Xilinx Design Reuse Methodology
for ASIC and FPGA Designers

SYSTEM-ON-A-CHIP DESIGNS REUSE SOLUTIONS

Xilinx

An Addendum to the:
REUSE METHODOLOGY MANUAL

FOR SYSTEM-ON-A-CHIP DESIGNS

Table of Contents

R 1 1 o Yo [1o 1 o o 3
1.1 System-on-a-Reprogrammable Chip ... 3
1.2 WRY USE @N FPGA? ..ottt ettt e e e e 4

1.2.1 ASIC vs. FPGA DeSIgN FIOWSuuuiiiiiiiiiiiiie e 4
1.3 A Common Design REUSE SrateYuuuiieiiiiiiiiiieeeiiiiin e eeeiie e e e eenees 6

2 System Level Reuse Issues for FPGAS ..o 8
1.4 DefiNitioNS & ACTONYIMS ...uuuiiiiiiiiiiie e et ettt e ettt e e e e et e e e e e eaai e e e e e eesba e eeeenes 7
2.1 System Synthesis and TiMING ISSUESccoiuuiiiiiiiiiiii e 8

2.1.1 Synchronous vs. Asynchronous Design Styleccooviiiiiiiiiiiieiiiiiiee 8
2.1.3 System Clocking and Clock Distribution..............coveeiiiiiiiiiieeiiiiiii e 9
2.2 Memory and Memory INTEITACE..........uuuii i 12

2.2.1 ON-ChIP MEIMOIY ...ttt ettt e et e e e 12
2.2.2 Interfacing to Large Memory BIOCKS ..o, 13

3 Coding and SYNthesiS TIPSuiiiuiiiiiiieie e e 16
2.3 External Operability (I/O Standards)uueiieeiiiiiiiiieeeieii e 14
3.1 ADUNAANCE Of REQISTEISuuii it 16

3.1.1 Duplicating REQGISIEISciiiiiiii et e 16
3.1.2 Partitioning at Register BOUNTAIY..........c.uuuiiiiiiiiiiiinieeeeeeiii e 18
3.1.3 One-Hot State MaChiNES.ccooeiiiiiiii e 18
.14 PIPEIINING e 18
3.2 Case and IF-Then-EISe..........cooii e 20
3.3 Critical Path OptimIZatiQIl...........uiiiiiiiiiie e 23
3.4 TUISTALE VS. IMUX BUSES ... itiieiieiiiee et ettt e e e e et e e e e e et s s e e e e e eneannns 24
4 Verification Strat@gyveverieiiii e e e e e 26
3.5 AMthMELIC FUNCLIONS.......coiiiiiiie e 24
4.1 HDL Simulation and TeStDeNChooiiiiiiii e 26
S = 1L (o3 N1 1011 0T PP PPPPPTTRR 26

4.3 FOIMaAl VI A ON. .t et e ettt e e eaeaeaanns 27

1 Introduction

FPGAs have changed dramatically since Xilinx first introduced them just 15 yeais #ue
past, FPGA were primarily used for prototyping and lower volume applisatimistom ASICs
were used for high volume, cost sensitive designs. FPGAs had afstbbesxpensive and too
slow for many applications, let alone for System Level Integration (SLI). Peidgetrelopment
tools were often difficult to learn and lacked the features found I€ ASvelopment systems.
Now, this has all changed.

Silicon technology has progressed to allow chips with tens of millionsrefistars. This not

only promises new levels of integration onto a single chip, but also allowsfeatuees and
capabilities in reprogrammable technology. With today’s deeprsaton tetinology, it is

possible to deliver over 2 - million usable system gates in a FPGA. In addition, thesaverag
ASIC design operating at 30 — 50MHz can be implemented in a FPGA using thRSame
synthesis design methodology as ASICs. By the year 2004, the state-of-the-art FPGAeeil exc
10 million system gates, allowing for multimillion gates FPGAs operaiirgpeeds surpassing
300 MHz. Many designs, which previously could only achieve speed and cost-of-denksityygoa
ASICs, are converting to much more flexible and productive reprogralamsalotions.

The availability of FPGAs in the 1-million system gate range has started a shift of 8§gsde
towards using Reprogrammable FPGAs, thereby starting a new era of System-on-a-
Reprogrammable-Chip (SoRC). For a 1-million system gate SORC designgiaeer designing
100 gates/day would require a hypothetical 42 years to complete, at a cost of $6 Gldiaoty,
immense productivity gains are needed to make million gate designs contijeiaide, and

SoRC based on today’s million logic gate FPGAs, and tomorrow’s 10-million logic gate FPGAs
iS a promising solution.

SoRC is no different from SoC in that it requires leveraging egigtitellectual property (IP) to
improve designer productivity. Reusable IP is essential to constructing bugtfit@aillion-
gate designs in a reasonable amount of time. Without reuse, thergtesctndustry will simply
not be able to keep pace with the challenge of delivering the “better, fas@pechdevices that
consumers expect.

With the availability of new FPGA architectures designed for systesi Integration and FPGA
design tools that are compatible with ASIC design methodologies, it is now possitnplty @
similar if not identical design reuse methodology for ASICs and FPGAs. For deaiga that
have longed to eliminate NRE costs and improve time-to-market withaticg the learning
curve to become FPGA experts, this design reuse methodology adds a nef/fleeslom.
However, this methodology is not without its limitations. This paper examines tiyasiésat
can take advantage of an identical ASIC and FPGA design reuse methodaldbg aimple
modifications that can be made to the RTL code to enhance performanessed r

1.1 System-on-a-Reprogrammable Chip

To define SoRC, let us first start with a general definition of System-on-a-Chip. (80§t of
the industry agrees that SoC is the incorporation of an entire system ontaporigataquest’s
1995 definition included a compute engine (microprocessor, microcontroller ot sigital
processor), at least 100K of user gates and significant on-chip memory.

The definition of SORC is just beginning to evolve and in this book is defined as system level
integration implemented on a Reprogrammable FPGA device. dRE Sefinition is similar to
SoC since it generally includes a compute engine, 50K of user logic gates and on-cbiy.mem
The definition of SORC includes partial system integration inittipte chips as well as entire
system level integration on a single chip. The challenges facing SoC a@ddesRners are
similar even if the entire system is not integrated into one singleldbipever SoRC is not
defined as the gathering of glue logic, since SORC designs contain system levatiortéggues
that separate it from a general glue logic design.

1.2 Why Use an FPGA?

System-Level-Integration (SLI) using reprogrammable FPGA technologgde possible by
advances in IC wafer technology especially in the area of deep submicron lithogragdy. To
state-of-the-art waferfabs find FPGAs an excellent mechanisradiing new wafer technology
because of their reprogrammable natureidentally, this trend in the wafer fabs means that
FPGA companies have early access to the newest deep sub-micron technologiesatlyamat
increasing the number of gates available to designers as wetiang the average gate cost
sooner in the technology life-cycle than before. This trend, together with innovative tgatém
architecture features, is leading FPGAs to become the preferred architectLI.

1.2.1 ASIC vs. FPGA Design Flows

Figure 1 illustrates a typical ASIC design flow as compared to a typical FPSdgndow. The
FPGA design flow has some noticeable advantages:

E Insert Scan . Synthesis

E Structural i > Simulation

. Verification .
Place & Route
ASIC by Vend <

Not needed b
FPGAs |

Static Timing EC

ASIC Design Flow

Specification

HDL

Functional Simulation

Timina Verification

Sign-Off

Fab prototype

4 wk Lead-time

In-System Testing

|

Initial production
8-10 wk Lead-time

Volume
Production

——1

Firmwa

re
Design

FPGA Design Flow

Specification

HDL

Functional Simulation

Synthesis

Simulation

Place & Route
FPGA in House

Static Timing

Timina Verificatinn

Prototype

In-System Testing

Volume
Production

4_

EC

<4+—

Figure 1 —ASIC Design Flow Compared to FPGA Design Flow

Firmwar
e
Design

Reduced Risk— System-Level-Integration increases the complexity of implementation into the
target device. Reprogrammable logic eliminates the risk and expensei-@ustom and custom

IC development by providing a flexible design methodology. Systems designed in FRG#s ca
prototyped in stages, allowing in-system testing of individual sub-modulesi€Eign engineer
can make design changes or ECOs in minutes avoiding multiple cyclestlanoddIC
manufacturing house, at 2 months per cycle.

The quality of IP for ASICs depends on whether it has been verified usingificsp81C
technology library. The ultimate proof of the quality of the IP is that it hasibg@damented in a
desired ASIC technology. Implementing an IP or reuse module in more than dbe ASI
technology is costly. However implementing IP or reusable modules in a varig®Gdf F
devices is not.

Faster Testing and Manufacturing- ASICs require rigorous verification strategies to avoid
multiple cycles through manufacturing. The manufacturing andttes¢gies must be well
defined during the specification phase. Often different strategies must be usedintppe the
type of block. Memory blocks often use BIST or some form of direct memopssac¢o detect
and troubleshoot data retention problems. Other logic such as micespors requires custom
test structures for full or partial scan or logic BIST.

FPGA designs, on the other hand, are implemented on reprogrammable detiaes 100%
tested by the manufacture, before reaching the designer. In fact, FPGAsusaul be create test
programs downloadable into other non-reprogrammable devices on the boaedsTieenon-
recurring engineering (NRE) cost, no sign-off, and no delay while waiingrbtotypes to be
manufactured. The designer controls the entire design cycle, thereby shtivekohegign cycle as
well as the time to prototype. This allows essential steps such as firmi@ggaing to occur at a
stage late in the design flow but actually earlier in the actual design time.

Verification — ASIC technology requires strict verification before manufacturintartre
complex system level designs many more unexpected situations can ocdDrdé&xighers have
a much more flexible in-system verification strategy. The desggcan mix testbench
verification strategies with in-circuit testing, thereby offering faster eatifin without the cost
of accelerated simulators. Surveys of design engineers have found thaatbétast vector
generation and vector-based verification is the least favorite part of syssgmn process.

Hardware and Software CaDesigning- Early versions of the systems prototype can be used to
facilitate software and hardware co-design.

1.3 A Common Design Reuse Strategy

The dramatic improvement in FPGA architecture, pricing and design tools insthfewayears

has made it possible for ASIC and FPGA designers to share a commonrdeiigdology.

Designs requiring performance in the 30 — 50 MHz range are usually implemented using a RT
synthesis design methodology making a common ASIC and FPGA design reuse stratetgy possib
However, designs requiring higher performance, will usually require additional teebnigique

to the FPGA environment. A common design and design reuse strategy provides tiieyflexi
choose the best method to implement a system design without the overhead of retraining the
design teams. In addition, one can take advantage of the desigamdlguidelines found in

reuse methodology manuals such asRtese Design Methodology Manual from Synopsys and
Mentor or the web-basdreuse Methodology Field Guide from Qualis.

There are many challenges facing Soc/SoRC designers such as timed¢bpregkures, quality
of results, increasing chip complexity, varying levels of expentgatj-site teams and
management and implementation of a reuse strategy. FPGA designers are faced with the
additional challenges of architectures with varying system features, meetiogltdiférformance
goals and different implementation strategies. This paper addresses thasechaltgnges by
showing how theuidelines found in thReuse Design Methodology Manual can be applied

effectively on SORC designs and by focusing on some additional guidelines that can furth
enhance performance and reusability for designers implementingractorause strategy.

e Section 2provides an overview of the system level features commonly found in the FPGA
architectures designed for SLI. Xilinx’s Virtex is a leading example.

» Section 3contains general RTL synthesis guidelines that apply to both ASIC and FPGA
implementations, and have the greatest impact on improving system performance

e Section 4is a brief discussion of FPGA verification strategies and trends.

1.4 Definitions & Acronyms

This manual uses the following terms interchangeably: Macro, Mp#lock, I[P and Core. All
of these terms refer to a design unit that can reasonably be viewed as a stand-alone sub-
component of a complete System-on-a-Reconfigurable-Chip design.

Acronyms

* CLB - Combinatorial Logic Block

» ESB- Embedded Systems Block

* FPGA - Field Programmable Gate Array

e« HDL - Hardware Description Language

e LE - Logic Element

* OHE - One Hot Encoded

« RTL — Register Transfer Level

e SLI - System-Level-Integration

e SoC -System-on-a-Chip

e SoRC -System-on-a-Reprogrammable-CHRipstem

2 System Level Reuse Issues for FPGAS

This section gives an overview of the system-level issues thamnigrestto FPGAs when
designing for reuse. Generally these elements must be agreed upon or at lesstdliscsome
level before starting to design the modules of the system.

2.1 System Synthesis and Timing Issues

Designers should follow the guidelines for synchronous design style, clocking and reset found in
the “Reuse Methodology Manual” by Synopsys and Mentor, “Synthesis and Simulasigm De
Guide” by Xilinx or the Design Guides supplied by suppliers of EDA tools for the targeted

FPGA.

2.1.1 Synchronous vs. Asynchronous Design Style

Rule — Avoid using latches. The system should be synchronous and register-based. Use D
registers instead of latches. Exceptions to this rule should be midgreat care and must be
fully documented.

In the past latches have been popular for designs targeting ASICs. Although latchemplera si
circuit element then flip-flops, they add a level of complexity to the design suamiziguous
timing. Experienced designers maybe able to take advantage of the igmbiguprove timing.
Time borrowing is used to absorb some of the delay by guaranteeing tbatahe set up before
the leading clock edge at one stage or allowing the data to arrive as late etsipriene before
the trailing clock edge at the next stage.

Example 1D Latch Implemented with Gates

VHDL:
architecture BEHAV of d_latch is
begin
LATCH: process (GATE, DATA)
begin
If (GATE=‘1") then
Q <= DATA;
end if;
end process; -- end latch

Verilog:
always @ (GATE or DATA)
begin
if (GATE == 1'b1)
Q<= DATA;
end

D Latch

DATA

AND2

XS page 2-28 — X4975
Figure 2 - D Latch Implemented with Gates

The problem caused by the ambiguity of latch timing, and exacerbated by tiro@ibg, is that
it is impossible by inspection of the circuit to determine whether the desigeedéd to borrow
time or the circuit is just slow. In the example of the D Latch implemented using @ates,
combinatorial loop results in a hold-time requirement on DATA with i@9peGATE. Since
most synthesis tools for FPGAs do not process hold-time requirementséetdhe uncertainty
of routing delays, it is not recommended to implement latches with catobal feedback
loops. Whether the latch is implemented using the combinatorial gdtegmblocks, the timing
analysis of each latch of the design is difficult. Over a large Wesiging analysis becomes
impossible. Only the original designer knows the full intent of the design. Thuspkased
design is inherently not reusable.

In FPGA architectures another danger of inferring a latch from RTLisdtat very few FPGA
devices have latches available in the logic blocks internal to the device. In gddit&GA
architectures that do have latches available in the internal logic blocks, ttierfuoiche latches
can vary from one architecture to the next. HDL compilers infer latches from incemple
conditional expressions, such as an If statement without an Else clause. If thafRi{Ekture
does not have latch capabilities, the compiler may report an error or maynempline latch

using gates in the logic blocks function generator. If the architecture has latcheislavaithe
device’s input pin/pad and the latches are connected to an input port, the HDL compiler may
implement the latch inside the input pad. Once again, only the original designer knows the full
intent of the desired implementation.

2.1.3 System Clocking and Clock Distribution

In system level designing, the generation, synchronization and distribution of the islock
essential. Special care has long been taken by ASIC designers in the layoutaafkimg cl
structure. FPGAs have an advantage in this area since the clocking mestremgislesigned into
the device and pre-tested, balancing the clocking resources to the size and tacgetosyspdif
the device. This section takes a look at the clocking resources available to redmamagd the
impact of clock skew and clock delay.

SoC vs. SORG- SoC clocking distribution methods such as building a balanced céactot

distribute a single clock throughout the chip is not recommend for FPGAs designs. FPGAs have
dedicated clocking distribution resources and methods that efficiently utilize resoangrovide

high fanout with low skew throughout the chip. These clocking resources are roughblamui

to the high-power clock buffers found in SoC designs.

10

System Clocking

Rule —The design team must decide on the basic clock distribution architecture for tharthip e
in the design process. The most efficient clocking strategy and clock distributionosillikely

be determined by the targeted architecture. This strategybmugtll documented and conveyed
to the entire design team.

FPGA architectures provide high-speed, low-skew clock distributionsghrdedicated global
routing resources. FPGAs designed for SORC on average provide 4 dedicatedigidba
resources and additional clocking resources through flexible low-skew rowgmgees. The
dedicated resources for clocking distributions consist of dedicdbck pads located adjacent to
global nets that in turn can drive any internal clocked resources. The inpugtolthebuffer is
selected either from the dedicated pads or from signals generated internal to Ahe FPG

Rule — Keep the number of system clocks equal to or less than the noindselicated global
clock resources available in the targeted FPGA.

As an FPGAs design grows in size, the quality of on-chip clock distribution becamnes m
important. FPGA architectures designed for SoRC generally emplogldng method to reduce
and manage the impact of clock skew and clock delay. FPGA architectureiRiorpbovide
either a dedicated Phase-Locked Loop (PLL) or Delay-Locked Loop)(Ditduit. These
circuits not only remove clock delay but can also provide additional functipeatih as
frequency synthesis (clock multiplication and clock division) andkatemditioning (duty cycle
correction and phase shifting). Designers can also use the malopk outputs, deskewed with
respect to one another, to take advantage of multiple clock domains.

Rule — The number of clock domains and the clock frequency must be daednasnwell as the
required frequency, associated PLL or DLL and the external timigresments (setup/hold and
output timing) needed to interface to the rest of the system.

Delay-Locked Loop (DLL) vs. Phase-Locked Loop (PLL)

Either a phase-locked-loop (PLL) or a delay-locked-loop (DLL) can be used to reducecthip on
clock-distribution delay to zero. Both can be considered a servosteystem since they use a
feedback loop.

A PLL uses a phase detector to drive a voltage-controlled oscillator (VCO) such th&Ghe V
output has the desired frequency and phase. This generally involves an analogsiditepand
an inherently analog VCO. A PLL can recover a stable clock from a noisypemeént, but it is
difficult to avoid generating random clock jitter.

A DLL uses a phase detector to increase the delay so much that the subsequedpgeladcurs
at the desired moment. This generally involves a multi-tapped delay line, consisditayge
number of cascaded buffers. The adjustment is done by a digitally controilegdlexer. This
scheme lends itself to a totally digital implementation and is more citrigpaith standard

circuit design methodology and IC processing. A DLL cannot suppress incoming clock
jitter, passing the jitter straight through. There is no random outfaut fiut there is a systematic
output jitter of one delay-line increment, typically less than 50 picoseconds.

11

Neither a PLL nor a DLL can be used in PCI-designs that demand mmgration at instantly
changing clock rates.

Delay-Locked Loop (DLL)

As shown in Figure 3, a DLL in its simplest form consists of a programrdelag line and some
control logic. The delay line produces a delayed version of the input clock CLIKENcldck
distribution network routes the clock to all internal registers arhle clock feedback CLKFB
pin. The control logic must sample the input clock as well as the feedbackrcluaer to adjust
the delay line.

CLEQUT Clok
Dislabulian
METWOrk

CLKIN Programmabis
Dalay Line

Contoal

Figure 3 - A Delay-Locked Loop Block Diagram

In the example of a Xilinx Virtex architecture each global cloafds is a fully digital DLL.
Each DLL can drive two global clock networks. The DLL monitors the injmekand the
distributed clock, and automatically adjusts a clock delay element

A DLL works by inserting delay between the input clock and the feedback clotkhertivo

rising edges align, putting the two clocks 360 degrees out of phase (effectively in pftese)

the edges from the input clock line up with the edges from the feedback clock, the DLL “locks”.
After the DLL locks, the two clocks have no discernible difference. Thus, the DLL olmplat ¢
compensates for the delay in the clock distribution network, effectivelgviamthe delay

between the source clock and its loads. This ensures that clock edgeatiniernal flip-flops

in synchronism with each clock edge arriving at the input.

FPGAs often uses multiple phases of a single clock to achieve higblkerfrequencies. DLLs
can provide control of multiple clock domains. In our example architectour phases of the
source clock can be doubled or divided by 1.5, 2, 2.5, 3, 4, 5, 8 or 16.

system Clodt —

Ourtzide FIRGA _—L L _—L
wside FPGA
wside FPGA _—L || _—L

12

Figure 4 - Zero Delay Clock Management. Multiple DLLs facilitate precise generatiorrof ze
delay clocks both inside and outside the FPGA for highest chip-to{jcbgus

Phase-Locked Loop

While designed for the same basic functions, the PLL uses a different architecture toiahcomp
the task. As shown in Figure 5, the fundamental difference between the PLIL ksl that,

instead of a delay line, the PLL uses a programmable oscillaton¢éoage a clock signal that
approximates the input clock CLKIN. The control logic, consisting phase detector and filter,
adjusts the oscillator phase to compensate for the clock distribution delay.

The PLL control logic compares the input clock to the feedback €&FB and adjusts the
oscillator clock until the rising edge of the input clock aligns with the rising edge afetibdck
clock. The PLL then “locks”. The Altera FLEX 20KE is an example oP&E architecture that
contains a clock management system with phase-locked lock (PLL).

CLEDOUT Clock
Diisdribution

Programmable Osofator Pl x
abwork

CELKIM

Conrol

CLKFE

Figure 5 - Phase-Locked Loop Block Diagram

Guideline — If a phase-locked loop (PLL) is used for on-chip clock generation, thenreeares
of disabling or bypassing he PLL should be provided. This bypass makes chip testing and debug
easier.

2.2 Memory and Memory Interface

Memories present a special challenge when designing for reuse. In FPGA desigosesare
generally designed using vendor-supplied modules or module generators, making them very
technology dependent. Memory compilers developed for ASICs are not curreiglysti®

target FPGA architectures. However, some synthesis tools can recognize RAMTitorode,
making the design synthesis-tool dependent and FPGA-vendor independent.

2.2.1 On-Chip Memory

FPGAs architectures can accommodate small to medium blocks afrgnemchip. Smaller on-
chip RAM and ROM can be distributed throughout the FPGA by configuring the logicduncti
generators into bit-wide and byte-deep memory (i.e., 16x1, 16x2, 32x1, and 32x2pulEdtri

13

RAM can be used for status registers, index registers, counter storage, enmeffErient
multipliers, distributed shift registers, FIFO or LIFO stacks, or arg starage operation. Dual
port RAM simplifies the designs of FIFOs. The capabilities cdeldistributed blocks of memory
are highly architecture dependent and must be documented to ensure abteuuhitecture is
chosen when the module is reused. Distributed memory generally supportelesitite, edge-
triggered, dual and single port RAM. The edge-trigger capabititglgies system timing and
provides better performance for distributed RAM-based design.

Medium size memory can utilize block memory structures of the FPGA architeChase block
memories complement the shallower distributed RAM structures and are generally orgaaized
columns in the device. The columns extend the height of the altipe lexample of the Xilinx

Virtex device, each block memory is four CLBs high. A Virtex device of 64 CLgs Will

contain 16 memory blocks per column with a total of 32 blocks in two columns. filkoh

system gate (or ~350K logic gates) Virtex device has a total of 131,072 bits of bldtk RA
available. The depth and width ratio are adjustable between 1 x 4096 to 16 x 256 (width).x depth
Dedicated routing resources are provided to ensure routabititperformance.

Implementing distributed or block memory can be performed in thifeeeht ways:
* RTL description

* Instantiation of primitives

* Vendor specific memory compiler

Guideline —A corporate reuse strategy, that standardizes on a synthesis tool or FPGA
architecture. However, standardizing on a tool or architecture may hindgn desse.

Guideline — If a corporate policy that standardizes on a synthesis tool, implementing distributed
memory through the RTL description is generally recommended if the synthesis tool supports
memory interfacing. The specific RTL coding style to infer a distributed or Inlaskory is

unique to each synthesis vendor and not all synthesis tools have memoncimfapabilities for
FPGAs devices.

Alternatively, distributed and block memory can be implemented usingdorspecific memory
compiler or through instantiation. Memory compilers and instantiation of nygpnionitives may
provide access to features that can not be synthesized from a RTL descriptionmibry me
compiler is used, it must be clearly specified in the script file and the compitemust be
document. Both memory compilers and instantiation generally requitteoadtdcommands in
the synthesis script file. Using a memory compiler requires that &k*b@ac be instantiated into
the hierarchical design. Special commands are added to the synthesis script tthahthee
component is not compiled and that the design file can be located. Instantiatioesrduat
commands be added to assign the ROM values and the initial RAM value.

Guideline — If a corporate policy is to standardize on a FPGAs device family or a faariig s
that is backwards compatible, use of the FPGA vendor’'s memoryileoisprecommend.

2.2.2 Interfacing to Large Memory Blocks

Low-volume designs and prototypes can take advantage of customizénhsdiakgeted at
specific markets, such as Triscent's CPSU family of devices.eTdmstions combine CPU,
FPGA and larger blocks of SRAM for system-level integration targeting michwtier-based

14

systems that contain from 16 to 64kbyets of SRAM with 8-bit processor cores and 40K FPGA
system gates.

Standalone memories can provide designers with solutions when large blockage si@
needed for caches, buffers, and large look-up tables, such as in netwpgkiogt®ns. However
the trend in SoC designs implemented as ASICs has been towardsmadliey slocks of SRAM
for local buffering, register files, and temporary storage.

SoRC vs. SoG SoRC architectures are generally designed with small taumeaiemory
capabilities. Standard cell devices can embed large blocks of highnp@nce memory on-chip.

High-speed SRAM (e.g. 350MHz) with features such as double-data-rate (DDR)p@lites
and zero-bus latencies and very large, multiple Gigabytearies are best left off-chip in both
SoC and SoRC devices. Even half a megabit or more of SRAM or several megdiyRAM,
is more cost-effective when implemented off-chip.

Most SORC FPGA devices have banks of 1/0Os that can be configured to interfeieathffto

high speed SRAM and synchronous DRAM. The market is shifting away from 5-V devices to
chips that are operate from 3.3V supplies and offer 3.3V LVTTL (low-voltage Titénfaces
rather than standard TTL or CMOS 1/O levels. The voltage is congriaidrop as signal swings
are reduced to improve access time and power dissipation. SRAMs are offering 2.54/0 i
that meet the HSTL (high-speed subterminated logic) interfasfigations. These higher-speed
I/O lines will allow bus operations well beyond 300MHz.

SoC vs. SORG An advantage of designing a system using FPGA technology is that the FPGA
vendor has already invested the resources to support various I/O standards. Asaadesigner
can develop and prototype with a wide range of interface standards.

2.3 External Operability (1/O Standards)

Complex, system level chips require a variety of I/O interface stasdéhese different 1/0
standards provide higher levels of performance and/or lower poweradiissipnd are optimized
for system-critical elements such as backplane, memory and cooationisystems. High-speed
applications such as 66 MHz PCI require high-speed input andta#pabilities. One obvious
trend for system-level FPGA architectures is to add the necessaryfiégs into the device to
improve the overall system performance, reduce the board size, reducargasy;, the design
and provide full high-speed access to other devices.

Rule — When designing with a reusable module, choose a SoRC device that supports & requir
I/O standards.

Rule — Any module design for reuse that contains 1/0 should take advantage ofiehe afadfO
standards provided in the selected FPGA architecture. It is important tmeiatctine 1/0
standards required and any specific feature of the SORC device’s tMathased in the initial
implementation of the sub-module.

Verify that the selected architecture protects all pads from ed¢atiodischarge (ESD) and from
over-voltage transients. Having IEEE 1149.1-compatible boundary scan testittepaailable
in the 1/0 blocks can enhance board level testing.

Table 1 - Example of different I/O standards

15

Standard Voh Vref Definition Application
LVTTL 3.3 na Low-voltage transistor- General purpose
transistor logic
LVCMOS2 2.5 na Low-voltage complementaryGeneral purpose
metal-oxide
PCI 33MHz 3.3V 3.3 na Personnel computer PCI
interface
PCI 33MHz 5.0V 3.3 na Personnel computer PCI
interface
PCI 66MHz 3.3V 3.3 na Personnel computer PCI
interface
GTL na 0.80 Gunning transceiver logic Backplane
GTL+ na 1.00 Gunning transceiver logic Backplane
HSTL-I 15 0.75 High-speed transceiver logic High Speed SRAM
HSTL-III 15 0.90 High-speed transceiver logic High Speed SRAM
HSTL-IV 15 0.75 High-speed transceiver logic High Speed SRAM
SST3- 3.3 0.90 Stub-series terminated logic ~ Synchronous DRAM
SST3-I 3.3 1.50 Stub-series terminated logic Synchronous DRAM
SST2-1/1 2.5 1.25 Stub-series terminated logic ~ Synchronous DRAM
AGP 3.3 1.32 | Advanced graphics port Graphics
CTT 3.3 1.5 Center tap terminated High Speed Memaory

I/Os on SoRC devices are often grouped in banks. The grouping of 1/0’s into dém&seabe
generally placed into a module and can affect the floorplanning &dR€ design.

Guidelines— Document the grouping of I/O into the device’s banks and note any reason for
constraining the module or 1/O in the modules to a particular area or pin lofmati@asons such
as Global Clock Buffers or DLL direct connections.

16

3 Coding and Synthesis Tips

Fine-grain ASIC architectures have the ability to tolerate a wide range of &iiihgcstyles

while still allowing designers to meet their design goals. Course-grain FPGfearate like

Xilinx’s Virtex and Altera’s Apex are more sensitive to coding styles @esign practices. In

many cases, slight modifications in coding practices can improve the system pecrma

anywhere from 10% to 100%. Design reuse methodologies already stress the importance of good
coding practices to enhance reusability. Today, IP designers are utiliaimgof these practices,

as described in tHeeuse Methodology Manual, resulting in modules that perform much faster in
FPGAs than traditional ASIC designs converting to FPGAs.

The most common reason why a given design runs much slower infadéi@pared to an ASIC
is an excessive number of logic levels in the critical path. A logic level irGRAR®considered
to be one Combinatorial Logic Block (CLB) or Logic Element (LE) delay. In thenpaof a
CLB, each CLB has a given throughput (alt. propagation?) delay and aiatessoouting delay.
Once the amount of logic that can fit into one CLB is exceeded, arnetfetof logic delay is
added. For example, a module with 6 to 8 FPGA logic levels would operate at ~50N#Hz. Th
course-grain nature of FPGA may yield a higher penalty for added logic levelwithaASICs.

This section covers some of the most useful hints to enhance speed through reduclengelisgic
for FPGA SRAM architectures.

3.1 Abundance of Registers

FPGA architectures are generally register-rich. RTL coding styles thaé wébisters can be
employed to dramatically increase performance. This section nsrg@veral coding techniques
that are known to be effective in increasing performance by utilizing registers.

3.1.1 Duplicating Registers

A technique commonly used to increase the speed of a critical path is to duplegittex to
reduce the fan-out of the critical path. Because FPGAs are ratistethis is usually an
advantageous structure since it can often be done at no extra expensesigthe de

Example 2— Verilog Example of Register with 64 Loads

module high_fanout(in, en, clk, out);
input [63:0]in;

input en, clk;
output [63:0] out;
reg [63:0] out;
reg tri_en;

always @(posedge clk) tri_en =en;
always @(tri_en or in) begin
if (tri_en) out =in;
else out =64'bZ;
end
endmodule

tri_en

en

clk

[63:0]in [63:0]out

64 loads

P 7y

Figure 6 — Register with 64 Loads

Example 3— Verilog Example of After Register Duplication to Reduce Fan-out

module low_fanout(in, en, clk, out);
input [63:0] in;

input en, clk;
output [63:0] out;

reg [63:0] out;

reg tri_enl, tri_enz;

always @(posedge clk) begin
tri_enl =en; tri_en2 =en;

end

always @(tri_enl or in)begin
if (tri_enl) out[63:32] =in[63:32];
else out[63:32] = 32'bZ;

end

always @(tri_en2 or in) begin
if (tri_en2) out[31:0] = in[31:0];
else out[31:0] = 32'bZ;

end
endmodule

tri_enl

en >

clk 32 loads

[63:0]in >

tri_en2 - [63:0]out

en

clk &
w 32 loads

Figure 7 - Register Duplication to Reduce Fan-out

17

18

3.1.2 Partitioning at Register Boundary

Guideline - For large blocks, both inputs and outputs should be registered. For smalleramodule
either the input or the output of the module should be registered. Registering both the input and
output makes timing closures within each block completely local. Internal timing h&fectooa

the timing of primary inputs and outputs of the block. The module givels @dck cycle to
propagate outputs from one module to the input of another.

Unlike ASICs, there is no need for buffers to be inserted at the top level to drive loaginae
FPGA architectures designed for systems have an abundant amount of glabglwihtbuilt in
buffering.

This kind of defensive timing design is useful for large system level designs as wabasee
modules. In a reusable block, the module designer does not know the timing context in which the
block will be used. Defensive timing design is the only way to assure that timing problems will
not limit future use of the module.

3.1.3 One-Hot State Machines

State machines are one of the most commonly implemented functions in systetesayes.
Highly encoded state sequences will generally have many, wide-input logic functionspietnte
the inputs and decode the states. When implemented in a FPGA this can result itesele et
logic between clock edges because multiple logic blocks are needed to desideethe

Guideline - A better state-machine approach for FPGAs limits the amount of fateione
logic block. In some cases a binary encoding can be more efficienallesstate machines.

The abundance of registers in FPGA architectures and the fan-in limitations &f&her@ to
favor a one-hot-encoding (OHE) style. The OHE scheme is hamed so because onlyone stat
register is asserted, or “hot”, at a time. One register is assigeadhcstate. Generally an OHE
scheme will require two or fewer levels of logic between clock edges cechfmabinary

encoding, translating into faster performance. In addition the logigitascsimplified because
OHE removes much of the state-decoding logic. An OHE state neaishitssentially already

fully decoded making verification simple. Many synthesis tools have the ability to tetater
machines coded in one style to another.

3.1.4 Pipelining

Pipelining can dramatically improve device performance by restructuring longathtawith
several levels of logic and breaking them up over multiple clocks. This method &boa faster
clock cycle and increased data throughput at small expensertoyldtem the extra latching
overhead. Because FPGAs are register-rich, this is usually an aph@urgastructure for FPGA
design since the pipeline is created at no cost in terms of device resources. Hsiwesdhe
data is now on a multi-cycle path, special considerations must be ugkd fest of the design to
account for the added path latency. Care must be taken when defining timirfigatjets for
these paths. The ability to constrain multi-cycle paths with a sgietteol varies based on the
tool being used. Check the synthesis tool's documentation for informationlicyule paths.

19

Guideline — We recommend careful consideration before trying to pipeline a deskije. W
pipelining can dramatically increase the clock speed, it can be diffiotdt ¢orrectly. Also, since
multicycle paths lend themselves to human error and tend to be more troubtiesotoehe
difficulties in analyzing them correctly, they are not generally recommendeeualsle
modules.

In a design with multiple levels of logic between registers, the clock speedtedlibyi the clock-
to-out time of the source flip-flop, plus the logic delay through the multiple levégjic, plus
the routing associated with the logic levels, plus the setup time of the destination register.
Pipelining a design reduces the number of logic levels between the registensd Tasudt is a
system clock that can run much faster.

Example 4— Verilog Example before Pipelining

module no_pipeline (a, b, c, clk, out);

input a, b, c, clk;

output out;

reg out;

reg a_temp, b_temp, c_temp;

always @(posedge clk) begin
out = (a_temp * b_temp) + c_temp;
a temp=a; b _temp=b; c_temp =¢;

end
endmodule

a 2 logic levels
p 1 cycle

b—
D | out

D

c

D

Figure 8 — Example before Pipelining
Example 5— Verilog Example after Pipelining

module pipeline (a, b, c, clk, out);

input a, b, c, clk;

output out;

reg out;

reg a_temp, b_temp, c_templ, c_temp2, mult_temp;

always @(posedge clk) begin
mult_temp =a_temp * b_temp;
a temp=a; b temp=b;
end
always @(posedge clk) begin
out = mult_temp + c_temp2;

20

Cc_temp2 = c_temp1,;

c_templ =c;
end
endmodule
1 logic level
a 2 cycle
D
b__ | D
> COH 1 o
D
c
p N

Figure 9 — Example after Pipelining

3.2 Case and IF-Then-Else

The goal in designing fast FPGA designs is to fit the most logic into one Combinatorial Logi
Block (CLB). In the example of a Xilinx Virtex device, each CLB can impléraegy 6-input
function and some functions of up to 13 variables. This means an 8-to-1 Mux icgpidraented
in 1 CLB delay and 1 local interconnect in 2.5ns (-6 device). In ASICs, the daiaitypfor
additional logic levels is much less than in FPGAs where each CLB logic level caodieted as
a step function increase in delay.

Improper use of the Nested If statement can result in an increase in area anddtaygeain a
design. Each If keyword specifies a priority-encoded logic whereas the Case istafenseally
creates balanced logic. An If statement can contain a set of diffepessions while a Case
statement is evaluated against a common controlling expressishsifhesis tools can
determine if the If-Elsif conditions are mutually exclusived avill not create extra logic to build
the priority tree.

Rule - To avoid long path delays, do not use extremely long Nested If constructs. In gesesral,
the Case statement for complex decoding and use the If statement fecrsipesdaths.

Guideline - In general, If-Else constructs are much slower unless theiories to build a
priority encoder. The If-Else statements are appropriate to upeidoity encoders. In this case
assign the highest priority to a late arriving critical signal.

Guideline - To quickly spot an inefficient nested if statement, scan code fptydedented
code.

Example 6— VHDL example of inefficient nested If Statement

NESTED_IF: process (CLK)
begin
if (CLK’event and CLK ="1") then
if (RESET = ‘0") then
if (ADDR_A = *“00") then
DEC_Q(5 downto 4) <=ADDR_D;
DEC_Q(3 downto 2) <="01";
DEC_Q(1 downto 0) <="00";
if (ADDR_B = *“01") then
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;
if (ADDR_C =“01") then
DEC_Q(5 downto 4) <=unsigned(ADDR_D) + ‘1’;
if (ADDR_D = “11") then
7 Levels of DEC_Q(5 downto 4) <= “00”;
Indentation_> end if;
else
DEC_Q(5 downto 4) <= ADDR_D;
end if;
end if;
else
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= ADDR_A,
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;
end if;
else
DEC_Q <= “000000";
end if;
end if;
end process;

In example 7 the nested If was modified to Use If-Case

Example 7— VHDL Example of Case

IF_CASE: process (CLK)
begin
if (CLK’event and CLK = ‘1’) then
if (RESET = 0") then
case ADDR_ALL is
when “00011011" =>
DEC_Q(5 downto 4) <= “00";
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;
when “000110--" =>
5 Levels of DEC_Q(5 downto 4) <= unsigned(ADDR_D) + ‘1’;
=3 DEC Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;
when “0001----" =>
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= unsigned(ADDR_A) + ‘1’;
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;
when “00------ " =>
DEC_Q(5 downto 4) <= ADDR_D;

Indentation

21

22

DEC_Q(3 downto 2) <="“01";
DEC_Q(1 downto 0) <= “00";
when other =>
DEC_Q(5 downto 4) <= ADDR_D;
DEC_Q(3 downto 2) <= ADDR_A,
DEC_Q(1 downto 0) <= unsigned(ADDR_B) + ‘1’;
end case;
else
DEC_Q <= “000000";
end if;
end if;
end process;

If-then-else statements are appropriate to use when you need ty priodder. In this case you
should assign the highest priority to a late arriving critical signal.

Example 8- Verilog 8-to-1 MUX Example using IF-THEN-ELSE for Late Arriving Signals

always @(sel or in)

begin
if (sel == 3'h0)
out= in[0];
else if (sel == 3'hl)
out =in[1];
else if (sel == 3'h2)
out =in[2];
else if (sel == 3'h3)
out =in[3];
else if (sel == 3'h4)
out =in[4];
else
out =in[5];
end
in [4]
in[3]

Figure 12— 8-to-1 MUX Implementation

In the example of an 8-to-1 Multiplexer Design, using a Casengtateyields a more compact
design resulting in a faster implementation. In most FPGA architectures a 4-toxafibe
implemented in a single CLB slice where it would take multiple CLB logic legglmplement
using If-Else.

Example 9— Verilog 8-to-1 MUX Example using Case

always @(CorDorEor ForS)
begin
case (S)

23

2’000 :
2’b001 :
2’b010 :
2'b011 :
2’b100 :
2'b101 :
2'b110 :
default: Z
endcase

"IOMMOO

NNNNNNN

’

J;

8:1 Mux

C—TETMMOO
N

S

Figure 13— 8-to-1 MUX Implementation

3.3 Critical Path Optimization

A common technique that is used to speed-up a critical path is terg@unumber of logic
levels on the critical path by giving the late arriving signal the highest priority.

Example 10— VHDL Example of Critical Path before Recoding

module critical_bad (in0, in1, in2, in3, critical, out);
input in0, inl, in2, In3, critical,
output out;
assign out = (((in0&in1) & ~critical) | ~in2) & ~in3;
endmodule
in0 —
in1l ——

critical =

in2
in3 @

Figure 14 - Critical Path before Recoding

Example 11- VHDL Example of Critical Path after Recoding

24

module critical_good (in0, in1, in2, in3, critical, out);
input in0, inl, in2, in3, critical,
output out;
assign out = ((in0&inl) | ~in2) & ~in3 & ~critical;

endmodule

in0 ——
inl ——
in2

in3 q out
critical O

Figure 15 - Critical Path after Recoding

3.4 Tristate vs. Mux Buses

The first consideration in designing any on-chip bus is whether to use a tristate bus or a
multiplexer-based bus. Tristate buses are popular for board-level designs and anmalsolg
found in FPGA-based designs, because they reduce the number of wires andilgravagiable
on many FPGA devices. Tristate buses are problematic for on-chip interconnectiohisince i
essential that only one driver is active on the bus at any one-time; any bus conétition
multiple drivers active at the same time, can increase power consumption @celthed
reliability of the chip. There are additional problems in ASICs that texist for FPGAs. For
example, ASIC designers must make sure that tristate buses are never allovatd & G\
technologies provide weak keeper circuits that pull-up the floating bus to a known value.

Tristate buses are especially problematic for modules designeeuse. There are a limited
number of tristate resources (i.e., tristate buffers connected to interjdnresxch device family
and device size within a family. The next designer may not have enough essauvadable,
forcing a significant redesign.

Guidelines— We recommend using multiplexer-based buses when designing for reuse since they
are technology-independent and more portable.

3.5 Arithmetic Functions

FPGA architectures designed for system level integration contains teéedbeary logic circuitry
that provides fast arithmetic carry capabilities for high-speed arithmetitidns. The dedicated
carry logic is generally inferred by the synthesis tools from an arithmetiatopé.e., +, -,). In
the Xilinx Virtex architecture a 16x16 multiplier can effectively use the cagig from the
multiplier operand “*” and operate at 60MHz non-pipelined and 160MHz withipgsetages.
Many synthesis tools have libraries of pre-optimized functions, such as Synopsys\Were
libraries, which can be inferred from RTL code as shown in the erdoifdwing.

sum =a_in *b_in.

25

Guideline — Refer to the synthesis tools reference manual for the RTL codlagssffectively
utilize the dedicated carry logic for fast arithmetic functions.

26

4 Verification Strategy

Design verification for ASIC system-level and reusable macrosdrasstently been one of the
most difficult and challenging aspects for designers. FPGA design methodologies provide a
flexible verification strategy resulting in a wide variety of verificatiorthnds and tools. Often,
in smaller non system-level designs, functional simulation is bypassed and themesigeeds
directly to board level testing with probe points that can be easily added or remiovied, T
verification in the form of simulation or static timing are used to test worst-caseicnsdir
potential race conditions that may not be found during board level testingeprbgrammability
of the device allows the designer to easily probe or observe internal nodeseffosatogy is
very different from the traditional ASIC verification strategy, whicfuiees rigorous testing to
minimize the risk of manufacturing an incorrect design. Because of tlitgemtes in
methodologies, widespread adoption of verification tools among FPGA users have slggely |
ASIC users.

4.1 HDL Simulation and Testbench

It is recommended for multi-million gate FPGAs that an ASIC verificatiethodology be used
that consists of a verification plan and strategy. The verificatiaregy generally consists of
compliance, corner, random, real code and regression testing. Moddlsgtamodules must be
simulated and documented in order to ensure future usability. leysuiaken of digital
designers, verification is often cited as the least favorite activity. A ggstlolench is more likely
to be reused than the actual design code.

Guideline - A testbench methodology is recommended for both ASIC and FPGA modules
designed for reuse. The same HDL simulators can be used to verify ASIC and FPGA designs.

4.2 Static Timing

For timing verification, static timing analysis is the most effective method df/iveyia
module’s timing performance. As gate densities increase, gate-levéddtgiraisiow down,
thereby limiting the number of test vectors that can be run and redoltmger path coverage.

Guideline - Static timing provides a faster means to test all paths in the design. However, it is
recommended to use a gate-simulator to check for misidentifssglgaths and to check blocks
of asynchronous logic. .

A noticeable advantage of FPGAs is that multiple libraries and poetigyatistical wireload
models are not needed. Once the design is implemented, the layout is essentialipediEnd
the timing numbers are real. Many FPGA vendors such as Xilinx and Actel also provide the
ability to test bestcase and worstcase conditions and to vary the atumpemd voltage. Varying
the temperature and voltage in an ASIC device generally changes the deleg$:-FBGA
vendors usually publish worst case operating conditions for the various speeddithées
devices. Reducing the maximum temperature and or increasing timeuminioltage causes
faster operating condition or pro-rates the delays.

27

4.3 Formal Verification

Formal verification is beginning to emerge as a promising methodology for FPs&hslevel

and design reuse methodology. Although FPGA designs do not go through the samé physica
transformations as ASICs, such as scan chain insertion, FPGAgdsigio through less
obtrusive transformation while being optimized and implemented into the FPGA&Eahy
resources. Formal verification is a quick method to check that the fundijasfatiie design
remains as intended, providing additional peace of mind. More inmplgriar design reuse;

formal verification can be used to check the functionality from one technology teeanot
providing maximum flexibility for the future.

