keep the number of system clocks equal to or less than the number of dedicated global
clock resources available in the targeted FPGA.

As an FPGAs design grows in size, the quality of on-chip clock distribution becomes more
important. FPGA architectures designed for SoRC generally employ a clocking method to reduce
and manage the impact of clock skew and clock delay. FPGA architectures for SoRC provide
either a dedicated Phase-Locked Loop (PLL) or Delay-Locked Loop (DLL) circuit.  These
circuits not only remove clock delay but can also provide additional functionality such as
frequency synthesis (clock multiplication and clock division) and clock conditioning (duty cycle
correction and phase shifting). Designers can also use the multiple clock outputs, deskewed with
respect to one another, to take advantage of multiple clock domains.

Rule – The number of clock domains and the clock frequency must be documented as well as the
required frequency, associated PLL or DLL and the external timing requirements (setup/hold and
output timing) needed to interface to the rest of the system.

Delay-Locked Loop (DLL) vs. Phase-Locked Loop (PLL)

Either a phase-locked-loop (PLL) or a delay-locked-loop (DLL) can be used to reduce the on-chip
clock-distribution delay to zero. Both can be considered a servo-control system since they use a
feedback loop.

A PLL uses a phase detector to drive a voltage-controlled oscillator (VCO) such that the VCO
output has the desired frequency and phase. This generally involves an analog low-pass filter and
an inherently analog VCO. A PLL can recover a stable clock from a noisy environment, but it is
difficult to avoid generating random clock jitter.

A DLL uses a phase detector to increase the delay so much that the subsequent clock edge occurs
at the desired moment. This generally involves a multi-tapped delay line, consisting of a large
number of cascaded buffers. The adjustment is done by a digitally controlled multiplexer. This
scheme lends itself to a totally digital implementation and is more compatible with standard
circuit design methodology and IC processing. A DLL cannot suppress incoming clock
jitter, passing the jitter straight through. There is no random output jitter, but there is a systematic
output jitter of one delay-line increment, typically less than 50 picoseconds.



11

Neither a PLL nor a DLL can be used in PCI-designs that demand proper operation at instantly
changing clock rates.

Delay-Locked Loop (DLL)

As shown in Figure 3, a DLL in its simplest form consists of a programmable delay line and some
control logic. The delay line produces a delayed version of the input clock CLKIN. The clock
distribution network routes the clock to all internal registers and to the clock feedback CLKFB
pin. The control logic must sample the input clock as well as the feedback clock in order to adjust
the delay line.

Figure 3 - A Delay-Locked Loop Block Diagram

In the example of a Xilinx Virtex architecture each global clock buffer is a fully digital DLL.
Each DLL can drive two global clock networks. The DLL monitors the input clock and the
distributed clock, and automatically adjusts a clock delay element.

A DLL works by inserting delay between the input clock and the feedback clock until the two
rising edges align, putting the two clocks 360 degrees out of phase (effectively in phase). After
the edges from the input clock line up with the edges from the feedback clock, the DLL “locks”.
After the DLL locks, the two clocks have no discernible difference. Thus, the DLL output clock
compensates for the delay in the clock distribution network, effectively removing the delay
between the source clock and its loads. This ensures that clock edges arrive at internal flip-flops
in synchronism with each clock edge arriving at the input.

FPGAs often uses multiple phases of a single clock to achieve higher clock frequencies. DLLs
can provide control of multiple clock domains. In our example architecture, four phases of the
source clock can be doubled or divided by 1.5, 2, 2.5, 3, 4, 5, 8 or 16.
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Figure 4 - Zero Delay Clock Management. Multiple DLLs facilitate precise generation of zero-
delay clocks both inside and outside the FPGA for highest chip-to-chip speeds

Phase-Locked Loop

While designed for the same basic functions, the PLL uses a different architecture to accomplish
the task. As shown in Figure 5, the fundamental difference between the PLL and DLL is that,
instead of a delay line, the PLL uses a programmable oscillator to generate a clock signal that
approximates the input clock CLKIN. The control logic, consisting of a phase detector and filter,
adjusts the oscillator phase to compensate for the clock distribution delay.

The PLL control logic compares the input clock to the feedback clock CLKFB and adjusts the
oscillator clock until the rising edge of the input clock aligns with the rising edge of the feedback
clock. The PLL then “locks”. The Altera FLEX 20KE is an example of a FPGA architecture that
contains a clock management system with phase-locked lock (PLL).

Figure 5 - Phase-Locked Loop Block Diagram

Guideline – If a phase-locked loop (PLL) is used for on-chip clock generation, then some means
of disabling or bypassing he PLL should be provided. This bypass makes chip testing and debug
easier.

2.2 Memory and Memory Interface

Memories present a special challenge when designing for reuse. In FPGA designs, memories are
generally designed using vendor-supplied modules or module generators, making them very
technology dependent. Memory compilers developed for ASICs are not currently designed to
target FPGA architectures. However, some synthesis tools can recognize RAM from RTL code,
making the design synthesis-tool dependent and FPGA-vendor independent.

2.2.1 On-Chip Memory

FPGAs architectures can accommodate small to medium blocks of memory on-chip. Smaller on-
chip RAM and ROM can be distributed throughout the FPGA by configuring the logic function
generators into bit-wide and byte-deep memory (i.e., 16x1, 16x2, 32x1, and 32x2). Distributed
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RAM can be used for status registers, index registers, counter storage, constant-coefficient
multipliers, distributed shift registers, FIFO or LIFO stacks, or any data storage operation. Dual
port RAM simplifies the designs of FIFOs. The capabilities of these distributed blocks of memory
are highly architecture dependent and must be documented to ensure a compatible architecture is
chosen when the module is reused. Distributed memory generally supports level-sensitive, edge-
triggered, dual and single port RAM. The edge-trigger capability simplifies system timing and
provides better performance for distributed RAM-based design.

Medium size memory can utilize block memory structures of the FPGA architecture. These block
memories complement the shallower distributed RAM structures and are generally organized into
columns in the device. The columns extend the height of the chip. In the example of the Xilinx
Virtex device, each block memory is four CLBs high. A Virtex device of 64 CLBs high will
contain 16 memory blocks per column with a total of 32 blocks in two columns. The 1 million
system gate (or ~350K logic gates) Virtex device has a total of 131,072 bits of block RAM
available. The depth and width ratio are adjustable between 1 x 4096 to 16 x 256 (width x depth).
Dedicated routing resources are provided to ensure routability and performance.

Implementing distributed or block memory can be performed in three different ways:
•  RTL description
•  Instantiation of primitives
•  Vendor specific memory compiler

Guideline – A corporate reuse strategy, that standardizes on a synthesis tool or FPGA
architecture. However, standardizing on a tool or architecture may hinder design reuse.

Guideline – If a corporate policy that standardizes on a synthesis tool, implementing distributed
memory through the RTL description is generally recommended if the synthesis tool supports
memory interfacing. The specific RTL coding style to infer a distributed or block memory is
unique to each synthesis vendor and not all synthesis tools have memory inference capabilities for
FPGAs devices.

Alternatively, distributed and block memory can be implemented using a vendor-specific memory
compiler or through instantiation. Memory compilers and instantiation of memory primitives may
provide access to features that can not be synthesized from a RTL description. If a memory
compiler is used, it must be clearly specified in the script file and the compiler used must be
document.  Both memory compilers and instantiation generally require additional commands in
the synthesis script file. Using a memory compiler requires that a “black box” be instantiated into
the hierarchical design. Special commands are added to the synthesis script to ensure that the
component is not compiled and that the design file can be located. Instantiation requires that
commands be added to assign the ROM values and the initial RAM value.

Guideline – If a corporate policy is to standardize on a FPGAs device family or a family series
that is backwards compatible, use of the FPGA vendor’s memory compiler is recommend.

2.2.2 Interfacing to Large Memory Blocks

Low-volume designs and prototypes can take advantage of customized solutions targeted at
specific markets, such as Triscent’s CPSU family of devices. These solutions combine CPU,
FPGA and larger blocks of SRAM for system-level integration targeting microcontroller-based
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systems that contain from 16 to 64kbyets of SRAM with 8-bit processor cores and 40K FPGA
system gates.

Standalone memories can provide designers with solutions when large blocks of storage are
needed for caches, buffers, and large look-up tables, such as in networking applications. However
the trend in SoC designs implemented as ASICs has been towards many smaller blocks of SRAM
for local buffering, register files, and temporary storage.

SoRC vs. SoC - SoRC architectures are generally designed with small to medium memory
capabilities. Standard cell devices can embed large blocks of high performance memory on-chip.

High-speed SRAM (e.g. 350MHz) with features such as double-data-rate (DDR) I/O capabilities
and zero-bus latencies and very large, multiple Gigabyte memories are best left off-chip in both
SoC and SoRC devices. Even half a megabit or more of SRAM or several megabytes of DRAM,
is more cost-effective when implemented off-chip.

Most SoRC FPGA devices have banks of I/Os that can be configured to interface efficiently to
high speed SRAM and synchronous DRAM.  The market is shifting away from 5-V devices to
chips that are operate from 3.3V supplies and offer 3.3V LVTTL (low-voltage TTL) interfaces
rather than standard TTL or CMOS I/O levels. The voltage is continuing to drop as signal swings
are reduced to improve access time and power dissipation. SRAMs are offering 2.5V I/O lines
that meet the HSTL (high-speed subterminated logic) interface specifications. These higher-speed
I/O lines will allow bus operations well beyond 300MHz.

SoC vs. SoRC - An advantage of designing a system using FPGA technology is that the FPGA
vendor has already invested the resources to support various I/O standards. As a result, a designer
can develop and prototype with a wide range of interface standards.

2.3 External Operability (I/O Standards)

Complex, system level chips require a variety of I/O interface standards. These different I/O
standards provide higher levels of performance and/or lower power dissipation and are optimized
for system-critical elements such as backplane, memory and communication systems. High-speed
applications such as 66 MHz PCI require high-speed input and output capabilities. One obvious
trend for system-level FPGA architectures is to add the necessary I/O buffers into the device to
improve the overall system performance, reduce the board size, reduce cost, simplify the design
and provide full high-speed access to other devices.

Rule – When designing with a reusable module, choose a SoRC device that supports the required
I/O standards.

Rule – Any module design for reuse that contains I/O should take advantage of the variety of I/O
standards provided in the selected FPGA architecture. It is important to document the I/O
standards required and any specific feature of the SoRC device’s I/O that was used in the initial
implementation of the sub-module.

Verify that the selected architecture protects all pads from electrostatic discharge (ESD) and from
over-voltage transients. Having IEEE 1149.1-compatible boundary scan test capabilities available
in the I/O blocks can enhance board level testing.
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Table 1 - Example of different I/O standards

Standard Voh Vref Definition Application

LVTTL 3.3 na Low-voltage transistor-
transistor logic

General purpose

LVCMOS2 2.5 na Low-voltage complementary
metal-oxide

General purpose

PCI 33MHz 3.3V 3.3 na Personnel computer
interface

PCI

PCI 33MHz 5.0V 3.3 na Personnel computer
interface

PCI

PCI 66MHz 3.3V 3.3 na Personnel computer
interface

PCI

GTL na 0.80 Gunning transceiver logic Backplane
GTL+ na 1.00 Gunning transceiver logic Backplane
HSTL-I 1.5 0.75 High-speed transceiver logic High Speed SRAM
HSTL-III 1.5 0.90 High-speed transceiver logic High Speed SRAM
HSTL-IV 1.5 0.75 High-speed transceiver logic High Speed SRAM
SST3-I 3.3 0.90 Stub-series terminated logic Synchronous DRAM
SST3-II 3.3 1.50 Stub-series terminated logic Synchronous DRAM
SST2-I/II 2.5 1.25 Stub-series terminated logic Synchronous DRAM
AGP 3.3 1.32 Advanced graphics port Graphics
CTT 3.3 1.5 Center tap terminated High Speed Memory

I/Os on SoRC devices are often grouped in banks. The grouping of I/O’s into these banks are
generally placed into a module and can affect the floorplanning of the SoRC design.

Guidelines – Document the grouping of I/O into the device’s banks and note any reason for
constraining the module or I/O in the modules to a particular area or pin location for reasons such
as Global Clock Buffers or DLL direct connections.
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3 Coding and Synthesis Tips

Fine-grain ASIC architectures have the ability to tolerate a wide range of RTL coding styles
while still allowing designers to meet their design goals. Course-grain FPGA architecture like
Xilinx’s Virtex and Altera’s Apex are more sensitive to coding styles and design practices. In
many cases, slight modifications in coding practices can improve the system performance
anywhere from 10% to 100%. Design reuse methodologies already stress the importance of good
coding practices to enhance reusability. Today, IP designers are utilizing many of these practices,
as described in the Reuse Methodology Manual, resulting in modules that perform much faster in
FPGAs than traditional ASIC designs converting to FPGAs.

The most common reason why a given design runs much slower in a FPGA compared to an ASIC
is an excessive number of logic levels in the critical path. A logic level in a FPGA is considered
to be one Combinatorial Logic Block (CLB) or Logic Element (LE) delay. In the example of a
CLB, each CLB has a given throughput (alt. propagation?) delay and an associated routing delay.
Once the amount of logic that can fit into one CLB is exceeded, another level of logic delay is
added. For example, a module with 6 to 8 FPGA logic levels would operate at ~50MHz. This
course-grain nature of FPGA may yield a higher penalty for added logic levels than with ASICs.

This section covers some of the most useful hints to enhance speed through reducing logic levels
for FPGA SRAM architectures.

3.1 Abundance of Registers

FPGA architectures are generally register-rich. RTL coding styles that utilize registers can be
employed to dramatically increase performance. This section contains several coding techniques
that are known to be effective in increasing performance by utilizing registers.

3.1.1 Duplicating Registers

A technique commonly used to increase the speed of a critical path is to duplicate a register to
reduce the fan-out of the critical path. Because FPGAs are register-rich, this is usually an
advantageous structure since it can often be done at no extra expense to the design.

Example 2 – Verilog Example of Register with 64 Loads

module high_fanout(in, en, clk, out);
input [63:0]in;
input en, clk;
output [63:0] out;
reg [63:0] out;
reg tri_en;
always @(posedge clk)  tri_en = en;
always @(tri_en or in)  begin

if (tri_en)  out = in;
else  out = 64'bZ;

end
endmodule
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Figure 6 – Register with 64 Loads

Example 3 – Verilog Example of After Register Duplication to Reduce Fan-out

module low_fanout(in, en, clk, out);
input [63:0] in;
input en, clk;
output [63:0] out;
reg [63:0] out;
reg tri_en1, tri_en2;
always @(posedge clk) begin

tri_en1 = en;  tri_en2 = en;
end
always @(tri_en1 or in)begin

if (tri_en1)  out[63:32] = in[63:32];
else  out[63:32] = 32'bZ;

end
always @(tri_en2 or in) begin

if (tri_en2) out[31:0] = in[31:0];
else out[31:0] = 32'bZ;

end
endmodule

Figure 7 - Register Duplication to Reduce Fan-out
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3.1.2 Partitioning at Register Boundary

Guideline - For large blocks, both inputs and outputs should be registered. For smaller modules
either the input or the output of the module should be registered. Registering both the input and
output makes timing closures within each block completely local. Internal timing has no effect on
the timing of primary inputs and outputs of the block. The module gives a full clock cycle to
propagate outputs from one module to the input of another.

Unlike ASICs, there is no need for buffers to be inserted at the top level to drive long wires since
FPGA architectures designed for systems have an abundant amount of global routing with built in
buffering.

This kind of defensive timing design is useful for large system level designs as well as reusable
modules. In a reusable block, the module designer does not know the timing context in which the
block will be used. Defensive timing design is the only way to assure that timing problems will
not limit future use of the module.

3.1.3 One-Hot State Machines

State machines are one of the most commonly implemented functions in system level designs.
Highly encoded state sequences will generally have many, wide-input logic functions to interpret
the inputs and decode the states. When implemented in a FPGA this can result in several levels of
logic between clock edges because multiple logic blocks are needed to decode the states.

Guideline - A better state-machine approach for FPGAs limits the amount of fan-in into one
logic block. In some cases a binary encoding can be more efficient in smaller state machines.

The abundance of registers in FPGA architectures and the fan-in limitations of the CLB tend to
favor a one-hot-encoding (OHE) style. The OHE scheme is named so because only one state
register is asserted, or “hot”, at a time. One register is assigned to each state. Generally an OHE
scheme will require two or fewer levels of logic between clock edges compared to binary
encoding, translating into faster performance. In addition the logic circuit is simplified because
OHE removes much of the state-decoding logic. An OHE state machine is essentially already
fully decoded making verification simple. Many synthesis tools have the ability to convert state
machines coded in one style to another.

3.1.4 Pipelining

Pipelining can dramatically improve device performance by restructuring long data paths with
several levels of logic and breaking them up over multiple clocks. This method allows for a faster
clock cycle and increased data throughput at small expense to latency from the extra latching
overhead. Because FPGAs are register-rich, this is usually an advantageous structure for FPGA
design since the pipeline is created at no cost in terms of device resources. However, since the
data is now on a multi-cycle path, special considerations must be used for the rest of the design to
account for the added path latency. Care must be taken when defining timing specifications for
these paths. The ability to constrain multi-cycle paths with a synthesis tool varies based on the
tool being used. Check the synthesis tool's documentation for information on multi-cycle paths.
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Guideline – We recommend careful consideration before trying to pipeline a design. While
pipelining can dramatically increase the clock speed, it can be difficult to do correctly. Also, since
multicycle paths lend themselves to human error and tend to be more  troublesome due to the
difficulties in analyzing them correctly, they are not generally recommended for reusable
modules.

In a design with multiple levels of logic between registers, the clock speed is limited by the clock-
to-out time of the source flip-flop, plus the logic delay through the multiple levels of logic, plus
the routing associated with the logic levels, plus the setup time of the destination register.
Pipelining a design reduces the number of logic levels between the registers. The end result is a
system clock that can run much faster.

Example 4 – Verilog Example before Pipelining

module no_pipeline (a, b, c, clk, out);
input a, b, c, clk;
output out;
reg out;
reg a_temp, b_temp, c_temp;
always @(posedge clk) begin

out = (a_temp * b_temp) + c_temp;
a_temp = a; b_temp = b; c_temp = c;

end
endmodule

Figure 8 – Example before Pipelining

Example 5 – Verilog Example after Pipelining

module pipeline (a, b, c, clk, out);
input a, b, c, clk;
output out;
reg out;
reg a_temp, b_temp, c_temp1, c_temp2, mult_temp;
always @(posedge clk) begin

mult_temp = a_temp * b_temp;
a_temp = a;  b_temp = b;

end
always @(posedge clk) begin

  out = mult_temp + c_temp2;
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+
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out
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c_temp2 = c_temp1;
c_temp1 = c;

end
endmodule

Figure 9 – Example after Pipelining

3.2 Case and IF-Then-Else

The goal in designing fast FPGA designs is to fit the most logic into one Combinatorial Logic
Block (CLB). In the example of a Xilinx Virtex device, each CLB can implement any 6-input
function and some functions of up to 13 variables. This means an 8-to-1 Mux can be implemented
in 1 CLB delay and 1 local interconnect in 2.5ns (-6 device).  In ASICs, the delay penalty for
additional logic levels is much less than in FPGAs where each CLB logic level can be modeled as
a step function increase in delay.

Improper use of the Nested If statement can result in an increase in area and longer delays in a
design. Each If keyword specifies a priority-encoded logic whereas the Case statement generally
creates balanced logic. An If statement can contain a set of different expressions while a Case
statement is evaluated against a common controlling expression. Most synthesis tools can
determine if the If-Elsif conditions are mutually exclusive, and will not create extra logic to build
the priority tree.

Rule - To avoid long path delays, do not use extremely long Nested If constructs. In general, use
the Case statement for complex decoding and use the If statement for speed-critical paths.

Guideline - In general, If-Else constructs are much slower unless the intention is to build a
priority encoder. The If-Else statements are appropriate to use for priority encoders. In this case
assign the highest priority to a late arriving critical signal.

Guideline - To quickly spot an inefficient nested if statement, scan code for deeply indented
code.

1 logic level

2 cycle

*

+

a

b

c

out
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Example 6 – VHDL example of inefficient nested If Statement

NESTED_IF: process (CLK)
begin

if (CLK’event and CLK =’1’) then
if (RESET = ‘0’) then

if (ADDR_A = “00”) then
DEC_Q(5 downto 4) <=ADDR_D;
DEC_Q(3 downto 2) <=”01”;
DEC_Q(1 downto 0) <=”00”;
if (ADDR_B = “01”) then

DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;
if (ADDR_C = “01”) then

DEC_Q(5 downto 4) <=unsigned(ADDR_D) + ‘1’;
if (ADDR_D = “11”) then

DEC_Q(5 downto 4) <= “00”;
end if;

else
DEC_Q(5 downto 4) <= ADDR_D;

end if;
end if;

else
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= ADDR_A;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

end if;
else

DEC_Q <= “000000”;
end if;

end if;
end process;

 

In example 7 the nested If was modified to Use If-Case

Example 7 – VHDL Example of Case

IF_CASE: process (CLK)
begin

if (CLK’event and CLK = ‘1’) then
if (RESET = ‘0’) then

case ADDR_ALL is
when “00011011” =>

DEC_Q(5 downto 4) <= “00”;
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

when “000110--” =>
DEC_Q(5 downto 4) <= unsigned(ADDR_D) + ‘1’;
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

when “0001----” =>
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

when “00------” =>
DEC_Q(5 downto 4) <= ADDR_D;

7 Levels of

Indentation

5 Levels of

Indentation
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DEC_Q(3 downto 2) <= “01”;
DEC_Q(1 downto 0) <= “00”;

when other =>
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= ADDR_A;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;

end case;
else

DEC_Q <= “000000”;
end if;

end if;
end process;

If-then-else statements are appropriate to use when you need a priority encoder. In this case you
should assign the highest priority to a late arriving critical signal.

Example 8 – Verilog 8-to-1 MUX Example using IF-THEN-ELSE for Late Arriving Signals

always @(sel or in)
begin
 if (sel == 3'h0)

out = in[0];
   else if (sel == 3'h1)

out = in[1];
   else if (sel == 3'h2)

out = in[2];
   else if (sel == 3'h3)

out = in[3];
   else if (sel == 3'h4)

out = in[4];
   else

out = in[5];
end

Figure 12 – 8-to-1 MUX Implementation

In the example of an 8-to-1 Multiplexer Design, using a Case statement yields a more compact
design resulting in a faster implementation. In most FPGA architectures a 4-to-1 MUX can be
implemented in a single CLB slice where it would take multiple CLB logic levels to implement
using If-Else.

Example 9 – Verilog 8-to-1 MUX Example using Case

always @(C or D or E or F or S)
begin
  case (S)

in [4]

in [3]

S
S

S
S

in [2]
in [1]

in [0]
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2’b000  : Z = C;
2’b001  : Z = D;
2’b010  : Z = E;
2’b011  : Z = F;
2’b100  : Z = G;
2’b101  : Z = H;
2’b110  : Z = I;
default : Z = J;

  endcase

Figure 13 – 8-to-1 MUX Implementation

3.3 Critical Path Optimization

A common technique that is used to speed-up a  critical path is to reduce the number of logic
levels on the critical path by giving the late arriving signal the highest priority.

Example 10 – VHDL Example of Critical Path before Recoding

module critical_bad (in0, in1, in2, in3, critical, out);
  input in0, in1, in2, in3, critical;

output out;

  assign out = (((in0&in1) & ~critical) | ~in2) & ~in3;

endmodule

Figure 14 - Critical Path before Recoding

Example 11 – VHDL Example of Critical Path after Recoding
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module critical_good (in0, in1, in2, in3, critical, out);
  input  in0, in1, in2, in3, critical;
  output out;

  assign out = ((in0&in1) | ~in2) & ~in3 & ~critical;

endmodule

Figure 15 - Critical Path after Recoding

3.4 Tristate vs. Mux Buses

The first consideration in designing any on-chip bus is whether to use a tristate bus or a
multiplexer-based bus. Tristate buses are popular for board-level designs and are also commonly
found in FPGA-based designs, because they reduce the number of wires and are readily available
on many FPGA devices. Tristate buses are problematic for on-chip interconnection since it is
essential that only one driver is active on the bus at any one-time; any bus contention, with
multiple drivers active at the same time, can increase power consumption and reduce the
reliability of the chip. There are additional problems in ASICs that do not exist for FPGAs.  For
example, ASIC designers must make sure that tristate buses are never allowed to float. FPGA
technologies provide weak keeper circuits that pull-up the floating bus to a known value.

Tristate buses are especially problematic for modules designed for reuse. There are a limited
number of tristate resources (i.e., tristate buffers connected to interconnect) in each device family
and device size within a family. The next designer may not have enough resources available,
forcing a significant redesign.

Guidelines – We recommend using multiplexer-based buses when designing for reuse since they
are technology-independent and more portable.

3.5 Arithmetic Functions

FPGA architectures designed for system level integration contains dedicated carry logic circuitry
that provides fast arithmetic carry capabilities for high-speed arithmetic functions. The dedicated
carry logic is generally inferred by the synthesis tools from an arithmetic operator (i.e., +, -, /). In
the Xilinx Virtex architecture a 16x16 multiplier can effectively use the carry logic from the
multiplier operand “*” and operate at 60MHz non-pipelined and 160MHz with pipeline stages.
Many synthesis tools have libraries of pre-optimized functions, such as Synopsys DesignWare
libraries, which can be inferred from RTL code as shown in the example following.

sum = a_in * b_in.

in2

in0
in1

in3
critical

out
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Guideline – Refer to the synthesis tools reference manual for the RTL coding style to effectively
utilize the dedicated carry logic for fast arithmetic functions.
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4 Verification Strategy

Design verification for ASIC system-level and reusable macros has consistently been one of the
most difficult and challenging aspects for designers. FPGA design methodologies provide a
flexible verification strategy resulting in a wide variety of verification methods and tools. Often,
in smaller non system-level designs, functional simulation is bypassed and the designer proceeds
directly to board level testing with probe points that can be easily added or removed. Timing
verification in the form of simulation or static timing are used to test worst-case conditions or
potential race conditions that may not be found during board level testing. The reprogrammability
of the device allows the designer to easily probe or observe internal nodes. This methodology is
very different from the traditional ASIC verification strategy, which requires rigorous testing to
minimize the risk of manufacturing an incorrect design. Because of these differences in
methodologies, widespread adoption of verification tools among FPGA users have slightly lagged
ASIC users.

4.1 HDL Simulation and Testbench

It is recommended for multi-million gate FPGAs that an ASIC verification methodology be used
that consists of a verification plan and strategy. The verification strategy generally consists of
compliance, corner, random, real code and regression testing. Modules and sub-modules must be
simulated and documented in order to ensure future usability.  In surveys taken of digital
designers, verification is often cited as the least favorite activity. A good testbench is more likely
to be reused than the actual design code.

Guideline - A testbench methodology is recommended for both ASIC and FPGA modules
designed for reuse. The same HDL simulators can be used to verify ASIC and FPGA designs.

4.2 Static Timing

For timing verification, static timing analysis is the most effective method of verifying a
module’s timing performance. As gate densities increase, gate-level simulators slow down,
thereby limiting the number of test vectors that can be run and resulting in lower path coverage.

Guideline - Static timing provides a faster means to test all paths in the design. However, it is
recommended to use a gate-simulator to check for misidentified false paths and to check blocks
of asynchronous logic. .

A noticeable advantage of FPGAs is that multiple libraries and pre-layout statistical wireload
models are not needed. Once the design is implemented, the layout is essentially determined and
the timing numbers are real. Many FPGA vendors such as Xilinx and Actel also provide the
ability to test bestcase and worstcase conditions and to vary the temperature and voltage. Varying
the temperature and voltage in an ASIC device generally changes the delays. Since FPGA
vendors usually publish worst case operating conditions for the various speedgrades of the
devices.  Reducing the maximum temperature and or increasing the minimum voltage causes
faster operating condition or pro-rates the delays.
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4.3 Formal Verification

Formal verification is beginning to emerge as a promising methodology for FPGA system level
and design reuse methodology. Although FPGA designs do not go through the same physical
transformations as ASICs, such as scan chain insertion, FPGA designs do go through less
obtrusive transformation while being optimized and implemented into the FPGA’s physical
resources. Formal verification is a quick method to check that the functionality of the design
remains as intended, providing additional peace of mind. More importantly for design reuse;
formal verification can be used to check the functionality from one technology to another,
providing maximum flexibility for the future.

                                   


